
CCR: A Complete Algorithm for Contact-Sensor

Based Coverage of Rectilinear Environments

Zack J. Butler

October, 1998

CMU-RI-TR-98-27

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA

c
 Carnegie Mellon University 1998

This work was supported in part by NSF grant DMI-9523156. The
author was supported in part by an NSF Graduate Research Fellowship.



Abstract

Sensor-based coverage is a powerful tool for robots to use to dis-
cover their environment, especially in cases when complete knowl-
edge of the environment is required. Current methods have demon-
strated the ability to cover virtually arbitrary planar areas but re-
quire a remote sensor of �nite range, such as sonar. The work
presented here handles the case of robots that use only contact
sensing to determine the boundaries of their environment. An al-
gorithm CCR is presented that works in a wide range of rectilinear
geometries. A proof of completeness is presented for CCR which
shows that it always causes the robot executing it to cover its envi-
ronment. Also, possible extensions of CCR to incorporate a wider
variety of environments are discussed.

i



Contents

1 Introduction 1

2 CCR: General Description 2

3 Completeness Proof of CCR 5

3.1 Initial conditions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.2 Edge exploration : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

3.3 Completing cells : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

3.4 Opening Cells : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

3.5 Path planning : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4 Conclusion 14

A CCR: Detailed Description 15

ii



7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777
7777777777777777777777777777

2222222
2222222
2222222
2222222
2222222

222222
222222
222222
222222

0

1

2

3
4

5

6

7

8

9

2222222
2222222
2222222
2222222
2222222

Critical point

Floor (1)

Ceiling (1)

y

x

Figure 1: Canonical cell decomposition of
a polygonal environment.

777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777
777777777777777777777777

!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!

777777
777777
777777
777777
777777

0

1

2

3

4Ceiling (1)

Floor (1)

Interesting point @ x

y

x

Interesting point @ x
1

2

Figure 2: Cell decomposition of a recti-
linear environment.

1 Introduction

In certain mobile robotics tasks, an initially unknown environment must be completely
explored before the task can begin. In other scenarios, such as searching for meteorites,
complete exploration of an area is the task itself. Tasks such as these can be stated as a
type of coverage. In general, coverage is de�ned as passing a sensor or e�ector over every
point in an area, and the \coverage problem" can be de�ned as determining a continuous
path that will produce coverage of an area. While the coverage problem has been solved
in the plane for known environments [1], robots performing the tasks of interest will not
have a map of the area to be covered. They must instead simultaneously create a map
of the environment from their sensor data and plan paths to continue coverage. This is
a problem referred to generically as sensor-based coverage. This task has garnered some
recent attention from the robotics community, but because of the variety of environments
and abilities of robots performing coverage, no single current solution satis�es the entire
problem domain.

Previous sensor-based coverage methods have concentrated on robots with sonar or
other range sensors that can sense objects within a speci�ed radius from the robot's body
[2, 3]. These methods also generally operate in a planar environment with polygonal
or C2 obstacles in \general position", i.e. certain reasonable assumptions are made
about the geometry of the environment as are described below. For the work presented
here, however, the focus is on robots that can use only contact sensing to determine
the geometry of their environment. While not as rich a modality as sonar and the like,
contact sensing can be very reliable and simple to implement, and can provide su�cient
information to produce complete maps.

Among previous coverage methods, cell-decomposition methods such as the one pre-
sented in [4] have proven to be the most useful to base the current method on. This
particular method arose in coverage of planned environments, inspired by roadmaps used
for robot navigation. For planned coverage under this method, the environment is di-
vided into cells based on a 1-D sweep. As a 1-D slice passes through the environment

1



from left to right, the x location of the �rst and last points encountered of each obstacle
are deemed critical points. These points determine the boundaries of cells, which are
constructed as shown in Fig. 1 such that each has a continuous 
oor and ceiling. (The
general position assumption is that no two critical points share an x coordinate.) Cover-
age of each cell is then performed with seed-sowing, in which the robot travels in parallel
vertical strips from one side of the cell to the other. Complete coverage is accomplished
within this decomposition by simply traveling to every cell, covering each in turn. Paths
are planned between cells by making a graph of the adjacency relationships between the
cells and searching this graph to �nd paths. Sensor-based coverage has also been im-
plemented in this framework [5]. This is done by starting with the assumption that the
environment can be represented with a single cell. The robot then begins coverage within
this cell until a discontinuity is detected in the cell's 
oor or ceiling. When this occurs,
new cells are created appropriately which are themselves covered once the current cell is
complete. This method is able to cover unknown generic C2 environments.

As a �rst step toward a general coverage algorithm based on contact sensing, however,
the work here has been restricted to purely rectilinear environments. In these environ-
ments, all boundary and obstacle edges are parallel to the x or y axis of the robot. This
allows some simpli�cations of the algorithm, but introduces some types of geometries not
encountered in the general C2 environment. For example, in a rectilinear environment,
the cells are themselves simply rectangles, as seen in Fig. 2. However, the divisions
between cells are no longer at simple critical points, but at all interesting points, namely,
wherever there is a wall parallel to the y axis. Also, the assumption of general position
as described above has been eliminated, since allowing for multiple coincident interesting
points is not much harder than allowing for a �nite-length wall at an interesting point. It
should be noted, however, that the current algorithm assumes a minimum width for all
cells of the width of the robot, although this is not a fundamental problem. In addition,
this work assumes that the robots have no signi�cant dead reckoning error. Although
this may not be true for some systems, it is a di�cult problem, and one which may be
able to be incorporated in a future version of this solution.

2 CCR: General Description

To address the speci�c problem outlined above, an algorithm CCR has been written
which solves the coverage problem for a square robot in a rectilinear environment using
only contact sensing. A complete description of it is given in Appendix A, but a summary
will be given here to provide an understanding of the nature of the algorithm.

One important aspect of CCR is that it keeps no state other than a cell decomposi-
tion C, which is simply a list of cells as de�ned in Sec. 3 and an associated list H of
placeholders, line segments placed adjacent to cells to represent entry points to unknown
parts of the environment. Therefore, each time a decision is to be made about the cor-

2



path

uncertain

seed−sowing
path

(a) (b)

wall location

seed−sowing

Figure 3: Some of the ways in which interesting points are discovered:
(a) unexpected collision (b) unexpected non-collision.

rect movement to make to continue coverage, only the map is used to make this decision,
rather than using explicit history or state. Decisions are made at events, which are de-
�ned as all occasions when the robot experiences a collision in addition to all occasions
when the robot has completed its trajectory (as described below). After an event, the
event handler determines the type of event that has occurred and alters C accordingly.
The map interpreter then applies a series of rules to C, taking into account the robot's
current position, and determines a new direction of travel v along with a distance dmax.
dmax is de�ned as the maximum possible distance the robot can travel in the direction
v before a decision or a change of direction is required. The robot can then use v and
dmax to generate a smooth trajectory. This method of choosing dmax assures that if the
trajectory completes without a collision, the map interpreter will need to be rerun to
change the robot's direction, and so a event should have taken place.

In the general case, the desired behavior of CCR is that of seed-sowing. As an arbitrary
choice, the strips will be in the �y directions, which will produce decompositions like
that in Fig. 2, and progress within a cell will be made �rst in the +x direction, then
in �x. Seed-sowing is an e�cient way to cover a cell once it has been started, and so
is performed whenever a cell has a known 
oor and ceiling and one known and explored
side edge. It is also performed initially in the �rst cell even though neither side edge is
known. Seed-sowing will then continue until an interesting point is detected.

Depending on the type of interesting point, it will be discovered and handled dif-
ferently. Most interesting points are discovered during a vertical motion (as shown in
Fig. 3), at which point the exact location of the corner (and therefore the interesting
point) are indeterminate. At this point, the map interpreter notices this uncertainty and
immediately directs the robot to move such that the corner is localized. For interesting
points that are discovered by direct contact with the vertical wall, this secondary step is
unnecessary.

Once an interesting point is discovered, the remainder of the cell edge corresponding
to that interesting point is explored. This serves two purposes: completion of the current
strip of seed-sowing (the one that was interrupted by the discovery of the interesting

3



point) and discovery of any other cells that may lie next to the current cell. If the
interesting point was discovered as shown in Fig. 3a, this exploration will complete
coverage of the cell to the left of the interesting point. In the case shown in Fig. 3b, the
localization of the interesting point will complete the cell on the left, but the exploration
of the newly discovered edge will still continue, giving complete knowledge of the left
edge of the new cell.

To properly generate all these behaviors, the map interpreter applies a list of rules to
C one at a time, using the �rst applicable rule to determine v and dmax. Special cases
such as interesting points that need to be localized or edges that are partially explored
are checked �rst, so that these are able to interrupt seed-sowing until the special case
has been dealt with. Seed-sowing rules are then applied if the cell is incomplete but has
no special characteristics, and if the cell is complete, rules for that case are invoked as
discussed in detail below.

The job of the event handler is then to keep the cell decomposition up to date at all
times. When a collision occurs as in Fig. 3a, for example, the event handler knows that
the current cell can now extend no further to the right than the right side of the robot.
It therefore changes the maximumpotential rightward extent of the current cell to re
ect
this new knowledge. The map interpreter can then use this knowledge to interrupt seed-
sowing, causing the robot to travel left, then up, based on the characteristics of the cell
(the same rules would be invoked for the mirror-image case, for example, but a rightward
motion would be produced initially). Finally, the robot will be moved rightward to cause
a collision with the uncertain edge, at which point the event handler sets the exact value
of the current cell's right edge. In addition, the event handler creates a placeholder at
the time of the initial collision that points to the newly discovered area to the right, and
moves that placeholder when the second collision determines its exact x location.

Finally, when the map interpreter �nds that the robot is in a cell that has already been
completed, it must choose another region to travel to and begin coverage in. For reasons
discussed in Sec. 3.3, if there is an incomplete cell in C, it will be selected as the next
area to cover. If no incomplete cell exists, a placeholder will be selected as a destination
and turned into a small incomplete cell to be covered. For greater e�ciency, if the current
cell has a placeholder adjacent to it, that placeholder is turned into an incomplete cell
and the robot travels into it. If the current cell adjoins only other complete cells, a
placeholder is chosen from elsewhere in the environment, and the adjacency relationship
of the cells is used to plan a path to the cell that the placeholder is attached to.

To demonstrate CCR, it has been implemented in simulation and tested in a variety
of environments. It has successfully covered all environments that it has been tested in
from a variety of initial locations. The simulations have also given some insight into the
e�ciency of CCR, and during development, aided in discovering algorithmic 
aws. This
implementation will also be transferred to a physical robot system for further testing and
veri�cation.

4



5555555555
5555555555

p

Ci x
Ci n

strip

Cj

intervals

x

y

555555

55
55
55
55
55

floor

ceiling

555555
555555

w

Figure 4: The data structures associated with cell Ci; cell Cj is also shown for
clarity.

3 Completeness Proof of CCR

Having described the operation of CCR, we now show that it is in fact complete, that
is, that a robot executing it will cover any environment with rectilinear boundaries and
obstacles and whose canonical cell decomposition contains no cells thinner than the width
of the robot.

The proof relies on the following background and de�nitions:

� The environment representation consists of a cell decomposition C (a list of cells
C0 : : :Cn) and a list of placeholders H0 : : :Hm.

� A cell Ci (as can be seen in Fig. 4) has area de�ned by a pair of rectangles: Cin

is its minimum known extent and Cix its maximum possible extent. Its 
oor and
ceiling are horizontal, and its other two edges are referred to as side edges.

� Side edges have associated intervals, line segments which are each adjacent to a
speci�c wall (a \wall interval") or area of free space.

� An edge is explored when its disposition (either adjacent to a wall or a speci�cally
denoted area of free space) is known at each point between the ceiling and 
oor of
the cell.

� A well-opened cell has a known 
oor and ceiling and one known and completely
explored side edge.

� A complete cell is one with zero width or one in which Cin = Cix, left and right edges
have been completely explored, and has been completely covered (with seed-sowing
strips).

� The robot has position p = (px,py) and width w.

5



I II III IV

Figure 5: Potential initial conditions; the shaded area is that covered by the �rst strip
of seed-sowing.

� In all �gures, the y axis points toward the top of the page, the x axis to the right

To show completeness of CCR as detailed in Appendix A, we will show that the
environment is divided into cells which collectively span the environment, each of which
is completely covered. To do this, we will show that:

� From any initial position, at most two cells are created, both well-opened

� Any well-opened cell will be completed when visited

� Every cell completion results in at most one well-opened cell and any number of
placeholders

� Any placeholder can be turned into a well-opened cell

� Every incomplete cell will be visited and every placeholder removed

3.1 Initial conditions

To show that any initial position will lead to at most two well-opened cells, four di�erent
cases must be considered as shown in Fig. 5.

Case I: The ceiling will be discovered �rst due to rule 3, then the 
oor by rule 4.
This second move will also be a seed-sowing strip, so that the initial cell will have the
width of the robot. Since rules 1-4 no longer apply, seed-sowing will begin to the right.
Although this cell is not well-opened, progress will continue as if it was. This is because
seed-sowing to the right will take precedence over seed-sowing to the left, and once the
right side of the cell is reached, rules 1 and 2 will cover and explore the right edge. This

6



cell will now be truly well-opened (from the right), as will any cell created during the
completion of its right edge.

Case II is very similar to case I. The robot will perform seed-sowing to the right,
completing the right side of the cell. However, the assumed leftward extent of the cell
will include the initial strip and so be larger than the actual cell. To assure that this is
handled correctly, this cell must be returned to and completed from within before it is
approached from any other direction. This is in fact assured, as shown at the end of Sec.
3.3.

In case III, the �rst strip will be made corresponding to the height of the left-hand
cell even though the center of the robot is actually in the right-hand cell. However,
on the next strip, the robot will travel past where it expects the ceiling to be. It will
then behave as in case III of cell completion. After this process, the left-hand cell (C0)
will have a known and explored right-hand side, and therefore be well-opened. It will,
however, have width less than that of the robot, but this will not e�ect coverage as long
as (again) C0 is reentered and completed before it is approached from the left. With the
robot now in C1, this cell will now be made well-opened as described in case II or III of
Sec. 3.4.

Case IV also begins with a strip that is smaller than the cell the robot's center is
in. However, in this case the initial strip does not actually correspond to any cell in the
�nal decomposition. In this case, the area on the right becomes cell C1 as in case II
above. However, when the robot returns to cell C0 (the remains of the initial strip) to
continue seed-sowing to the left, the �rst motion in the �y direction will travel past the

oor of C0 and Cj (j � 2) will be created just as C1 was created on the other side. When
the boundary between C0 and Cj is localized, C0 will be shrunk down to zero width,
making it a completed cell by de�nition. (Having a zero-width cell in C does not alter
its correctness or the ability to plan paths within it.) Cj can now be made well-opened
just as C1 was, for a total of two well-opened cells. Note that this case also assumes that
C0 will be returned to before being approached from the left, as shown at the end of Sec.
3.3.

3.2 Edge exploration

Before discussing the mechanisms of cell completion, we will �rst show that any side
edge of known location that is known to be a wall at the robot's y location (py) will be
completely explored. Since rule 2 has an upward bias, the edge will �rst be explored
from py to the cell's ceiling. Once the robot has reached the ceiling, rule 2 will move it in
the �y direction to a point next to the wall segment from which the exploration started.
At this point, exploration will continue down to the 
oor of the cell the same way as the
exploration to the ceiling. Both halves of the exploration will be performed as described
below, although for clarity, only upward exploration will be described. Starting at py,

7



(b)

1

2

1

3

2

(a) (c)

3’

1

1’

Figure 6: Types of edges to be explored: (a) Case A (b) Case B1 (c) Case B2.

the following two steps will be iterated beginning at location 1 in each of the cases of
Fig. 6:

� The disposition of the side edge is known at py, so a small step is taken in the +y
direction.

� The side at the new y location is unknown, so a small step is taken toward the edge
in x, resulting in a collision.

These steps continue until one of two things happens:

� Case A: A y motion results in a collision at the ceiling. This occurs when the wall
continues to the ceiling of the cell.

� Case B: An x move does not result in collision. This occurs when there is some free
space beyond the cell edge. (i.e. when the initial wall segment does not extend to
the ceiling.)

For case A, upon collision at location 1', if a strip exists, it is marked as completed and
the covered portion of the cell is extended to the newly explored edge. Next, rule 2 will
generate a small x motion (and a collision) to complete the interval corresponding to the
right-side wall. Since this interval now extends to the ceiling, this edge is now explored
to the ceiling, and the robot will return to the starting point of this exploration to cover
the lower portion of the cell if necessary.

In case B, the robot will come to location 2 where its edge is not within the cell. At
this point, a placeholder is created for the free space adjacent to the cell and progress
continues as follows:

8



I II III

Figure 7: Types of interesting points

� Rule 2 of the algorithm still applies, but rather than retreating from this known
interval, it will move in the +y direction while keeping its edge just out of the cell
until a collision occurs.

� After a collision (at location 3 or 3'), a zero-length wall interval is created just
beyond the current placeholder. This causes rule 2 to now move the robot back
entirely within the cell.

� Once entirely within the cell, the robot moves in +y again to continue exploration.

This last move could have two results:

� Case B1: The adjacent free space extends to the cell's ceiling, and so this move will
immediately result in collision.

� Case B2: The cell continues past the placeholder, and so the last move does not
result in collision.

In case B1, this second collision indicates that the ceiling has been reached (note that
the location of the ceiling does not need to be already known for this to occur). The
seed-sowing strip is then �nished if it exists and the exploration of the edge is complete
to the ceiling. In case B2, the exploration of the edge will continue on as directed by rule
2 and be subject to the same analysis just completed. Therefore, any edge satisfying the
preconditions outlined above will be completely explored.

3.3 Completing cells

We are now ready to show that all well-opened cells can be completed correctly. First of
all, in a well-opened cell, seed-sowing will continue uninterrupted away from the known

9



iC

H

(b)

4

m+1

iC

1

(a)

2

3

H m+1

iC
n iC

x

Figure 8: Detail of Case I cell completion: (a) Before and (b) after localization of the
interesting point.

side edge until an interesting point is discovered. There are then three types of interesting
points that can occur at the right edge of a cell, as shown in Fig. 7. It should be noted
that each case can also occur vertically mirrored and/or horizontally mirrored, and will
be handled in the same way as described below.

Case I: the interesting point at the right edge of the cell is discovered by an unexpected
collision just after the moment pictured. When this collision occurs, the event handler
will instantiate a placeholder Hm+1 next to the current robot location (robot location 1
in Fig. 8a). Hm+1 will be placed at the new maximum right edge of Ci at this point, but
will be moved when the edge is localized. The next few steps that CCR will take are all
generated by rule 1, since the �nite edge condition persists until location 4. The motions
are as follows (each number refers to a robot location shown, and is the location of the
robot before the move described):

1. The robot moves to the left to become completely within Ci, since it is next to a
known piece of free space.

2. The robot moves up a small distance past the top of the free space (since the free
space is known to extend to the 
oor of Ci).

3. The robot then drives right until a collision.

At this point (location 4 shown in Fig.8b), the right edge of Ci is set. The x location
of Hm+1 is also set to the x value of the new edge. Then, since the location of the right
edge of Ci is known and it is known to be a wall at the current y location, the exploration
will �nish, completing Ci.

Case II: the robot encounters the right edge of the cell during an x motion of seed-
sowing. At this point, the right edge of Ci is set, and a zero-length interval is instantiated
corresponding to the shortest wall that could have caused this collision. The right edge
is now known at the current y location, but not explored, so exploration (simultaneous

10



iC

C

max left

min
max min

n+1

Figure 9: Case 3.

j

C
i

C

Hk

Figure 10: Exploring an edge in the
presence of placeholders

with a seed-sowing strip) will be the next step. Since the right side is already explored
to the 
oor of Ci, the exploration need only continue toward the ceiling, completing the
cell when done.

Case III: the edge of Ci is detected when the robot drives past the y coordinate of
the ceiling, i.e. when a trajectory completes with p no longer within Cix. At this point,
a taller cell Cn+1 is instantiated as shown in Fig. 9. The robot is now in Cn+1, in which
rule 1 is applied to the left edge, and since the boundary is unknown at py, the robot
immediately moves left until a collision occurs. As a result of the collision, the location
of the right edge of Ci becomes known, as well as its entire disposition (namely, that it
connects to Cn+1). Since coverage had already extended at least to this x location, Ci is
now complete, with exactly one open cell (Cn+1, which is now the robot's current cell)
and no placeholders created.

These three cases apply whenever there is only unknown geometry to the right of the
cell. However, as long as there are only placeholders (and the completed cells they are
attached to) to the right of Ci, the cell will still be correctly completed. In these cases,
as shown in Fig. 10, the maximum rightmost extent of Ci will be set by another cell Cj

before the seed-sowing reaches the cell boundary. However, since the minimum width of
Ci is increased only by seed-sowing, the robot will cover to the right edge before exploring
that edge (only at that point will the right edge have known location, a precondition for
rule 2). The exploration of the right edge happens as described in Sec. 3.2 with one
exception. Whenever the robot discovers free space to its right (as shown in Fig. 10), it
recognizes the existence of Cj and looks in Cj for the appropriate placeholder Hk. An
interval corresponding to Hk is created in Ci, and the interval pointing to Hk in Cj is
changed to point to Ci. Hk is then removed.

The preceding arguments do not apply if another incomplete cell's maximum extent
overlaps with Cix. However, we can guarantee that this will not happen by showing that
C will never include more than two incomplete cells and these two cells will not overlap.

11



First of all, if during the operation of CCR at time t0 only one cell Ci is incomplete and
Ci is well-opened, there will never be more than one incomplete cell at any time t > t0.
This can be shown as follows: if Ci is completed via Case I or II above, there will be no
incomplete cells when Ci is complete. A placeholder will then be instantiated as a new
incomplete cell, returning to the same situation as at t0. If, however, Ci is completed via
Case III, a new cell will be created and be incomplete, but Ci itself will be immediately
completed and the new cell will be well-opened, again leaving C with only one incomplete
cell which is well-opened.

We have already shown that initially, at most two well-opened cells will be created.
If only C0 is created initially and its right side is completed via Case I or II, it can then
be considered well-opened from its right side, and it will be the only incomplete cell. If
C1 is also created initially (from initial positions III or IV) or equivalently if C0 has its
right side completed via Case III, two well-opened cells will exist with a shared boundary
(C0;right = C1;left). In all of these cases, the robot will be in C1. If C1 is completed via
Case I or II, the robot will remain in C1 after completion and use rule 6 to return to
C0, which will be the only remaining incomplete cell. If C1 is completed via Case III,
the robot will then be in C2 under the same conditions. Since each new cell opened this
way must lie entirely to the right of the previous one, the two incomplete cells will not
overlap. When a cell is �nally completed without opening a new cell, again rule 6 will
direct the robot back to C0, the only incomplete cell in C, which will become well-opened
if it is not already. This assures that there will never be two overlapping incomplete cells
in C, allowing the arguments presented in this section to apply to all well-opened cells.

3.4 Opening Cells

When a cell is completed without producing a new open cell and no incomplete cell
exists, a placeholder must be instantiated as a cell. We now show that any placeholder
will become a well-opened cell under CCR. There are three types of placeholders, as
shown in Fig. 11.

Type I: When the cell is instantiated, its ceiling and 
oor are both already known
due to the known presence of the vertical walls, in addition to the left edge that will be
known for all cells built from placeholders. Once the cell is entered, all the preconditions
for seed-sowing are met, and it begins covering from the known left edge as a well-opened
cell.

Type II: The cell is instantiated with a known ceiling (or 
oor, for the vertically
mirrored case) and left edge. The left edge is given an interval pointing back to the cell
from which it was opened and a zero-length wall interval just below it. Once the new
cell is entered, rule 2 applies. The robot is next to an free-space interval with a known
endpoint (known due to the short wall interval), so it retreats completely into the new
cell and moves in �y until it is next to an unknown portion of the left edge. It will

12



I II III

Figure 11: Types of placeholders (dashed lines) to be opened

then make contact with the left edge, extending the zero-length wall, at which point
exploration can continue as described in Sec. 3.2. Once this edge is completely explored,
the cell will be well-opened and seed-sowing can begin.

Type III: Only the location of the left edge of the cell is known. The left edge will
be explored upward, starting from a zero-length wall interval created upon instantiation.
The exploration will continue to the ceiling of the cell, creating placeholders as necessary,
as described above. Once the ceiling is reached, the robot will move to the unexplored
area below the original cell entry and explore to the 
oor. Once the robot reaches the

oor of the new cell, it will have a known and explored left edge and a known 
oor and
ceiling, and will be well-opened.

3.5 Path planning

We have now shown that from any initial condition, CCR will generate no more than
two well-opened cells, each of which will be completed. This completion will also gener-
ate placeholders where necessary and at most one well-opened cell, which will itself be
immediately completed (since it must be the robot's current cell). However, to ensure
complete coverage, once all opened cells have been completed, all placeholders must be
opened and completed as cells, one at a time.

When CCR �nds itself in a completed cell without an incomplete cell to go to, a
candidate placeholder Hd is selected as a destination and a path is planned to it. This
path can always be generated because Hd will be adjacent to a cell, and the adjacency
graph of the cells is connected, so a path can always be found from the current cell to the
placeholder in that graph. It is also necessary that the same path be planned starting
from each cell on the path, since CCR will stop in each cell to decide its next move.
For this reason, the path is planned using depth-�rst search from the placeholder to the
current cell. The robot then moves from cell to cell with a series of linear motions from
one cell edge to the next. Finally, before the last move of the path is taken (but after

13



the decision to make that move), Hd is instantiated as a cell to ensure that the robot is
within a cell when that move is complete.

4 Conclusion

Sensor-based coverage has many potential applications in robotics, and although some
algorithms have been written that perform this task for common situations, this work
seeks to address the speci�c case of robots with only contact sensing. The algorithm de-
veloped, CCR, performs coverage using only contact sensing in rectilinear environments.
It has been proven to be complete for a large class of environments, and work has begun
on extending this class to include all rectilinear environments. In addition, CCR was
designed to be extended to general polygonal environments without great changes in
the overall structure. Based on this general design, preliminary work has begun on an
algorithm CCP for a circular robot with a ring of contact sensors operating in a polyg-
onal environment. Investigation has also begun into applying CCR to robots working
in a team in such a way that e�ciency of coverage is greater than if each robot works
separately. Finally, CCR has been implemented in simulation and shown to work and be
reasonably e�cient (to the human observer) and work is underway to implement CCR

on an actual robot system.

References

[1] M. Held, On the Computational Geometry of Pocket Machining. Springer-Verlag,
Berlin, 1991.

[2] A. Pirzadeh and W. Snyder, \A uni�ed solution to coverage and search in explored
and unexplored terrains using indirect control," in Proc. of IEEE Int'l. Conf. on

Robotics and Automation, pp. 2113{2119, April 1990.

[3] S. Hert, S. Tiwari, and V. Lumelsky, \A terrain covering algorithm for an AUV,"
Autonomous Robots, vol. 3, pp. 91{119, 1996.

[4] H. Choset and P. Pignon, \Coverage path planning: The boustrophedon decomposi-
tion," in Intl. Conf. on Field and Service Robotics, 1997.

[5] H. Choset. Personal communication, 1998.

14



A CCR: Detailed Description

A pseudocode description of CCR is given in this section to supplement the summary
description and proof given earlier. First of all, some de�nitions are given in addition to
those at the beginning of Sec. 3:

� Known(Ci,dir) if Cix;dir = Cin;dir

� Finite(Ci,dir) if 0 < jCix;dir � Cin;dirj <1
� Explored(Ci,dir) if the intervals on the (dir) side span the edge from 
oor to ceiling
� Coveredto(Ci,dir) if Cc has been covered up to the (dir) edge
� v is the direction of the trajectory that has just ended
� Cc is the cell robot's \current" cell (which gets set only by the map interpreter)

CCR operates by performing the following at each event:

� If a collision has just occurred:

{ If not(Known(Cc,v)):

� If traveling in y and the robot is not completely within Cc, add a zero-
length wall interval just past collision point.

� Otherwise, it must be the edge of Cc, so set it in Ccn and Ccx.
� If traveling in the x direction:

� If a strip is in progress, move it into Cc so it just touches the edge of
Ccx .

� If the new edge has a placeholder neighbor that is now outside Ccx,
move it to the appropriate edge of Cc.

{ If traveling in y and the collision is at the known ceiling (or 
oor) of Cc, add
the area of the current strip (if one exists) to the covered area of Cc.

{ If traveling in y and the collision is not at the known ceiling or 
oor of Cc:

� If the robot is building a placeholder, �nish it and add a zero-length wall
interval just past the collision point.

� Otherwise, add a new placeholder Hm+1 with known ceiling or 
oor (due
to collision) and neighbor Cc and add an intervals in Cc pointing to Hm+1.

{ If traveling in x and Known(Cc,v), if there is a wall interval within w=2, extend
it to include py, otherwise create a new zero-length wall interval at py.

� Otherwise, a non-collision event occurred (the trajectory completed):

{ If traveling in y and edge of the robot past the 
oor or ceiling of Ccx , instantiate
a cell Cn+1 around p with width w and an interval pointing to Cc. Also create
an interval in Cc and appropriately set the edge of Ccn and Ccx shared with
Cn+1 (as shown in Fig. 9).

15



{ If traveling in x and edge of the robot past the known side edge of Cc:

� If there is an interval in the v-side edge within w=2 of py corresponding to
a piece of free space, extend that interval to include py , and if necessary,
extend the cell or holder corresponding to that interval.

� Otherwise, (there is no nearby interval) check to see if there is another
cell Cj adjacent to Cc at this location.
� If so, then there should be a placeholder there. Point the interval in
Cj to Cc instead of the placeholder and create an interval in Cc the
length of the placeholder that is pointed to by Cj.

� Otherwise (the new free space is unexplored), create an interval in Cc

at py and create a placeholder at (px�
w

2
,py), both zero length.

� Consistency checking of C | for each cell Cj (j 6= c):

{ If Ccn and Cjn overlap in y, then:

� If Cc is to the left of Cj, make sure Ccn;right � Cjx;left and Cjn ;left �
Ccx;right.

� Vice versa if Cc is to the right of Cj .

{ If Cc and Cj share a known ceiling and 
oor and abut each other left to right,
extend Cc to include the area of Cj including its covered area, and replace the
intervals of Cc on the side shared with Cj with Cj's intervals from the other
side.

� Then choose a new direction/distance by the �rst applicable rule [rules with a y are
evaluated twice | �rst with the y representing \right", then with it representing
\left"]:

1. If Finite(Cc,y):

{ If no y-side interval contains py, move in y direction until collision.
{ If py is contained by a y-side wall interval, move in y direction until colli-
sion.

{ Otherwise, move to the closer end of the y-side interval containing py,
unless that side is at the 
oor or ceiling of Cc.

2. If Known(Cc,y) and not(Explored(Cc,y)):

{ If no y-side interval contains py, move in y direction until collision.
{ If py is contained by a y-side wall interval, move a small amount in +y
if the y-side intervals do not extend to Ccx;ceil, otherwise move a small
amount in �y.

{ If py is contained by a y-side free space interval:
� If the interval has a known endpoint on its near side and the robot's
edge is outside Cc, move in x to bring the robot inside Cc

� Otherwise, move in y toward the unknown end of the interval.

16



3. If not(Known(Cc,ceiling)), move in +y until collision
4. If not(Known(Cc,
oor)), move in �y until collision
5. If not(Known(Cc,y)) or not(Coveredto(Cc,y)) [seed-sowing]:

{ If not near Ccx ;f loor or Ccx;ceil move in y to whichever is closer.
{ Otherwise, if necessary, move in x to end up w beyond the y-most edge of
the covered portion of Cc.

{ If x motion not necessary, move in y away from the ceiling/
oor for a
distance just greater than the height of Cc.

6. If C0 is incomplete, plan a path to it, using depth-�rst search of the adjacency
graph of cells, searching from C0 to Cc. Move into the next cell on the path.

7. If Cc has an incomplete neighbor, move in to it, instantiating it as a new cell
if it is a placeholder

8. If there is any other active placeholder, plan a path to it as described in rule
6 and move into the next cell on the path.

17


