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ABSTRACT

This paper presents an e�cient shape-based object de-
tection method using Distance Transforms (DTs). The
proposed method extends previous DT-based matching
techniques by using multiple features and a template
hierarchy associated with a coarse-to-�ne search over
the template transformation parameters. Signi�cant
speed-up factors are typically obtained when compar-
ing the proposed hierarchical method with an equiva-
lent brute-force technique; we have measured speed-up
gains in the order of two magnitudes. This brings a
number of template matching applications which pre-
viously required special-purpose correlation hardware
onto the realm of the ubiquitous PC. We present re-
sults on real-time tra�c sign detection to illustrate our
approach.

1. INTRODUCTION

A concerted e�ort is currently underway at Daimler-
Benz to extend vision-based navigation beyond the high-
way scenario into the complex urban environment; for
an overview see [3]. One part of this e�ort is dedicated
to the detection and recognition of relevant objects in
urban tra�c (e.g. road marks, tra�c signs, vehicles,
pedestrians). Various vision cues were previously used
for object detection: object motion [6], color [8] and
depth [4]. This paper presents a method which uses
shape cues for object detection; it is based on an ef-
�cient application of template matching and Distance
Transforms (DTs).

Matching using DTs involves intermediate-level fea-
tures [2] which are extracted locally at various image
locations, e.g. edge points. A DT converts the bi-
nary image, which consists of feature and non-feature
pixels, into a DT image where each pixel denotes the

distance to the nearest feature pixel. DTs approximate
global distances by propagating local distances at im-
age pixels. The object of interest is represented by a
binary template using the same feature representation
as the scene image. Matching proceeds by correlat-
ing the template against the DT image; the correlation
value is a measure of similarity in image space.

The outline of the paper is as follows. Section 2
reviews previous work on distance transforms, distance
measures and matching strategies. Section 3 discusses
the proposed extensions to the DT matching scheme,
which involve the use of multiple features and an e�-
cent match strategy by means of a template hierarchy.
Section 4 lists experiments in the application of tra�c
sign detection. Finally, we conclude in Section 5.

2. PREVIOUS WORK

Matching with DT is illustrated schematically in Figure
1. It involves two binary images, a segmented template
T and a segmented image I, which we'll call "feature
template" and "feature image". The "on" pixels de-
note the presence of a feature and the "o�" pixels the
absence of a feature in these binary images. What the
actual features are, does not matter for the matching
method. Typically, one uses edge- and corner-points.
The feature template is given o�-line for a particular
application, and the feature image is derived from the
image of interest by feature extraction.

Matching T and I involves computing the distance
transform of the feature image I. The template T is
transformed (e.g. translated, rotated and scaled) and
positioned over the resulting DT image of I; the match-
ing measure D(T; I) is determined by the pixel values
of the DT image which lie under the "on" pixels of
the transformed template. These pixel values form a
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Figure 1: Matching using a DT

distribution of distances of the template features to the
nearest features in the image. The lower these distances
are, the better the match between image and template
at this location. There are a number of matching mea-
sures that can be de�ned on the distance distribution.
One possibility is to use the average distance to the
nearest feature. This is the chamfer distance.

Dchamfer (T; I) �
1

jT j

X

t2T

dI(t) (1)

where jT j denotes the number of features in T and dI(t)
denotes the distance between feature t in T and the
closest feature in I. Thus, the chamfer distance con-
sists of a correlation between T and the distance image
of I, followed by a division. Other more robust mea-
sures reduce the e�ect of missing features (i.e. due to
occlusion or segmentation errors) by using the aver-
age truncated distance or the f-th quantile value (the
Hausdor� distance) [7] [10].

In applications, a template is considered matched at
locations where the distance measure D(T; I) is below
a user-supplied threshold �

D(T; I) < � (2)

Figure 2 illustrates the matching scheme of Figure 1
for the typical case of edge features. Figure 2a-b shows
an example image and template. Figure 2c-d shows
the edge detection and DT transformation of the edge
image. The distances in the DT image are intensity-
coded; lighter colors denote larger distance values.

The advantage of matching a template (Figure 2b)
with the DT image (Figure 2d) rather than with the
edge image (Figure 2c) is that the resulting similarity
measure will be more smooth as a function of the tem-
plate transformation parameters. This enables the use

of various e�cent search algorithms to lock onto the
correct solution, as will be discussed shortly. It also
allows more variability between a template and an ob-
ject of interest in the image. Matching with the unseg-
mented (gradient) image, on the other hand, typically
provides strong peak responses but rapidly declining
o�-peak responses.

A number of extensions have been proposed to the
basic DT matching scheme. Some deal with hierar-
chical approaches to improve match e�ciency and use
multiple image resolutions [2]. Others use a pruning [9]
[7] or a coarse-to-�ne approach [10] in the parameter
space of relevant template transformations. The lat-
ter approaches take advantage of the smooth similarity
measure associated with DT-based matching; one need
not to match a template for each location, rotation or
other transformation. Other extensions involve the use
of a un-directed ("symmetric") similarity measure be-
tween image and a template [5] [7]. In this case, a DT
is applied on both the image and template. Matching
takes places with the feature image and feature tem-
plate, vice versa, as seen in Figure 1.

Previous work on DT-based matching [1] [2] [5] [7]
[9] [10] has dealt with the case of matching one tem-
plate against an image, allowing certain geometrical
transformations (e.g. translation, rotation, a�ne). In
Subsection 3.2 we will consider the more general case
of matching N templates with an image under trans-
lation. Matching of one template under more general
transformations can be seen as a special case when all
the transformed templates are generated explicitly. In
addition to a coarse-to-�ne search over the translation
parameters, the N templates are grouped o�-line into
a template hierarchy based on their similarity. Mul-
tiple templates can be matched simultaneously at the
coarse levels of the search, resulting in various speed-up
factors.

3. EXTENSIONS

3.1. Multiple Feature-Types: Edge Orientation

So far, no distinction has been made regarding the type
of features. All features would appear in one feature
image (or template), and subsequently, in one DT im-
age. If there are several feature types, and one consid-
ers the match of a template at a particular location of
the DT image, it is possible that the DT image entries
re
ect shortest distances to features of non-matching
type. The similarity measure would be too optimistic,
increasing the number of false positives one can expect
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from matching.

A simple way to take advantage of possibility to dis-
tinguish feature types is to use separate feature-images
and DT images, for each type. Thus having M dis-
tinct feature types results in M feature images and M
DT images. Similarly, the \untyped" feature template
is separated in M \typed" feature templates. Match-
ing proceeds as before, but now the match measure
between image and template is the sum of the match
measures between template and DT image of the same
type.

We now consider the frequent case of the use of
edge points as features. For this case, we propose the
use of edge orientation as feature type by partitioning
the unit circle in M bins

f [
i

M
2�;

i + 1

M
2� ] ji = 0; :::;M � 1 g (3)

Thus a template edge point with edge orientation  is
assigned to the typed template with index

b
 

2�
Mc (4)

We still have to account for measurement error in the
edge orientation and the tolerance we'll allow between
the edge orientation of template and image points dur-
ing matching. Let the absolute measurement error in
edge orientation of the template and image points be
��T and ��I , respectively. Let the allowed tolerance
on the edge orientation during matching be ��tol. In
order to account properly for these quantities, a tem-
plate edge point is assigned to a range of typed tem-
plates, namely those with indices

fb
( ���)

2�
Mc; :::; b

( +��)

2�
Mcg (5)

mapped cyclically over the interval 0; :::;M � 1, with

�� = ��T +��I +��tol (6)

For applications where there is no sign information as-
sociated with the edge orientation, a template edge
point is also assigned to the typed templates one ob-
tains by substituting  + � for  in Equation (5).

3.2. Matching N Templates: Template Hierar-

chy

One often encounters the problem of matching N tem-
plates with an image. If the N templates bear no rela-
tionship to each other, there is little one can do better

than match each of the templates separately. If, how-
ever, there is some structure in the template distribu-
tion, one can do better. The proposed scheme to match
the N related templates involves the use of a template
hierarchy, in addition to a coarse-to-�ne search over the
image. The idea is that at a coarse level of search, when
the image grid size of the search is large, it would be
ine�cient to match each of the N objects separately,
if they are relatively similar to each other. Instead,
one would group similar templates together and rep-
resent them by a prototype template; matching would
be done with this prototype, rather than with the indi-
vidual templates, resulting in a (potentially signi�cant)
speed-up. This grouping of templates is done at various
levels, resulting in a hierarchy, where at the leaf levels
there are the N templates one needs to match with,
and on intermediate levels there are the prototypes.

To make matters more concrete, consider �rst the
case of a coarse-to-�ne search where one matches a sin-
gle template under translation. Assume there are L
levels of search (l = 1; :::; L), determined by the size �l
of the underlying uniform grid and the distance thresh-
old �l which determines when a template matches su�-
ciently enough to consider matching on a �ner grid (in
the neighborhood of the promising solution). Let �tol
denote the allowed tolerance on the distance measure
between template and image at a \correct" location.
Let � denote the distance along the diagonal of a unit
grid element. Then by having

�l = �tol +
1

2
��l (7)

one has the desirable property that, using un-truncated
distance measures such as the chamfer distance, one
can assure that the coarse-to-�ne approach will not
miss a solution. The second term accounts for the
(worst) case that the solution lies at the center of the
4 enclosing grid points which form a square.

Now consider the case where the above L-level search
is combined with a L-level template hierarchy. Match-
ing can be seen as traversing the tree structure of tem-
plates. Each node corresponds to matching a (proto-
type) template p with the image at node-speci�c loca-
tions. For the locations where the distance measure be-
tween template and image is below user-supplied thresh-
old �p, one computes new interest locations for the chil-
dren nodes (generated by sampling the local neighbor-
hood with a �ner grid) and adds the children nodes to
the list of nodes to be processed. The matching pro-
cess starts at the root, the interest locations lie initially
on a uniform grid over relevant regions in the image.
The tree can be traversed in breadth-�rst or depth-�rst
fashion. In the experiments, we use depth-�rst traver-
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sal which has the advantage that one needs to maintain
only L � 1 sets of interest locations.

Let p be the template corresponding to the node
currently processed during the traversal and let C =
ft1; :::; tcg be the set of templates corresponding to its
children nodes. Let �p be the maximum distance be-
tween p and the elements of C.

�p = max
ti2C

D(p; ti) (8)

Then by having

�p = �tol + �p +
1

2
��l (9)

one has the desirable property that, using untruncated
distance measures such as the chamfer distance, one
can assure that the coarse-to-�ne approach using the
template hierarchy will not miss a solution. The thresh-
olds one obtains by Equation (9) are quite conserva-
tive, in practice one can use lower thresholds to speed
up matching, at the cost of possibly missing a solution
(see Experiments).

4. EXPERIMENTS

To illustrate the proposed matching method we apply
it to the detection of circular and triangular (up/down)
signs, as seen on highways and secondary roads. For
the moment, we do not consider tra�c signs which ap-
pear tilted and/or skewed in the image; the only shape
parameter considered is scale. Edge points are used
as features, further di�erentiated by their orientation.
The edge orientations are discretized in 8 values. We
use templates for circles and triangles with radii in the
range of 7-18 pixels (the images are of size 360 by 288
pixels). This leads to a total of 36 templates, for which
a template tree is speci�ed \manually" as in Figure 3.
The tree has three levels (not counting the root level,
which contains no template). The root node has six
children corresponding to two prototypes for each of
the three main shapes to be matched: circle, triangle-
up, triangle-down. The prototypes at the �rst level
of the hierarchy are simply the templates with radii
equal to the median value of intervals [7-12] and [13-18],
namely 9 and 15. The prototypes at the second level
are the templates with radii equal to the median value
of intervals [7-9], [10-12], [13-15] and [16-18]. The pro-
totypes at the �rst two levels were sub-sampled. Fur-
thermore, each template (or prototype) is partitioned
into 8 typed templates based on edge orientation (or
4, if the sign of the edge orientation is unspeci�ed).
Matching uses a depth-order traversal over the tem-

plate tree, in the manner described by Subsection 3.2.
Coarse-to-�ne sampling uses a grid size of � = 8; 4; 1
for the three levels of the template tree. We used dis-
tance thresholds �l = 3:5; 1:35; 0:6 pixels for the three
levels, respectively.

The experiments involved both o�- and online tests.
O�-line, we used a database of 1000 images, taken dur-
ing day-time (sunny, rainy) and night-time. We ob-
tained single-image detection rates of over 90%, when
allowing solutions to deviate by 2 pixels and by radius 1
from the values obtained by a human. On the average,
there was one false positive per image (in a later ver-
i�cation phase, more than 95% of these were rejected
using a pictograph classi�er). Figure 4 illustrates the
followed hierarchical approach. The white dots indicate
locations where the match between image and a (pro-
totype) template of the template tree was good enough
to consider matching with more speci�c templates (the
children), on a �ner grid. The �nal detection result
is also shown. More detection results are given in Fig-
ure 5, including some false positives The tra�c signs in
the database that were not detected had low contrast,
were tilted or skewed. Improvement of the detection
rate can thus be achieved in a relative straightforward
manner, by lowering the edge threshold and by adding
more templates. On-line experiments were performed
with our E-class T-model vehicle (see Figure 6). The
detection system runs currently at about 8-10 Hz using
the on-board dual-Pentium II 333 Mhz.

Given image widthW , image heightH, andK tem-
plates, a non-hierarchical matching algorithmwould re-
quire W � H � K correlations between template and
image. In the presented hierarchical approach both
factors W � H and K are pruned (by a coarse-to-�ne
approach in image space and in template space). It is
not possible to provide an analytical expression for the
speed-up, because it depends on the actual image data
and template distribution. Typically, we have observed
speed-up factors in the range of 200-300.

5. CONCLUSION

In this paper we proposed two extensions to DT-based
matching. The �rst extension dealt with di�erentiat-
ing the features by type (i.e. by edge orientation) and
the second dealt with matching using a template hier-
archy. We observed that this approach can result in
a signi�cant speed-up when compared to the exhaus-
tive approach, in the order of two magnitudes. Some
interesting problems lie ahead regarding the automatic
generation of the template hierarchy.
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Figure 2: (a) original image (b) template (c) edge im-
age (d) DT image
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Figure 3: Template hierarchy
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Figure 4: Tra�c sign detection: (a) day and (b) night
(white dots denote intermediate results; the locations
matched during hierarchical search)

Figure 5: More detection results
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Figure 6: (a) Demo vehicle (b) on-board camera and
display
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