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Abstract

Ultrasonic range sensors are used to obtain the in-
formation required for collision—free navigation of a
mobile robot in a semi-structured or unstructured envi-
ronment. A set of range readings from a ring of sonars
are correlated to acquire a 2-D map of the robot’s envi-
ronment. The map is continuously enhanced via novel
matching and update algorithms as new data are col-
lected while the robot is in motion. The algorithm
utilizes confidence measures that are directly obtained
from the somar’s resolution or accuracy. There are
no additional modeling assumptions and the approach
is robust. The algorithms are experimentally tested
on the Nomad 200 mobile robot and Nomad’s Cognos
Software Development Package.

1 Introduction

Feature-based environment mapping has been pre-
ferred for collision-free navigation and localization
purposes due to its accurate representation of objects
[1, 6]. Particularly, systems that rely solely on ul-
trasonic range sensors (sonars) have become popular
since sonar offers a low-cost and relatively accurate
alternative to other sensing types [7]. For instance,
in [3], the environment map is a two-dimensional de-
piction where surfaces and objects are represented as
connected sequences of line segments. The uncertainty
in data is taken into account by maintaining a confi-
dence measure with each line segment.

Unfortunately, the tolerances employed for match-
ing line segments in [3] were set in an ad hoc manner.
Variance and covariance expressions derived through
Kalman filtering of the robot’s position were used in
[4]. However, as experimental observations indicate [5,
8], sensor noise and errors can be accurately modeled
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by a class of probability distributions, calling for ro-
bust statistical procedures, whereas Kalman filtering
assumes strict Gaussianity for both measurement and
system noise.

In this paper, we consider a mapping algorithm
where the distance information returned by the sonar
sensors are transformed into points in the Cartesian
coordinate system. The points are grouped into lin-
ear clusters, and recursive line fitting is subsequently
applied to each cluster. Once an initial map is thus ob-
tained, an enhanced map of the environment is main-
tained through continuous, joint matching and update
processes as new data are collected. Two consecutive
sonar readings are said to “match” if they originate
from the same location. Then a proper “update” pro-
cedure fuses the readings in order to enhance the avail-
able map.

We propose sonar accuracy-based tests for match-
ing line segments. That is, the test tolerances be-
come functions of sensor specifications and error per-
formance rather than ad hoc settings. In particular,
the Polaroid 6500 sensor, used extensively in the ex-
periments, has +£1% accuracy over its entire range [9],
which we take advantage of to define a ball of uncer-
tainty around each sonar reading. The resulting map
enhancement procedure is adaptive and makes no a
priori modeling assumptions.

2 Sonar Uncertainty

Ignoring errors caused by scattering, the sonar
beamwidth and resolution are the sources of uncer-
tainty. The Polaroid 6500 sonar manual claims +1%
resolution (accuracy). However, in experiments and
simulations, errors of magnitude up to 3% were ob-
served for slightly tilted objects [2] owing to more
pronounced scattering. Assuming that a resolution of
+£% creates a linear uncertainty of ££D;/100 along
the signal direction, where D; is the range read-



ing, a second range reading D, obtained by per-
haps some other sonar on the ring, should lie at most
&(D1 + D»)/100 apart from the first point if the dif-
ference is to be attributed to sonar resolution. Thus,
we define a resolution-based uncertainty region as a
ball of radius £D;/100 around the point-coordinate
(21, y1) corresponding to the range reading D;:

Bp, = {(z, ) /(& - 21)> + (y — 91)* < D4 /100}.

The ball Bp, may be centered at any point on the
arc of uncertainty due to the 25° beamwidth of the
Polaroid 6500 sonar. The uncertainty region U; is the
union of balls:

U1= U BDl-

{Bp; (®1,y1)isonthearc}

If the uncertainty region of two consecutive readings,
D; and D- intersect, then any discrepancy in the point
coordinates can be accounted for by the resolution
or beamwidth of the Polaroid 6500 sonar, and hence
we can assert that there is a match between the two
points. Defining Ip, p, to be the indicator function of
the event of a match between the points correspond-
ing to the range readings D; and D-, the test can be
described as follows:

I 1, fUNUL#£0
Pub2 =00, if Uy Uy = 0.

The inherent challenge in resolution-based matching
described above is the enormous amount of compu-
tation required to search for ball intersections corre-
sponding to each center point located on the arcs of
uncertainty. On the other hand, there is no satisfac-
tory recipe for extracting the exact point of reflection
on the 25°-arc from the range reading information.
In fact, we strongly believe that issues such as arc un-
certainty and backscattering must be tackled at the
sonar signal processing level where raw data can be
manipulated.

Given the observations in the preceding paragraph,
we shall assume in this paper that any sonar reading
comes from the middle of the 25°—arc. The map errors
that might be caused by this simplistic approach will
be temporary since more reliable data will be collected
as the robot moves in the direction of the source of the
erroneous reading.

Since midpoints of arcs are assumed as sources of
reflection, the matching operation reduces to search-
ing for the intersection of two balls, each centered at
the points that correspond to two consecutive range

readings. That is, the test becomes

;o _ [ 1 ifBo,(\Bp, #0
D1,D2 0, ifBDlﬂszzw.

This sonar accuracy-based approach, to test if two
range readings emanate from the same point on the
same object with £ = 3, will form the basis for de-
veloping matching procedures between line segments
in the next section.

3 Sonar Resolution-Based Map Gener-
ation

The process of generating and improving a sonar
map consists of three stages: 1) clustering or grouping
the sonar data; 2) processing the grouped information,
and; 3) map enhancement.

3.1 Clustering the Sonar Data

The range readings received from the sonars are
checked against the threshold d,,q;, where dq. is
chosen to be 255 inches [2], [9]. Any depth reading
that exceeds this threshold is discarded due to the fact
that the signal-to—noise ratio (SNR) becomes unac-
ceptable at such distances. The range readings which
are below the threshold are transformed to Cartesian
coordinates:

x = Dcos(ay, £ 3+ 7) +rcos(ay +7) + Ry,

yr = Dsin(ay £ 8+ ) + rsin(ax +7v) + Ry,

where D is the depth reading received from a sonar, 3
is an angle within the sonar’s beam where the echo
is received (]3] < 12.5°), r is the robot’s radius,
ay, is sonar k’s orientation with respect to sonar Q
(o, = 22.5k), ~y is sonar 0’s angular position on the
sonar ring with respect to the x-axis, R, and R, de-
note robot’s position in the world coordinate frame.
For the reasons stated in Section 2, 3 is taken to be
0°.

Once the range readings are converted to Carte-
sian coordinates, they are clustered such that each
group represents a single face of an object. An out-
ermost point of an object face is found when the dis-
tance between two neighboring points is greater than
a preset threshold tg.p. If no gap is detected (tgap is
not exceeded), the distance between the next pair of
neighboring points is checked. The clustering opera-
tion continues until all available points are exhausted.



3.2 Processing the Cluster Information

The clustered points are processed through recur-
sive line fitting procedure. This part of the proposed
methodology follows the same path as Crowley’s [3].

3.3 Map Enhancement

The initial environmental map created needs to be
improved as the robot continues navigating in the en-
vironment. The update of the map is done by fusing
the new information with the existing knowledge and
involves three steps. Matching process: Each new line
segment is compared to the existing line segments to
determine if there is a match. If no match is found,
the new line segment is either dismissed, or it is kept
as a new object face. Update process: If a match is
found between two line segments, the higher confi-
dence end-points are employed to form the line equa-
tion of the updated segment. The procedure is final-
ized by projecting the outermost of the four points
(from the two lines segments) onto the updated line
equation and extending the line segment to the pro-
jected point. Correlation process: If the matching pro-
cess determines that a new line segment represents a
new object face, this process checks to see if the line
segments might be treated as extensions of one an-
other. The correlation process smoothens the map but
does not add any crucial information for navigation
purposes. Therefore, we only furnish the procedure in
the next section without providing experimental re-
sults. For results, see [2].

3.3.1 Matching Process

Let I, and [, denote line segments in the existing
and new maps, respectively, that are candidates for
a match. Two line segments are declared to have a
match if all of the following three tests are satisfied in
sequence.

e QOrientation test: Difference between slopes of [,
and [,, should be small. This translates to requir-
ing the difference in angular orientation with re-
spect to some reference axis to be less than some
threshold. Typically, this threshold is chosen to
be 15° [3] .

e Colinearity test: In addition to the orientation
test, the distance, d, from the mid-point of [,, to
the line equation of [, should be smaller than the
threshold defined below:

|d| < 0.03D; + 0.015(Dy + Ds).

The first and second terms on the right hand side
of the equation account for the accuracy of the
range reading D; and the mid-point between D,
and D3 respectively.

e Qverlap test: This stage of the matching process
consists of two steps: Mid-point overlap check
(MPC), and end-point overlap check (EPC).
MPC is satisfied if the projection of the mid-point
of 1,, intersects I,. This check is repeated for all
the existing lines until a match is found. If MPC
fails with all the available lines, then we seek to
find out if there is any overlap at all by initiating
EPC, which is a check for partial overlap. EPC
passes if one of the end-points of [,, intersects [,
when projected onto /..

The first two tests jointly ensure that the line seg-
ments are aligned along a common line equation. Fail-
ure of the first test implies mismatch in angular orien-
tation. If the orientations match but the second test
fails, then the two line segments are sufficiently “par-
allel” to one another (in the sense of the test) but too
distant. Once the orientation and alignment match
is confirmed, the third test checks for overlap. The
possibilities are as follows:

1. MPC passes: The new line segment is about par-
allel to and near an existing line segment, and
the two lines have at least 50% overlap. Thus a
“good” match is achieved. If MPC fails for an
existing line segment, we repeat the test for the
neighboring line segments in the map next until
a match is found. If MPC fails for all the exist-
ing line segments, the matching process is contin-
ued with the EPC test between the existing line
segments possessing the outermost points of the
object face and the new line segment.

2. MPC fails, EPC passes: There is “partial” match
with one of the existing lines. Since this match
accounts for less than 50% overlap, we declare
that the new line segment is an extension of the
existing one.

3. MPC and EPC both fail: There are two ap-
proaches that can be taken. Either the new line
segment is considered as a newly detected object
or object face and plotted on the map as an en-
tirely separate line, or its proximity to the exist-
ing lines is checked and a decision is made whether
the new line segment is to be connected to the
nearest existing line segment.

If any one of the three tests fails, then the new line seg-
ment is assumed to represent a new object face. The



only exception occurs when the orientation test fails
but the colinearity and overlap tests pass for any of
the existing line segments. This anomaly might stem
from erroneous data and hence the new line segment
is dismissed. It is now clear that the matching pro-
cess first seeks for a match, then for dismissal. Only
after it is neither matched nor dismissed, is a new line
segment kept as a new object face.

The matching process will work only if the distance
traveled between two consecutive snapshots is small
enough that the signal-to-noise ratios of the corre-
sponding readings in the two data sets are compara-
ble. Otherwise, a false inconsistency will occur due to
the significant improvement in the quality of the range
readings as the robot moves much closer to the same
object, or vice versa. In our experiments, consistently
accurate matches were found for distances up to 10
inches traveled between two consecutive snapshots.

3.3.2 TUpdate Process

Once all three tests pass, updating the line segment
will be performed between two consecutive snapshots.
There are two goals that we try to achieve simultane-
ously: given the four points, draw the longest possible
line segment satisfying the line equation given by the
two highest-confidence end-points. To that end, be-
tween the two sets of matching end-points, the ones
with the higher confidence are kept to determine the
equation of the updated line segment, [,. In other
words, the confidence in a point is inversely propor-
tional to its corresponding range reading. If any of
the lower-confidence points lies outside the segment
bounded by the higher-confidence points, then the
former point is projected to intersect [,, and subse-
quently, [, is extended to the point of intersection.
This way a worst case scenario is presented to the nav-
igation unit, to avoid collision with an obstacle that is
not yet well-observed [2].

Let an existing line segment be defined between
the left end-point (zZ, yL) and the right end-point
(B, yB). Likewise, suppose the new line segment be
between the left and right end-points (zZ, yL) and
(zE, yB), respectively. The update procedure takes
the following course depending on the outcomes of
MPC and/or EPC:

1. MPC passes: First the higher confidence end-
points are determined. Let D[(-, -)] be the range
reading corresponding to a point. Then the end
points (£, yL) and (yZ, y2) of the updated line
equation are such that

D{(y, y)] = min {D[(z7, y; 1], Dl(zy, y)1},
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Figure 1: Projection of one of the endpoints lying outside
the old line segment.
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Figure 2: Projection of the right end-point of the new line
segment on the updated line segment.

D(ay, yy)] = min{D[(zg’, y5N)], Dl(y, y)1},

respectively. The points (zZ, yL) and (2, y2)
determine the line equation [, will lie on. Next
we project the lower confidence end-points onto
the line equation of [,,. If a projection does not
intersect the updated line segment, then a new
line is drawn between the updated end-points and
the point of intersection (POI) of that projection
and the line equation (see Figure 1). Otherwise,
(zL] yL)—(zE, yE) defines the updated line seg-
ment. Thus the longest possible line segment sat-
isfying the highest-confidence line equation is ob-
tained given the four points (zZ, yL), (zE, yF),
(z7, yr) and (277, yi).

2. MPC fails, EPC passes: Without loss of gener-
ality, suppose that EPC passed for the left end-
point only. Then, we keep either the left end-
point of the new line segment or the right end-
point of the existing line segment as a middle-
point (zM, yM) of I, such that

Dl(zy", yo")] = min {D[(z’, y3")], Dl(zy, y)]}-

Of the two end-points (zL, yL') and (2, y£), the
one with the higher confidence is kept as the end-
point of [,,, and the one with the lower confidence
is projected on the line equation of I, formed
by (zM,yM) and the higher confidence end-point
(see Figure 2). Thus,

L Ly L
L Ly _ (xoa yo) if D[(mo
(m“’y“)_{ POI of (zL,y

y)] < D[(zf, y)]

L) and 1, if else,



(:L“R yR) — (xg’ yTIiL) if D[(xﬁa yﬁ)] < D[(mga ygl)]
u> Ju POI of (22, yE) and [, if else.

As a result of update, the object face is represented
by a set of existing and new points. Using these points,
recursive line fitting is applied again to refine the sonar
profile of the object face.

3.3.3 Correlation Process

One approach, if there is no match, is to assume that
the new line segment could be representing another
face of some object previously detected. The correla-
tion algorithm described below is applied to append
the new unmatched face to the existing object shape.

The correlation is performed when the minimum
distance between the end-points of the new line seg-
ments and existing line segments is found to be less
than or equal to some preset threshold #g,,. Define
Lexisting = {ll, ey lp} and Lnew = {lp+1, ey lp+q}
as the set of existing line segments belonging to all
the detected object faces and the set of new lines
forming some new object face, respectively. Let
di(Lexisting; li), li € Lnew, denote the minimum dis-
tance from any end-point of /; to any of the end-points
of the lines in Leyisting. Furthermore, define:

d’min = l-Iélin di(Lexisting; lz)
If dimin < tgap, then the set of line segments in Lyeq
are appended to the line
I* = arg rgin d;i(Lexisting, li)-

If the minimum d,,,;, exists, it is determined that the
lines in Lype, represent another face of some existing
object; in particular the new line whose end-point is
closest to [* should form a corner with [*. If a corner
is not formed, the end-points closest to each other,
and the lines that these points are associated with
are interpolated. This process is repeated until all
the unmatched new object faces in Ly, above are ex-
hausted. The new line obtained as a result of interpo-
lation forms a corner between the closest two lines on
different faces of same object (see Figure 3).

If the line segments in Lye, neither match nor cor-
relate with the existing line segments, then Lye, is
distinguished to be a distinct object face.

4 Simulation Results
ments

And Experi-

The developed algorithms have been tested on the
Nomad 200 mobile robot which is endowed with a ring
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Figure 3: Correlating a new line segment with an existing
line segment.

of sixteen sonar sensors. The robot was placed in a
rectangular room of 305 x 154 inches, called the “Blue
Room” because of the blue styrofoam walls forming
the borders of the test area. The minimum gap size,
tgap, is taken to be twice the robot’s diameter including
the bumper, ensuring for passage through an opening
under the worst case scenario where the neighboring
sonars give identical readings and the reflections occur
from the opposing ends of the neighboring sonar arcs
[2]. For the Nomad 200, tgap = 2(2r + 3) = 42 inches
(3 inches account for the bumper circling Nomad 200).
When both leftmost and rightmost vertices are found,
the leftmost point, the intermediate points and the
rightmost point are grouped together to constitute a
face of the object.

In Figures 4 and 5, the robot is depicted within
the mapped 2-D contours of the Blue Room. In the
experiments, the robot was first positioned at various
locations inside the Blue Room. Then, a snapshot
of sixteen sonar readings were collected. The robot
was moved 5 inches to the right, and a second set
of data were recorded from the sonars. Each time a
snapshot was obtained, a map was drawn using the
recursive line fitting procedure. In the end, the two
sets of points were fused through the matching and
update algorithms of Section 3. As can be seen in
Figure 4, as the robot moves to the right, it sees more
of the left wall accounting for the greater coverage
in the latter map. The line segments with points of
higher confidence are kept (see Figure 5). Notice that
the upper wall remains at about the same distance as
the robot moves to the right, and both snapshots give
identical line segments.

A case where the sonar returns unreliable data is
shown in Figure 6 (upper right corner of the room).
The mapping algorithm successfully draws the best



Figure 4: Environment maps derived from the first and
second snapshots using recursive line fitting. The Nomad
200 mobile robot moved 5 inches to the right between the
snapshots. (Red: first snapshot. Blue: second snapshot.)

Figure 5: Enhanced environment map obtained by fusing
the first and second snapshots in Figure 4.

contours based on the available data as seen in Figure
7.

A common observation from these experiments is
that in a large room, the sonar ring is not capable
of detecting all the walls. Some sections of the Blue
Room were either too far from the mobile robot, or
the sonic beams were scattered due to the severe an-
gle of incidence yielding the walls undetectable. In
such instances, the robot has to navigate to different
locations within the room for maximum coverage.

The algorithms developed in this paper work even
when the robot is closely surrounded by objects (e.g.
a tight room with a tiny opening). As seen in Figures
8 and 9, a complete map is successfully drawn and
updated. More complex floor plans were considered
using Nomad’s Cognos Software Development Package
in [2].

Figure 6: Environment maps derived from the first and sec-
ond snapshots using recursive line fitting. The Nomad 200
mobile robot moved 5 inches to the right between the snap-
shots. (Red: first snapshot. Blue: second snapshot.)

Figure 7: Enhanced environment map obtained by fusing
the first and second snapshots.

Figure 8: Environment maps derived from the first and sec-
ond snapshots using recursive line fitting, superimposed on
the floor plan. The simulated robot, which is surrounded all
around by objects, moved 5 inches to the right between the
snapshots. Nomad’s Cognos Software Development Package
was used in this experiment. (Red: first snapshot. Blue:
second snapshot.)

5 Discussion and Conclusions

In this paper, we introduced a novel matching and
update processes which are based on the sonar ac-
curacy or resolution. When consecutive snapshots are
taken within 1-5 inches difference between robot’s pre-
vious and current location, it is expected that the
readings should fall within a ball of radius of +1 — 3%
times the previous range reading by virtue of the ex-
pected sonar accuracy specifications. Any discrepancy
beyond this is attributed to erroneous data or the
detection of new object faces. Two-dimensional rep-
resentations obtained as a result of resolution-based
mapping are reliable since the thresholds are based on
the accuracy range. Another advantage of tying deci-
sion thresholds to sonar resolution is that confidence
in the sensor readings becomes a function of the robot-
to-object distance. This quality is intuitively pleasing
since signal attenuation increases with distance.

The mapping and enhancement procedures devel-
oped in this paper have a number of advantages. The
initial map generated by the first set of sonar data
serves as the local model of the environment, and no
a priori information is needed. This approach makes
the method robust because in semi-structured and un-
structured environments, where the local model based
on a floor plan may not always be relevant. A typical
example is an office room with people walking around.
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Figure 9: Enhanced environment map obtained by fusing
the first and second snapshots after the floor plan in Figure
8 is removed.

Furthermore, the confidence thresholds derived this
way are adaptive, depending on the sonar-to-object
distance.

The limitation of the matching and update pro-
cesses embedded in the mapping algorithm is that it
requires continuous data acquisition with a robot dis-
placement of at most 10 inches between two consecu-
tive snapshots. With the advent of high-speed micro-
processors, the data acquisition and processing rates
are already fast enough to satisfy this constraint.

The algorithms described in this paper have no
provision to deal with erroneous data resulting from
scattering or sensor uncertainties due to the 25°
beamwidth of the Polaroid 6500 transducer. In order
to overcome these problems and achieve a more accu-
rate map of the environment, sonar signal processing
of the raw data is necessary prior to data fusion. The
actual TOF readings should be adjusted depending on
the type of surfaces (i.e., diffracting or reflecting). Fur-
thermore, multiple-sensor integration of visual, x-ray,
tactile, etc. sensors will robustify the fusion process by
compensating for the inherent weakness of each type
of sensors with the information provided by the oth-
ers. Our method is universal since it can be applied
to range readings obtained from any kind of sensors.
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