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Complete coverage of an unknown environment is a

valuable skill for a variety of robot tasks such as 
oor

cleaning and mine detection. Additionally, for a team

of robots, the ability to cooperatively perform such a

task can signi�cantly improve their eÆciency. This

paper presents a complete algorithm DCR (distributed

coverage of rectilinear environments) which gives robots

this ability. DCR is applicable to teams of square robots

operating in �nite rectilinear environments and exe-

cutes independently on each robot in the team, directing

the individual robots so as to cooperatively cover their

shared environment relying only on intrinsic contact

sensing to detect boundaries. DCR exploits the struc-

ture of this environment along with reliable position

sensing to become the �rst algorithm capable of gen-

erating cooperative coverage without the use of either

a central controller or knowledge of the robots' initial

positions. We present a completeness proof of DCR,

which shows that the team of robots will always com-

pletely cover their environment. DCR has also been

implemented successfully in simulation, and future ex-

tensions are presented which will enable instantiation

on a real-world system.

1 Introduction

The coverage problem, that of planning a path for a

sensor, e�ector, or robot to reach every point in an

environment, is one that appears in a number of do-

mains. The problem of sensor-based coverage, that of

planning such a path from sensor data in the absence of

a priori information about the environment, is limited

to robotics, but also applies to a number of di�erent

tasks. What is common to all these problems, whether

a spray painting task on a known surface or a mine

detection task with little or no initial information, is

a need for assurance of complete coverage. For known

areas, a path can be correctly generated o�-line [1],

but in the sensor-based case, the usual solution is in-

stead to use a strict geometric algorithm about which

completeness can be proven for any environment of a

given class. Tasks which may be accomplished by mul-

tiple robots introduce additional complexity, since each

point in the environment need only be reached by one

of several robots, and in order to cooperate, the robots

must know (or discover) each other's location. How-

ever, using multiple robots gives the potential for in-

creased eÆciency in terms of total time required.

While a number of sensor-based coverage algorithms

have been proposed, in most, the algorithm begins by

assuming the environment to be simply shaped (e.g.

simply connected, monotone, convex, etc.). To cover

its environment, the robot may then execute a simple

coverage path until it discovers evidence that contra-

dicts the initial assumption, at which point one of sev-

eral strategies is used to ensure coverage on all sides

of the newly discovered obstacle. An algorithm pre-

sented by Lumelsky et al. in [2] and extended in [3]

produces coverage of C2 environments for robots with

�nite non-zero sensing radius by recursively building a

subroutine stack to ensure all areas of the environment

are covered. This algorithm does not explicitly build

a map, in contrast to sensor-based coverage work by

Acar [4] based on a planned coverage strategy outlined

in [5]. In [4], a cellular decomposition of the environ-

ment is constructed and used to form a graph which

in turn is used to plan coverage | when a speci�c cell

has been covered, the robot uses the structure of the

graph to plan a path to an unexplored area, and when

the graph has no unexplored edges, coverage is com-

plete. The cellular decomposition approach of [5] also

inspired the algorithm presented in [6], which in turn

is the basis for the current work. In [6], we presented

an algorithm for coverage of rectilinear environments

by a single robot using only intrinsic contact sensing.

This algorithm also explicitly leveraged the degenera-

cies of the environment (degenerate in the C2 sense)
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by decomposing the free space into a set of rectangular

cells.

In contrast to the more commonly studied coverage

tasks mentioned above, the inspiration for the cur-

rent work comes from a manufacturing environment.

The minifactory, an automated assembly system un-

der development in the Microdynamic Systems Labo-

ratory1, has been built within a framework that pro-

vides for rapid design, programming and deployment

[7]. A minifactory includes several types of indepen-

dent robots, but this work concentrates on the couriers,

small tethered robots that operate on a set of tileable

platens which form the factory 
oor. The couriers have

micron-level position sensing but only intrinsic contact

sensing to detect the boundaries of their environment.

In addition, each is equipped with an upward-pointing

optical sensor to locate LED beacons placed on over-

head robots as calibration targets. One of the tasks

for the couriers is to collectively explore the as-built

factory from unknown initial positions to generate a

complete factory map. This task has led to the investi-

gation of coverage algorithms for teams of robots, with

the restrictive environment providing a simpli�ed do-

main to consider. The algorithm developed here there-

fore applies to teams of square robots with intrinsic

contact sensing operating in a shared, connected recti-

linear environment with �nite boundary and area. In

addition, the robots in the team will not know their

relative initial positions or orientations, however, due

to the structure of the environment, their orientation

will be one of four distinct values (i.e. with axes aligned

with the environment boundaries) and cannot change.

Like the work described here, previous work in dis-

tributed robotics has presented the use of a common

algorithm executed by each robot in a team (without a

central controller) to achieve a speci�c task [8, 9, 10].

For example, in the work of Donald et al. [8], several

distributed algorithms were presented to perform a co-

operative manipulation task. There, however, the goal

was to recast a simple provable algorithm in such a

way that explicit communication was unnecessary, but

could rather be implicit in the task mechanics. In our

work, the environment is static, and so this reduction

is not available, and the underlying algorithm (single-

robot coverage) is much more complex. Other work on

decentralized control of cooperative mobile robots has

generally focused on the creation of a certain group

1More information at http://www.cs.cmu.edu/�msl

Figure 1: A schematic rendition of the algorithm DCR, a

copy of which is run independently by each robot performing

coverage.

behavior (as simple as foraging [9] or as complex as

playing soccer [10]) without proof of the correctness or

completeness of the individual or group algorithms.

On the other hand, research into algorithms for com-

plete coverage of an environment by cooperating robots

has so far used a central controller deploying robots

from known locations, which is not satisfactory for the

minifactory problem. For example, Gage's work [11]

uses random walks by a large team with a common

home position to generate probabilistically complete

coverage. A fairly abstract algorithm presented by Rao

et al. [12] uses a small team of point-sized robots with

in�nite range sensing to build a visibility graph of a

polygonal environment. In contrast, work by Rekleitis

et al. [13] uses cooperating robots with mutual remote

sensing abilities, but with explicit cooperation to re-

duce mapping errors rather than to increase eÆciency.

2 DCR: Overview

DCR is an algorithm developed for square robots that

use only intrinsic contact sensing, and produces com-

plete coverage of any �nite rectilinear environment

while using cooperation between robots to produce

coverage more eÆciently. It consists of three distinct

components, shown schematically in Fig. 1. The �rst,

CCRM , covers the environment by incrementally build-

ing a cellular decomposition C (C = fC0; : : : ; Cng).
It uses only C and the robot's current position p =

(px; py) (i.e. time-based history is not used) to direct

the robot to continue coverage. CCRM is based on

the work in [6], and performs coverage without taking

into account any other robots in its team. However,

with the other components of DCR properly designed,
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Figure 2: Examples of (a) the sweep-invariant decomposition, (b) an oriented rectilinear decomposition, and (c) a possible

generic rectilinear decomposition of a rectilinear environment.

it performs coverage equally capably in a cooperative

setting. The second part of DCR, the feature handler,

derives pre-speci�ed types of features from C and com-

municates with other robots in the team to determine

the relative position of the various robots. Finally, the

overseer takes incoming data from colleagues and al-

ters C. This is done without the explicit \knowledge"

of CCRM , but because CCRM uses no state other than

C and p, the overseer can alter C to incorporate the

new data, and as long as this is done such that C re-

mains in a state admissible to CCRM (as described in

Sec. 2.4), coverage continues.

2.1 Cell decompositions under DCR

Before discussing the makeup of DCR, it may be in-

structive to describe the type of cell decompositions

that will be constructed. This discussion will focus

only on the geometry of the cells in the decomposition,

but in each type of decomposition, every cell also in-

cludes \connections" (geometric references) to each of

its neighbors that allow for the straightforward creation

of an adjacency graph of the decomposition. One way

to uniquely decompose a known rectilinear environ-

ment is the sweep-invariant decomposition (SID), as

shown in Fig. 2a. In a SID, each obstacle or boundary

edge is extended until a perpendicular wall is reached,

with all extended edges de�ning cell boundaries | as

a result, a cell's edge may be determined by an arbi-

trarily distant boundary component. Thus, it is not

possible to incrementally construct the SID without

splitting cells that have already been completed, since

determining a cell's extent could require knowledge of

features that are arbitrarily distant from the cell it-

self. This diÆculty of incremental construction makes

sensor-based coverage based on the SID impractical.

A di�erent, nearly unique type of decomposition is the

oriented rectilinear decomposition, shown in Fig. 2b.

This decomposition is produced by extending all verti-

cal edges (the x values of these edges are called inter-

esting points, analogous to critical points of a sweep

through a C2 environment) to form cell boundaries,

and can be incrementally constructed and easily cov-

ered with the use of seed-sowing paths as described

below. This decomposition is produced by DCR when

performing coverage without colleagues.

Multiple robots performing cooperative coverage in a

shared environment will not necessarily have the same

orientation, and therefore will not necessarily build the

same oriented rectilinear decomposition. This means

that neither of the above decompositions can be built

in a cooperative setting. Instead, the cell decomposi-

tions that are constructed under DCR fall into a class

referred to here as generic rectilinear decompositions

(GRDs), an example of which can be seen in Fig. 2c.

A GRD consists of cells that are rectangular and su-

persets of cells of the SID. In addition, in a valid GRD,

no two cells have overlapping area (8i; j:Ci \ Cj = ;)
and all cells contain connections to all neighbors across

their common edges. It should also be noted that dur-

ing the performance of DCR, a valid GRD may consist

of multiple disconnected components. This is because

robots only share completed cells, but may meet in an

area that neither has completed. Also, for a given envi-

ronment, di�erent initial positions of robots may lead

to di�erent GRDs, since the nature and timing of the

cooperation may change.

2.2 CCRM description

To perform cooperative coverage, each robot must �rst

be able to perform coverage by itself. This is the job of

CCRM , a sensor-based coverage algorithm for a rect-

angular robot with only intrinsic contact sensing oper-
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(a) (b)

Figure 3: Some examples of how CCRM discovers and localizes interesting points.

ating in rectilinear environments. It operates in cycles,

with the length of each cycle being a single straight-line

trajectory of the robot. At the beginning of each cycle,

it examines the structure of C around the current posi-

tion, and uses an ordered list of rules to determine the

next trajectory (both direction and distance) required

to continue coverage. The rules are structured so as to

produce complete coverage. Once a trajectory is sub-

mitted to the underlying robot, the robot moves until

one of three types of coverage events occurs. A cov-

erage event occurs when the maximal distance of the

trajectory is achieved, a collision takes place, or con-

tact that is to be maintained with a wall is lost. CCRM

then updates C given the type of event, chooses a new

trajectory, and the cycle repeats.

Under CCRM , each cell Ci is described by its mini-

mum known and maximum potential extents, Cin and

Cix respectively. Associated with each edge of the cell

is a list of intervals, each of which is a connected line

segment describing the cell's neighbor across that edge.

Each interval therefore points to a wall, another cell or

a placeholder, a line segment denoting the entrance to

unexplored area.

To cover each cell, CCRM generates a seed-sowing

path as shown in the leftmost portion of Fig. 3a, in

which the robot travels along paths parallel to its y

axis and as far apart as the width of the robot. These

continue until an interesting point is detected, such as

in the middle portion of Fig. 3a. When this occurs,

CCRM updates C based on the type of coverage event.

In the case of Fig. 3a, a new cell (C1) is added around

p with uncertainty in the boundary between it and the

previous cell. A rule then �res based on this uncer-

tainty to localize the interesting point before coverage

continues in the new cell. Another case of detection and

localization of an interesting point is shown in Fig. 3b,

which uses similar rules, although in this case a place-

holder H0 is built rather than a new cell.

Since the �rst applicable rule determines the next

trajectory, rules for interesting points are tested �rst,

followed by the seed-sowing rule, as follows:

1. If p is in a cell, call that cell Cc and continue at

rule 2. Otherwise, if px is within w (the width of

the robot) of a complete cell, go into that cell.

2. If Cc has a side edge with �nite uncertainty, move

to localize that edge.

3. If Cc has a side edge at a known position that

is not completely explored, investigate the closest

unexplored point in it.

4. If Cc has unknown 
oor or ceiling, go in �y or +y
respectively.

5. If Cc is not covered from its left edge to its right

edge (note that if either edge is unknown, this will

always be true), continue seed-sowing.

If none of these rules apply to Cc, then it must be

complete. A cell is de�ned as complete when each of

its edges are at known location and are spanned by a

set of intervals, and its interior has been completely

covered with seed-sowing strips. If Cc is complete, the

following rules are used, in order:

6. If there is an incomplete cell in C, plan a path to

it and follow the �rst step of that path.

7. If Cc has a placeholder neighbor, build a new cell

from it and enter the new cell.

8. Choose a placeholder from C, plan a path to the

cell it adjoins and take the �rst step of the path.

Path planning is done by implicitly creating a graph

from the adjacency relationships of the cells in C, and
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(a) (b)

Figure 4: The e�ects of an exploration boundary (dash-dot

line) when the robot is in (a) an incomplete cell and (b) a

complete cell.

searching that graph for a path to the destination. The

search is done depth-�rst from the destination back to

p, and the destination is chosen deterministically, so

that even though the plan is regenerated after each

trajectory, the planned path will remain the same as

the plan is executed. Traversal of each cell is done sim-

ply with straight line motions. Finally, if none of these

rules �re, there must be no placeholders or incomplete

cells, and so C must be completely covered and its

boundary explored, meaning coverage is complete.

Once cooperation is achieved, a cell may have an-

other (complete) cell above or below it, as seen in Fig.

2c. To allow CCRM to continue seed-sowing in such

cells, a construct called an exploration boundary has

been developed. Exploration boundaries are virtual

walls placed at the 
oor and ceiling of each cell ob-

tained from a colleague, and have the property of al-

lowing the robot to pass though them only when the

robot is in a complete cell. This allows CCRM to per-

form seed-sowing in a cell that does not have walls

at its 
oor or ceiling, as shown in Fig. 4a, but does

not impede path planning once the cell is complete,

as shown in Fig. 4b. It should also be noted that in

any case, a completed cell will always have an attached


oor and ceiling, where an attached cell edge is one

that is adjacent to a wall or another complete cell (not

a placeholder) at every point.

A second addition made to CCRM that only has im-

pact during cooperation is that a robot can \claim" a

placeholder as it builds a cell from it. The robot passes

this claim on to the overseers of its colleagues, and so

the other robots in the team will not travel to that area

to perform coverage. This helps minimize the double

covering of area, but also implies trustworthiness of the

robots. However, the claiming of area does not e�ect

completeness of DCR, so it can be implemented only

when desired.

2.3 Feature Handler description

The feature handler is quite independent from the

other two components in its behavior. Its task is to

use the data in C to generate colleague relationships

between robots, however, it does not alter C. There-

fore, the speci�c types of features and algorithms used

by the feature handler can change from one system to

the next without a�ecting the rest of DCR. For exam-

ple, in the current implementation, the feature handlers

look for distances between unlabeled landmarks (bea-

cons) that are common to two robots' maps. However,

other feature types such as wall lengths or beacon la-

bels (if present) could also be used, depending on the

particular system. The generic behavior of a feature

handler is to inform all other robots in the team of

the values for all instances of a speci�ed feature type

in C. When two robots discover matching features,

their feature handlers symmetrically compute the rela-

tive transforms between their local coordinate systems

using appropriate geometric algorithms. These trans-

forms are then used by the overseer when incorporating

data obtained from colleagues.

The other mandatory job of the feature handler is

to transfer data to all colleagues at the correct times.

When a colleague relationship is formed, all complete

cells must be given to the colleague, and when a cell in

C �rst becomes complete, that cell must be reported

to all colleagues. This ensures that the information

available to each robot is consistent, which in turn

maintains the attached edge property of cells described

above.

2.4 Overseer description

The overseer has the task of incorporating all data from

colleagues into C, a job complicated by the require-

ment that C must remain admissible to CCRM . The

addition of an incoming cell Cnew to C is done in two

stages. In the �rst stage, zero or more new cells are

added to C to account for the area of Cnew. Then, for

each added cell, its intervals are assigned to walls, ex-

isting cells or newly created placeholders. An example

of the action of the overseer is shown in Fig. 5.
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Figure 5: An example of adding new area by the overseer, in which the initial cell decomposition is depicted in Fig. 5a and

the incoming cell Cnew in Fig. 5b. The dot in each section of the �gure represents a common real-world point.

The cell Cnew arrives described in the coordinate sys-

tem of the sending robot, and so it is �rst transformed

into the local coordinate system using the transform

provided by the feature handler. Also at this time, all

intervals in Cnew that do not point to walls are mod-

i�ed to point to \unidenti�ed free space" rather than

a speci�c cell or placeholder, since any such neighbor

information in Cnew is meaningful only to the robot

that sent it.

To determine the area of cells to be added to

C;Ccom is de�ned as the set of all complete cells in

C, and Cinc = C � Ccom. For the example in Fig.

5, Ccom = fC0; C1g and Cinc = fC2g. Cnew is then

intersected with each cell in Ccom as follows:

� 8Ci 2 Ccom:

{ If Ci \ Cnew = ;, do nothing.
{ If Cnew is wider (larger in x) than Ci:

� If Cnew;right > Ci;right, make a copy of

Cnew called Cx, set Cx;left = Ci;right, and

call the overseer with Cx.

� Similarly (note no else here) for

Cnew;left < Ci;left.

� If Cnew is also taller than Ci, make a copy

of Cnew called Cx, set Cx;left = Ci;left and

Cx;right = Ci;right, then call the overseer

with Cx.

{ Else if Cnew is taller than Ci, perform similar

tests on top and bottom (no third test).

If Cnew (or its descendants) survive this process (such

as the area shown in Fig. 5c, added to C as C3 in

Fig. 5d), it will consist only of area new to C, i.e.

Cnew\Ccom = ;. In addition, whether or not the area
has been divided, each cell will still have at least two

attached edges (either walls or other complete cells,

possibly also provided by the sender of Cnew). Each

new cell is then intersected with every cell Ci 2 Cinc.

This intersection process is designed to retain the com-

plete Cnew and eliminate any overlap with incomplete

cells (shrinking or deleting the incomplete cells as nec-

essary). Since an incomplete cell must be attached on

its 
oor and ceiling, Cnew cannot be taller than any

Ci 2 Cinc. The intersection is therefore performed as

follows (note that it is not recursive, since each Cnew

is now a �xed size):

� 8Ci 2 Cinc:

{ If Cix \ Cnew = ;, do nothing.
{ If Cin \ Cnew = ;, reduce Cix so that it does

not overlap Cnew , skip to next Ci.

{ If Cin [ Cnew = Cnew , replace Ci with Cnew ,

skip to next Ci.

{ If Cnew is the same height asCi, there must be

a partial overlap in the x direction, so reduce

Cin (on either its left or right as appropriate)

to abut Cnew .

{ Otherwise, there must be partial overlap in

the y direction:

� If Cnew;ceil < Ci;ceil, replace Ci with a cell

Cx, set Cx;floor = Cnew;ceil and keep only

placeholders attached to Cx, and create an

interval in Cx to point to Cnew .

� Similarly (again no else) for Cnew;floor >

Ci;floor.

In the example, this intersection process results in

the decomposition shown in Fig. 5d. Finally, each

unassigned interval i in Cnew is given the correct neigh-

bor(s). This is done by determining which cell's max-

imum extent (if any) is across from the two ends of i

(these cells are denoted Ctop and Cbot). i is then as-

signed as follows:
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� If Ctop = Cbot = ;, build a new placeholder Hn

equal in size to i and set i's neighbor to Hn.

� If Ctop = Cbot 6= ;:

{ If Ctop is complete, set i's neighbor to Ctop.

Also, �nd the interval in Ctop that corre-

sponds to i and connect it to Cnew.

{ If Ctop is incomplete and i is horizontal, split

i, connect it to Ctop for i \ Ctopn and build a

placeholder for i \ Ctopx .

{ If Ctop is incomplete and i is vertical, connect

i to Ctop over the y extent of Ctopn as long as

Ctopn is within one robot width of i, build a

placeholder otherwise. If Ctop;n adjoins Cnew ,

�nd the corresponding interval in Ctop and

connect it to Cnew .

� If Ctop 6= Cbot, this should only occur if i is hor-

izontal and Ctop and Cbot are each either an in-

complete cell or ;. In this case, connect i where

adjacent to Ctopn , Cbotn to those cells, and build

placeholders for the remainder of i.

3 Proof

To prove that DCR leads to complete coverage of any

�nite rectilinear environment by any number of robots

(in the absence of interrobot collisions), it is �rst nec-

essary to show the completeness of CCRM , since DCR

run by a single robot is exactly CCRM . We then show

that any cooperation regardless of its timing and na-

ture does not interfere with the progress of CCRM .

These statements, combined with the reactive nature

of CCRM (and therefore the decoupled nature of cov-

erage and cooperation under DCR), imply that DCR

is complete.

Proposition 1 CCRM continues coverage to comple-

tion in a �nite rectilinear environment in the absence

of cooperation that alters the robot's current cell.

Completeness of CCRM is shown through the con-

struction and analysis of a �nite state machine (FSM)

which represents all possible behavior of CCRM . To

construct the FSM, an equivalence relation is de�ned

over all possible cell decompositions C and robot po-

sitions p such that any two (C; p) pairs that cause the

same rule to be applied in the same way are considered

equivalent. The resulting equivalence classes de�ne the

states of the FSM. All possible motions of the robot

Figure 6: A simpli�ed version of the FSM representation

of CCRM . Contents of the nodes are described in the con-

text of the proof. Gray dots represent the completion of a

cell.

under CCRM (without cooperation) are then enumer-

ated, starting from the initial condition of an empty

map. Each motion has from one to three (uncontrol-

lable) outcomes, each of which is a di�erent type of

coverage event and is represented by a transition in the

FSM. Completeness is then demonstrated by showing

that there are no terminal states other than complete

coverage, and no cycles that do not result in a mono-

tonically increasing measure of progress toward cover-

age. In addition, since states of the FSM are uniquely

determined by the robot's current cell Cc, the FSM

is valid for any valid GRD that includes Cc (no mat-

ter how it was constructed). A simpli�ed version of the

FSM, in which some nodes consist of several states and

transitions, is shown in Fig. 6. Note that all loops in

Fig. 6 contain a cell completion event, which indicates

progress toward complete coverage. While the details

of the FSM are beyond the scope of this presentation,

a brief description of each node may give some insight

to the structure of the FSM as well as CCRM itself.

Node A contains the states that describe seed-

sowing. In the absence of another incomplete cell over-

lapping the current cell, seed-sowing continues, cycling

through the four states in node A, until an interest-

ing point is discovered. This discovery can be made in

�ve di�erent ways, each leading to one of �ve successor

states of node A.

Node B contains a single state, the situation shown

in the middle of Fig. 3a. From this state, a single mo-

tion completes the previous cell, and the robot is then

in a cell with one known and partially explored edge.

All states for which the current cell has this structure

are contained in node C, in which the robot explores

this �rst side of the cell. Node C contains two cycles
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which correspond to the exploration of that edge mono-

tonically up or down (+y or �y). As the exploration

progresses, the robot may create and extend wall inter-

vals and/or placeholders, but there is never a cause to

reverse direction. This exploration may also include at-

tachment of the current cell to neighboring cells, which

is done correctly in any valid GRD. Once this explo-

ration is complete, seed-sowing once again begins in

this new cell.

Nodes D and E each represent a single state which

will always lead to node F. Node D represents a state

in which a corner is discovered by losing contact while

moving along the 
oor or ceiling of a cell during seed-

sowing. Node E represents the case shown in Fig. 3b,

in which a placeholder is built and the �nal edge of a

cell localized. In both of these cases, the cell's edge is

then at a known location. Node F in turn applies to all

cells where all but one edge are known and explored.

It is similar to node C, in that it contains several states

that describe the exploration of an edge, and the robot

moves monotonically along the edge. There are some

internal di�erences between the nodes, and when the

exploration is complete in node F, so is the cell, with

one exception. This exception is for the �rst cell (C0),

for which exploration of its �rst known edge is also de-

scribed by node F, leading to node X. This can only

happen once, however, so this cycle cannot be repeat-

edly traversed without completing a cell.

Finally, node X describes the state where the robot's

current cell is complete, as well as when the �rst edge

of C0 has been explored. In the latter case, since C0 is

not yet complete, CCRM returns to node A to perform

seed-sowing toward the other side of C0. Otherwise,

there are three possibilities. If there is an incomplete

cell in C, the robot will enter it and restart seed-sowing

in node A. Otherwise, if a placeholder exists, CCRM

will build a cell from the placeholder and begin to ex-

plore the cell's near edge as described by node C. Fi-

nally, if and only if node X is reached and no incom-

plete cells or placeholders exist, coverage is complete

and DCR terminates.

Proposition 2 The action of the overseer always

leaves (C; p) in the domain of CCRM .

This proposition has both global and local (to p) im-

plications. Globally, the overseer must always produce

a valid GRD, since this is assumed in Proposition 1. In

addition, the local construction of C must be such that

C and p form a state which is represented in the FSM

described above. Global correctness is demonstrated

by showing that the area of any cells added to C is cor-

rect and that all mutual connections between cells are

constructed correctly. Local correctness is then shown

via an enumeration of the possible e�ects on the robot's

current cell by the overseer.

Proof that added area is correct relies on the fact

that all complete cells in a GRD are supersets of SID

cells (including the cell obtained by the overseer Cnew).

Therefore, 8Ci 2 Ccom; (Cnew�Ci) is also a superset of

SID cells. To con�rm that the area added by the over-

seer from Cnew is in fact (Cnew �Ci), Cnew is written

as Cl [Cm [Cr, where Cl is the area to the left of Ci,

Cr the area to the right of Ci, and Cm the remainder

of Cnew . Cl and Cr will be fed back to the overseer

if non-null, at which point they will remain unchanged

relative to Ci. If Cm is larger than Ci, it will also be

given to the overseer, but will be subject to the ver-

tical intersection test, which in turn sends Cm � Ci

to the overseer. Otherwise, Cm � Ci, or equivalently

Cm�Ci = ;. In either case, the total area added based
on Cnew and Ci is (Cl[Cr [ [Cm�Ci]) = (Cnew�Ci).

For incomplete cells fCi : Ci 2 Cinc; Ci \ Cnew 6= ;g,
it must then be shown that after Cnew is added, all

known edges of Ci lie on edges of the SID. Since in all

cases, edges of Ci that are moved will be coincident

with edges of Cnew, which is a valid GRD cell, this

condition is also satis�ed.

To show that each added cell is correctly connected

to its neighbors, it must be shown that determining

the neighbors at each end of an interval (as is done

by the overseer) is suÆcient to determine its overall

disposition. This is in turn true if no interval is adja-

cent to more than two cells, and no cell lies adjacent

to an interval without reaching one end of it. Proofs of

these statements rely on the property that each com-

plete cell in a GRD will always have two attached op-

posing edges.

To show that no cell can lie in the middle of an in-

terval i, assume that such a cell exists (call it Cx). By

de�nition, Cx must not have a neighbor on the side that

attaches to i, otherwise that neighbor would be present

instead of Cnew . Cx must therefore have neighbors on

its sides perpendicular to i. However, if these neigh-

bors are walls, i will end at the edges of Cx, which

contradicts the original assumption. Otherwise, the

two neighbors must themselves have neighbors in the
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Cell relation description p 2 Cnew p 62 Cnew

Cnew \ Ccx = ; no overlap | no e�ecty

Cnew \ Ccn = ;; Cnew \ Ccx 6= ; overlap maxsize only case 1 in text Continue in Cc

Cnew \ Ccn = Ccn cell subsumed in node X case 2 in text

Cnew \ Ccn �y Ccn top/bottom replaced in node X Continue in small Cc

middle replaced as above, but see case 3 in text

yIt is possible for the intervals on an edge of Cc to be modi�ed by the addition of an
adjacent cell, but this will not change the state of CCRM except perhaps to complete Cc.

Table 1: E�ects of the overseer on the robot's current cell Cc.

directions perpendicular to i. Eventually this chain of

cells must adjoin a wall, at which point i's neighbor

will be a cell, not null as assumed.

Proving that an interval i will not adjoin more than

two cells is also shown by contradiction. First, assume

i is a vertical interval in Cnew adjacent to two existing

cells. The two cells (Ca and Cb, complete or incom-

plete) must therefore be unattached on the side facing

Cnew . Ca and Cb must therefore have attached 
oors

and ceilings (including their mutual edge), and both

must therefore have been created by a robot with the

same sweep direction. But this is not possible, as one

would have to be created �rst (even if both came from

di�erent robots), and would therefore have to extend

to a true wall, not just to the other cell. Two cells like

this Ca and Cb therefore cannot exist, and so a verti-

cal interval cannot have more than one neighbor. For

a horizontal interval, the argument works exactly the

same way for complete cells. However, in this case it is

possible to have at most two incomplete cells adjacent

to i if and only if they are C0 and C1.

Finally, to show that the action of the overseer does

not leave the robot in a position from which coverage

cannot continue, the possible actions of the overseer

in the neighborhood of p must be investigated. If the

robot is in a complete cell at the time of cooperation,

this cell will not be changed, and so the state of CCRM

is likewise unchanged. Otherwise, the robot's current

cell Cc is incomplete, and so the possible intersections

of Cnew and Cc must be enumerated. However, Cnew

must be no taller than Ccn , since any known neighbors

above and below Cc must be walls or complete cells.

The enumeration of all cases of intersection of Cc and

Cnew is therefore as shown in Table 1, with the resul-

tant state of CCRM also dependent on whether p is

within Cnew .

Three of the results from this intersection are non-

trivial, and are presented here in more detail. Case 1

is shown in Fig. 7a, and is handled by connecting the

interval in Cnew to Cc even though the minimum ex-

tents of the two cells do not adjoin. This connection

is prescribed in Sec. 2.4. This puts CCRM in node X,

but allows the robot to reenter Cc, as it is required

to do, since Cc is still incomplete. CCRM then re-

sumes seed-sowing, since Cc still does not extend to

Cnew . Case 2, shown in Fig. 7b, is handled by rule 1

of CCRM (this is in fact the only case in which this

rule produces motion). Now in node X, a move in the

x direction will always succeed, since Cnew must be

as tall as Cc, and if there was a wall between p and

Cc, it would have been discovered already. The robot

then continues from this complete cell. Finally, case

3 in Table 1 is one in which multiple incomplete cells

are created, such as in Fig. 5d, which could potentially

cause problems for seed-sowing. However, these new

cells will always share a known edge, and coverage can

only continue away from that edge. Also, the poten-

tial failure of seed-sowing under CCRM can only occur

when moving through the known but unexplored edge

of an incomplete cell. Therefore, the robot will always

complete one of the new cells (even with successors)

and return to the other without triggering a failure of

CCRM .

Proposition 3 Propositions 1 and 2 are suÆcient to

prove completeness of DCR.

Proposition 2 ensures that regardless of the input to

the overseer, CCRM will always �nd itself in the FSM

described in Proposition 1, from which it will continue

to perform coverage, making monotonic progress. Also,

since the overseer can only increase the area spanned

by Ccom (or leave it unchanged), the act of coopera-
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(a) (b)

Figure 7: (a) A case where the robot can't get to an incomplete cell and (b) a case where the robot is left outside C.

tion also describes monotonic progress toward complete

coverage.

4 Implementation / Example

DCR has been implemented in simulation, and a se-

ries of screen shots of a single run are shown in Fig.

8. The simulation gives an overall view of the environ-

ment as coverage progresses, and also displays a view

(not shown here) of the cell decomposition internal to

each robot. In the simple example shown here, the two

robots R0 and R1 performed coverage independently

until a time just before Fig. 8b was taken, at which

point their feature handlers decided that suÆcient in-

formation was present in their maps to determine their

relative position. Note that at this point, R0 is no

longer performing seed-sowing over the full width of

the environment. By the time Fig. 8c was taken, each

robot was working on a di�erent area of the environ-

ment, after which they ended up in the same area. R1

then claimed the area at the lower left before R0 could,

and so R0 simply waited in a \safe" place for R1 to

�nish. Finally, when coverage is complete in Fig. 8d,

note that only about half of the area has been vis-

ited by both robots. While clearly not optimal with

respect to time or total distance for the pair, it does

show that each robot spends less time covering than it

would without cooperation.

In addition to the simulation, CCRM has been suc-

cessfully implemented in the minifactory environment

on a single courier, and the relationship of the algo-

rithm to the underlying robot control will remain the

same in DCR. However, some extensions to DCR will

ease its transition into a real-world robot system. For

example, the simulation currently incorporates small

non-cumulative position error, which is allowed for in

most cases, but not in a rigorous (or even completely

correct) manner. Further analysis of the e�ects of this

and other types of uncertainty will make DCR applica-

ble to a wider variety of robot systems. Also, while the

simulation can e�ect collisions between robots, DCR

currently uses simple methods to attempt to avoid

colleagues and make progress. These methods often

succeed, but are prone to failure in complex environ-

ments, and more intelligent strategies must be devel-

oped, preferably ones that allow the completeness proof

to be retained with minimal modi�cation. Our even-

tual goal is the implementation of DCR on the mini-

factory hardware to verify its utility in a real-world

system.

5 Conclusion

In this paper, an algorithm DCR has been presented

with which a team of independent robots can cooper-

atively cover their shared environment. It comprises

a reactive coverage algorithm CCRM which operates

without explicit knowledge of cooperation and two ad-

ditional components (the feature handler and the over-

seer) which maintain cooperative relationships with

other robots to increase eÆciency of the team. This

decoupling of coverage from cooperation enabled the

completeness proof of DCR presented in this paper,

demonstrating that any team of square robots with in-

trinsic contact sensing can successfully cover a �nite

rectilinear environment eÆciently.
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(a) (b) (c) (d)

Figure 8: Screenshots of a two-robot coverage run in progress: (a) Initial positions (b) Just after colleague relationship is

formed (c) Each robot exploring a di�erent region (d) Coverage is complete.
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