
Sensor Based Planning: A Control Law for Generating the Generalized Voronoi

Graph

Howie Choset* and Ilhan Konukseven** and Alfred Rizzi*

Abstract We introduce a new control law for robots

that explore unknown environments and con�guration

spaces. Unlike numerical continuation methods, which

produce a jagged path because of the predictor-corrector

approach, the control law, introduced in this paper, per-

forms sensor based planning by directing the head of a

robot to follow continuously a roadmap. Recall that a

roadmap is a one-dimensional representation of a robot's

environment. Once the robot exhaustively traces out the

roadmap using this control law, it has in essence ex-

plored an environment. Experiments on a mobile robot

validate the control law.

1 Introduction

Sensor based planning integrates sensor information

into the planning process, in contrast to classical plan-

ning, which requires that full knowledge of the world
be available to the robot prior to the planning event.

We believe that the realistic deployment of robots into
unknown environments requires sensor based planning.

Similarly, when full knowledge of the environment is
available, but is too di�cult to input into the robot,

sensor based planning bypasses the need to enter the
environmental model: the robot simply explores the en-
vironment and builds up its own representation.

The sensor based planning approach, introduced in
this paper, makes use of a roadmap, a representation

which captures all of the salient geometric features
found in a robot's free space. A roadmap is typically
a one-dimensional structure embedded in a robot's m-

dimensional con�guration space. We developed a new
\control law" which directs the heading of a robot to

incrementally trace out the roadmap, using only line of
sight range data. Once a robot constructs a roadmap

using this control law, it has in essence explored an en-
vironment.

This control law relies on distance information and

thus is well suited to sensor based planners because
many sensors provide distance information. This law

also possesses the property of completeness, which
means for the appropriate gains, the control law guaran-

tees that the robot will explore the entire environment.
Finally, the control law functions in multi-dimensional
spaces which is useful for robots which have many de-

grees of freedom.

*Carnegie Mellon University **CMU, METU (NATO Science

Fellowship Program by TUBITAK)

2 Previous Work

Much of the previous work in sensor based planning
is not complete and is limited to the plane. One class

of heuristic algorithms employs a behavioral based ap-
proach in which the robot is armed with a simple set
of behaviors (e.g., following a wall) [2]. A hierarchy of

cooperating behaviors forms more complicated actions,
such as exploration. An extension of this approach is

called sequencing [10]. Another heuristic approach in-
volves discretizing a planar world into pixels of some res-
olution. Typically, this approach handles errors in sonar

sensing readings quite well by assigning each pixel a
value indicating the likelihood that it overlaps an obsta-

cle [1]. Strong experimental results indicate the utility
of these approaches, and thus these algorithms may pro-

vide a future basis for complete sensor based planners.
Unfortunately, these approaches neither a�ord proofs of
correctness that guarantee a path can be found, nor o�er

well established thresholds for when these heuristic al-
gorithms fail. Finally, these approaches do not typically

generalize into higher dimensions.
One complete motion planning algorithm that func-

tions in higher dimensions, but requires full a priori

knowledge of the world be available to the robot, is
based on a roadmap (Canny, [3]), which is a collec-

tion of one-dimensional curves that capture the topolog-
ical and geometric properties of a robot's environment.

Roadmaps are analogous to highway systems and have
the following properties: accessibility, connectivity, and
departability. Using a roadmap, a planner can construct

a path between any two points in a connected compo-
nent of the robot's free space by �rst �nding a collision

free path onto the roadmap (accessibility), traversing
the roadmap to the vicinity of the goal (connectivity),
and then constructing a collision free path from a point

on the roadmap to the goal (departability). An example
of a complete roadmap scheme is Canny and Lin's Op-

portunistic Path Planner (OPP) [4]. Rimon made some
initial steps towards adapting the OPP motion planning

scheme for sensor based use [14].
We chose roadmaps because of their concise repre-

sentation and their upward compatibility into higher di-

mensions. Roadmaps are useful inm-dimensional spaces
because a bulk of motion planning occurs on the one-

dimensional roadmap. The roadmap, used in this work,
can trace its roots to the generalized Voronoi diagram

(GVD) in the plane (i.e., when m = 2). �O'D�unlaing

and Yap [12] �rst applied the GVD, which is the locus
of points equidistant to two or more obstacles, to motion
planning for a disk in the plane. However, the method in

[12] requires full knowledge of the world's geometry prior
to the planning event. In [13], an incremental approach

to create a Voronoi Diagram-like structure, which is lim-
ited to the case of a plane, was introduced.

Previous sensor based planners cannot handle com-

pleteness in higher dimensions, so the challenge is to
develop a roadmap in higher dimensions that can be

constructed using line of sight information. The GVD
is only a roadmap for point robots in planar environ-

ments. Consequently, the �rst step in the long-term re-
search program produced the generalized Voronoi graph

(GVG), which is a natural extension of the GVD into

higher dimensions; it is the one-dimensional set of points
in m dimensions equidistant to m obstacles. However,

unlike the GVD, the GVG is not necessarily connected
in dimensions greater than two, and thus, in general,
is not a roadmap. Additional structures, termed higher

order generalized Voronoi graphs, connect GVG compo-
nents, and together with the GVG form the the hierar-

chical generalized Voronoi graph (HGVG) (Choset and
Burdick, [6], [8]). The HGVG is well suited to motion

planning in multi-dimensional spaces (such as con�gu-
ration spaces) because a motion planner can perform a
bulk of its path search on the one-dimensional HGVG.

The HGVG may have no clear advantage over other
methods when full knowledge of the world is available,

but its incremental construction procedure [7], [8] gives
the HGVG its primary strength. This incremental con-
struction procedure only requires line of sight informa-

tion to con�guration space obstacles. Additionally, this
procedure places no restrictions on the type of obsta-

cles; obstacles need not be polygonal, polyhedral, nor
convex, which are assumptions most motion planners

require. Since the incremental construction procedure
relies solely on line of sight information in con�guration
space, the HGVG construction procedure is amenable

to sensor based planning.
Unfortunately, the previous incremental construction

procedure produces jagged paths for the robot to fol-
low. Such paths take a long time to traverse as the

robot spends signi�cant amount of time making ninety
degree turns. The control law, introduced in this pa-
per, produces a smooth path by continuously control-

ling the heading of the robot, thus improving overall
performance.

3 Related Work

The work presented in this paper is based on the
GVG, which is described in [6], [7], [8], [9]. A review

of the GVG and its incremental construction procedure

is included below for the sake of completeness, but it
could be omitted by a reader already familiar with this
work.

3.1 Distance Function

Assume the robot is a point operating in a work
space, W, which is a subset of an m-dimensional Eu-
clidean space, Rm. W is populated by convex obsta-

cles C1; : : : ; Cn. Non-convex obstacles are modeled as
the union of convex shapes. The distance between a

point and an obstacle is the shortest distance between
the point and all points in the obstacle. The distance

function, and its \gradient," respectively are

di(x) = min
c02Ci

kx� c0k and rdi(x) =
x� c0

kx� c0k
;

(1)

where (1) di is the distance to obstacleCi from a point x,

and (2) the vectorrdi(x) is a unit vector in the direction
from x to c0, where c0 is the nearest point to x in Ci.

Typically, the environment contains multiple obstacles,
and thus distance is measured to multiple obstacles with
the multi-object distance function, D(x) = mini di(x)

3.2 The Generalized Voronoi Graph

The basic building block of the GVG is the set of
points equidistant to two sets Ci and Cj , such that

each point in this set is closer to the objects Ci and
Cj than any other object. We term this structure the
two-equidistant face,

Fij = fx 2 Rm : 0 � di(x) = dj(x) � dh(x) 8h 6= i; j

and rdi(x) 6= rdj(x)g: (2)

A two-equidistant face has co-dimension one in the am-
bient space, and thus in the plane, a two-equidistant

face is one dimensional [6].
The Pre-image Theorem asserts that the union of

the two-equidistant faces, i.e., the GVD, is (m � 1)-

dimensional [6]. The GVD does reduce the motion plan-
ning problem by a dimension, but a one-dimensional

roadmap is required. Observe that the two-equidistant
faces, Fij, Fik, and Fjk intersect to form an (m � 2)-
dimensional manifold that is equidistant to three obsta-

cles. Such a structure is termed a three-equidistant face

and is denoted Fijk. That is,

Fijk = Fij

\
Fik

\
Fjk

This intersection procedure is repeated until a one-
dimensional structure is formed; such a structure is an
m-equidistant face, Fi1:::im and is a one-dimensional set

of points equidistant to m objects in m dimensions.
(Also note, an m + 1-equidistant face is formed in a

similar way and is always a point.)[6]
The generalized Voronoi graph (GVG) is the collec-

tion of m-equidistant faces and m+1-equidistant faces.

Fig. 1. The ticked line segments are the planar GVG for the
bounded environment. The ticks point at the nearest point
on an obstacle, and are thus the negated gradients.

Later, the m-equidistant faces are termed generalized

Voronoi edges and m + 1-equidistant faces are termed
meet points. Note that the GVD is m � 1-dimensional

whereas the GVG one-dimensional. Also, the GVD is
the locus of points equidistant to two obstacles whereas

the GVG is the locus of points equidistant to m obsta-
cles. In the planar case, the GVG and GVD coincide.

In [6], it was shown that the GVG possesses the prop-

erty of accessibility, but connectivity and departability
are only guaranteed in planar case. In higher dimen-

sions, higher order generalized Voronoi graphs must be
constructed to connect the GVG components [6]. The

resulting connected network is termed the higher order

generalized Voronoi graph (HGVG). For the purposes of
explanation, we will describe the incremental construc-

tion procedure for the GVG �rst. However, it should be
noted that the incremental construction of the GVG is

su�cient for mobile robot exploration.

3.3 Incremental Construction

One of the key features of the GVG is that a robot
can incrementally construct it using only line of sight

information. See [7] for details. This section summa-
rizes how the robot traces out a GVG edge. After the

robot has arrived at a point on a GVG edge, it must
incrementally trace the one-dimensional branches of the
GVG. Incremental construction of the GVG has four

key components: (1) explicitly \trace" the GVG edges;
(2) determine the location of the meet points (GVG ver-

tices); (3) explore the branches emanating from themeet
points; and (4) determine when to terminate the tracing

procedure.

The GVG edges are traced in an incremental man-
ner using an adaptation of numerical continuation tech-
niques [11]. Practically speaking, these techniques trace

the roots of the expression G(y; �) = 0 as the parameter
� varies. Let x be the coordinates of a point on a GVG

edge. At x 2 Rm, assign a local coordinate system (y; �)
such that � points along the tangent of the GVG edge
and the y coordinates spans Y , the hyperplane orthog-

onal to the GVG edge. Let Y be termed the \normal
plane." At a point x 2 Rm, G(y; �) has the form

G(y; �) =

2
64
d1(y; �)� d2(y; �)

...
d1(y; �) � dm(y; �)

3
75 (3)

where di is the single object distance function to the m
closest obstacles. Since G is a function of distance, it
can be computed from sensors.

Note that G maps Y � R to Y where Rm = R� Y .
The function G(y; �) assumes a zero value only on the

GVG. Hence, if the Jacobian of G is surjective (which is
proven in [7]), then the implicit function theorem implies
that the roots of G(y; �) locally de�ne a GVG edge as

� is varied. A robot can locally construct a GVG edge
by numerically tracing the roots of this function.

The GVG edge tracing method relies upon two iter-
ative stages: (1) a prediction step and (2) a correction

procedure. In the prediction step, the robot takes a
small step, ��, along the tangent to the GVG edge.
The tangent is the vector orthogonal to the hyperplane

which contains the m closest points on the m closest
obstacles [7]. This is the null space of the Jacobian of

G, denoted rG.
Typically, the prediction step takes the robot o� the

GVG and a correction method is used to bring the robot

back to the GVG. In our method, the correction oc-
curs on a hyperplane orthogonal to the tangent (i.e.,

along the y coordinates). Since rYG(y; �) is full rank
at x = (y; �) [7], it is possible to use an iterative New-

ton's Method to implement the correction procedure. If
y
k is the estimate of y at the kth iteration, the (k+1)st
iteration of the correction procedure is de�ned as

y
k+1 = y

k �
�
rYG

��1
G(yk; �); (4)

where rYG is evaluated at (yk; �).
To construct G(y; �) and rYG(y; �), one only re-

quires the distance and direction to the two closest ob-
jects. This information is within line of sight of the
robot, thus making the incremental constructive method

amenable to sensor based implementation.
The robot continues edge tracing until it detects a

meet point or a boundary. At a meet point, the robot
must determine the directions of the other GVG edges

that emanate from the meet point. In the planar case,

C
i

C j

Ck

GVG
Meet Point Negated Object Gradients

Fig. 2. Meet Point Detection

the meet point is triply equidistant to the nearest ob-

stacles. But due to sensor noise and small inaccuracies
in the curve tracing technique, it is unreasonable for the
robot to detect exact triple equidistance. Fortunately,

the robot can robustly infer the location of a meet point
by looking for an abrupt change in the closest obstacle

set [5], [7]. For example, in Fig. 2 as the robot travels
from left to right, initially the two closest obstacles are

Ci and Ck. As the robot passes by the meet point, the
two closest obstacles become Cj and Ck. This change
is detected by an abrupt change in the gradients to the

nearby obstacles.
From the meet point, the robot explores a new GVG

edge until it detects either another meet point or a
boundary point. In the case that it detects a meet
point, the above branching process is repeated. Other-

wise, when a robot reaches a boundary, it simply turns
around and returns to a meet point with unexplored

GVG edges. Exploring the GVG in the workspace is
akin to exploring a graph, where the GVG edges are the

graph edges, and the GVG vertices and boundary points
are the graph nodes.

4 Control Law

The numerical continuation methods produces paths

for the robot that are jagged. For example in the planar
case, the robot steps in the tangent direction during

its prediction phase, and then rotates ninety degrees to
enter its correction phase. After the correction phase,
the robot must rotate again to re-orient itself on the

GVG. These rotations take time and cause additional
wheel slippage.

Instead, the robot should use a control law which
continuously controls the heading of the robot allowing
for smooth paths. The numerical continuation methods

of Section 3.3 motivates the below described control law.
See Figure 3.

In essence, the control law merges the prediction and
correction phases. At a point x in the neighborhood

of the interior of a GVG edge, the robot steps in the
direction

_x = �Null(rG(x)) + �(rG(x))yG(x); (5)

where

Path with numerical
tracing

Path with control
GVG

law

vs.

Fig. 3. Dotted lines represent path traced out by either the nu-
merical continuation methods or the control law.

� � and � are scalar gains,
� Null(rG(x)) is the null space of rG(x),

� (rG(x))y is the Penrose pseudo inverse of rG(x),
i.e.,

(rG(x))y = (rG(x))T(rG(x)(rG(x))T)�1:

Note that when x is on the GVG, G(x) = 0 and thus

_x = �Null(rG(x)). To make notation easier to follow,
let

� G = G(x),
� rG = rG(x),

� rGT = (rG(x))T ,
� rGy = (rG(x))y, and
� rG? = (rG(x))?.

So in short-hand notation, the robot takes the follow-
ing step

_x = �Null(rG) + �rGyG:

Let � = 1
2
G
T
G measure the distance a point x is

away from the GVG. Therefore,

_� = G
T _G

= G
TrG _x

= G
TrG(�Null(rG) + �rGyG)

= �G
TrGrGyG

= �G
TrGrGT (rGrGT)�1G

= �G
T
G:

So, the control law produces a direction that con-
verges onto the GVG, if � < 0 and if rGrGT is invert-
ible in a neighborhood of the GVG, which is guaranteed

by the following Lemma.

Lemma 4.1 The matrix rGrGT is invertible in a

neighborhood of the GVG.

This proof relies on the property that for any matrix
A,

(Null(AT))? = Im(A): (6)

Proof: Assume there exists a z 2 Im(rG) such that
(rGrGT)z = 0. This means that rGT

z = 0 or

rGT
z 2 Null(rG). If rGT

z = 0, then z 2 Null(rGT)
which is (Im(rG))?, and thus z 62 Im(rG). This is a

contradiction.

Fig. 4. Nomadic Robot

Recall that rG is full rank on Y , the normal plane.
In fact, Y = Im(rG). If rGT

z 2 Null(rG), then
Im(rGT) � Null(rG) which contradicts Equation(6).

Therefore, there cannot exist a z 2 Im(rG) for which
(rGrGT)z = 0. That is, (rGrGT) is non-singular at

a point on the GVG.
Since the set invertible matrices is an open set, there

exists an open neighborhood around the GVG for which
(rGrGT) is invertible. �

Note the following.
� In a neighborhood of the GVG, Null(rG) is locally
parallel to the GVG by continuity of the distance

function.
� The � determines how quickly the robot moves

along the GVG and the � represents how aggres-
sively the robot moves back to the GVG.

� The control law relies on �rst order information,

and thus nothing need be assumed about curva-
ture. However, in the discrete implementation of

this system, the ratio of � to � must be considered
to ensure tracking around tight corners.

5 Implementation

The control law was implemented on a Nomadic

Technologies mobile robot base, which is a circular plat-
form that has a ring of sixteen sonar sensors radially

pointing outward. (See Fig. 4) The distance to nearby
obstacles are the values of the local minima of the sonar
array [9]. The sonar sensor that has the smallest local

minima is the distance to the closest obstacle, C1, and
the sonar sensor with the second smallest local minima

is the distance to the second closest obstacle, C2.
In the planar case, the G matrix and its Jacobian are

G(x) =
�
d1(x)� d2(x)

�
and

rG(x) =
�
(rd1(x)�rd2(x))

T
�
: (7)

Therefore, the robot takes the following step

_x = �(rd1(x)�rd2(x))
?+

�(rd1(x)�rd2(x))
y(d1(x)� d2(x)):

(8)

The direction _x is a vector in the plane which can
be parameterized by a single parameter, the angle the
vector makes with the horizontal. The above law will

be used to determine this heading.
On the GVG, (rd1(x)�rd2(x))

? is the tangent to

the GVG, and in a neighborhood of the GVG, (rd1(x)�
rd2(x))

? is locally parallel to the tangent of the GVG.
This vector in the plane can be parameterized by the

angle it makes with the horizontal. Instead of perform-
ing the explicit vector subtraction (rd1(x) � rd2(x)),

taking its orthogonal compliment, and determining the
compliment's angle with respect to the horizontal, a

lookup table is used to determine the tangent direction.
This lookup table is indexed by the two smallest local
minima sensor id's. Now, the tangent computation re-

quires just a lookup operation.
Let Y be the vector orthogonal to the tangent direc-

tion, (rd1(x)�rd2(x))
?. Together, these two vectors

form a coordinate system. In this coordinate system,
the �rst column of rG(x) is zero when x is on the GVG

[7]. Therefore,

[(rd1(x)�rd2(x))
T] =

�
0 p

�
;

and the pseudo inversion of rG(x) is

[(rd1(x)�rd2(x))
T]y =

�
0 p

�y
=

�
0
p

�
(
�
0 p

� �0
p

�
)�1

=

�
0
p

�
[p2]�1

=

�
0
1
p

� (9)

It is shown in [7] that k�Yrdi(x)k = k�Yrdj(x)k
if x is on the GVG (and Ci and Cj are two of the m

closest obstacles). By continuity of the distance func-
tion, k�Yrdi(x)k ' k�Yrdj(x)k in a neighborhood of
the GVG. From this, we can conclude that in the planar

case, �Yrdi(x) ' ��Yrdj(x) Therefore,

p = krdi(x)�rdj(x)k

= k�Y (rdi(x)�rdj(x))k
= k�Yrdi(x)� �Yrdj(x)k

= k�Yrdi(x) + �Yrdi(x)k
= 2k�Yrdi(x)k:

Therefore, a look up table indexed by the sensor ID
whose sensor reading is the smallest, can be used to de-

termine ((rd1(x)�rd2(x))
T)y(d1(x)�d2(x)). The con-

trolled heading of the robot determined by two lookup
operations, one sum, one di�erence, and a multipli-

cation. With this implementation, � = 1
krG(x)k

and

� = �1.

Fig. 5. Continuation Meth-
ods produce a jagged path.

Fig. 6. Control Law pro-
duces a smooth path.

Fig. 7. Path traced by control law.

6 Experiment

The control law provides a smooth path that takes

less time for the robot to follow. Figures 5 and 6 con-
tain the same environment, but in Figure 5 the robot
uses the numerical continuationmethods to generate the

GVG, whereas in Figure 6, the robot uses the control
law. Note how the GVG path in Figure 6 is smoother

than the one in Figure 5. Furthermore, and perhaps
more importantly, it took the robot 78 seconds to tra-

verse the path generated by the continuation methods
and the robot required 48 seconds to navigate the path
generated by the control law. This save nearly 40%.

Figure 7 contains the traced path of the robot while
it generated a GVG using the control law. The control

law improves edge tracing when generating edges 1 and
2 because of their relatively high curvature. The robot
required 91 seconds to generate edge 1 with the control

law whereas it require 126 second to generate the edge
with the numerical continuation methods. Similarly, the

robot required 59 seconds to generate edge 2 with the
control law whereas it require 120 second to generate

the edge with continuation methods.

7 Conclusion

This paper presents a new control law for generating

roadmaps. The control law was developed to o�set the

draw back of continuationmethods that produces jagged
paths. A robot takes less time to follow and generate a
smoother path, improving overall performance.

Although simulations and experiments were per-
formed on the GVG, the control law, introduced in the

paper, applies to the higher order GVG's in the HGVG
and to other roadmaps, such as the OPP. By sim-
ply adjusting the G matrix to trace di�erent roadmap

structures, the control law can generate these di�erent
roadmap edges.

Finally, note that the control law is a local result. In
practice, if the robot strays too far from the GVG (as
a result of sensor noise), then it must use the numerical
continuation methods to get back on the GVG.

References
[1] J. Borenstein and J. Koren. Real-time Onstacle Avoid-

ance for Fast Mobile Robots in Cluttered Environments. In
IEEE Conference of Robotics and Automation, pages 572{
577, Cincinnati, Ohio, May 1990.

[2] R.A. Brooks. A Robust Layered Control System for a Mobile
Robot. IEEE Journal on Robotics and Automation, RA-2,
March 1986.

[3] J.F. Canny. The Complexity of Robot Motion Planning. MIT
Press, Cambridge, MA, 1988.

[4] J.F. Canny and M.C. Lin. An Opportunistic Global Path
Planner. Algorithmica, 10:102{120, 1993.

[5] H. Choset and J.W. Burdick. Sensor Based Planning and
Nonsmooth Analysis. In Proc. IEEE Int. Conf. on Robotics

and Automation, pages 3034{3041, San Diego, CA, 1994.
[6] H. Choset and J.W. Burdick. Sensor Based Planning, Part I:

The Generalized Voronoi Graph. In Proc. IEEE Int. Conf.

on Robotics and Automation, Nagoya, Japan, 1995.
[7] H. Choset and J.W. Burdick. Sensor Based Planning, Part II:

Incremental Construction of the Generalized Voronoi Graph.
In Proc. IEEE Int. Conf. on Robotics and Automation,
Nagoya, Japan, 1995.

[8] H. Choset and J.W. Burdick. Sensor Based Planning: The
Hierarhical Generalized Voronoi Graph. In Proc. Workshop

on Algorithmic Foundations of Robotics, Toulouse, France,
1996.

[9] H. Choset, I. Konuksven, and J.W. Burdick. Sensor Based
Planning for a Planar Rod Robot. In Proc. IEEE/SICE/RSJ
Int. Conf. on Multisensor Fusion on Multisensor Fusion and

Integration for Intelligent Systems, Washington, DC, 1996.
[10] E. Gat and G. Dorais. Robot Navigation by Conditional

Sequencing. In Proc. IEEE Int. Conf. on Robotics and Au-

tomation, pages 1293{1299, San Diego, CA, May 1994.
[11] H.B. Keller. Lectures on Numerical Methods in Bifurcation

Problems. Tata Institute of Fundamental Research, Bombay,
India, 1987.

[12] C. �O'D�unlaing and C.K. Yap. A \Retraction" Method for
Planning the Motion of a Disc. Algorithmica, 6:104{111,
1985.

[13] N.S.V. Rao, N. Stolzfus, and S.S. Iyengar. A Retraction
Method for Learned Navigation in Unknown Terrains for a
Circular Robot. IEEE Transactions on Robotics and Au-

tomation, 7:699{707, October 1991.
[14] E. Rimon and J.F. Canny. Construction of C-space

Roadmaps Using Local Sensory Data | What Should the
Sensors Look For? In Proc. IEEE Int. Conf. on Robotics

and Automation, pages 117{124, San Diego, CA, 1994.

