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Abstract| This paper describes a system

able to detect obstacles as soon as they appear
on the horizon by the analysis of a sequence

of images recorded by a forward looking TV
camera mounted on a vehicle. It exploits
several suggestions coming from the a priori

knowledge of the scene where the vehicle is
moving. The evaluation of the luminance dif-
ferences between obstacle and road surface

and the correlation of motion in succeeding
images are the main tools used to formulate

obstacle hypotheses. A dynamic model based
matching algorithm performs the recognition
and the validation of the obstacle.

I. INTRODUCTION

The detection of vehicles (potential obsta-

cles) moving ahead, on the same lane, is es-

sential to keep a safe distance and to provide

warnings about dangerous situations. Com-

puter vision systems can support reliably this

task, analysing sequences of images recorded

by a vehicle-mounted, forward looking, cam-

era.

Several approaches have been so far pro-

posed, however they limit the detection up

to about 45 meter, if their vision systems

are equipped with usual cameras (2/3" sen-

sor and 12.5 mm lens, which are well suit-

able to ful�ll most of the tra�c applications)

[1],[2]. Indeed, they need that far away ob-

stacles be analysed at a high resolution to

point out those features which are crucial for

developing reliable detection and recognition

algorithms and moreover far away obstacles

are di�cult to be detected because they are

often merged with background. In order to

be e�ective, obstacle detection must be per-

formed as soon as possible, that is, when

obstacles loom on the horizon. Better per-

formances have been obtained using cameras

with greater focal length (e.g. 25 mm), which

allows the detection and the tracking of ob-

stacles up to a distance of 80 m [3].

This paper faces the problem of formulat-

ing distant obstacle hypotheses, using a sin-

gle camera with normal lenses, and proposes

a strategy for the subsequent validation while

they approach.

II. THE PROPOSED STRATEGY

The strategy that has been developed

draws inspiration from the behavior of the

visual system of humans driving vehicles.

Firstly, people perceive obstacles mainly be-

cause their luminance substantially di�ers

from background, besides they know where

to look for and are familiar with the pro�le

of the searched objects, �nally they exploit

the slow apparent motion of these objects to

distinguish them in a cluttered background

and perform their tracking in space and

time. So a knowledge-based model-driven

approach has been investigated, which ex-

ploits the persistence of some peculiar struc-

tures of the image in the sequence to perform

a reliable detection and recognition of the

searched objects. Three modules form the

system: a lane boundary detection algorithm

is used to reduce the search area where pos-

sible obstacles can be found, then a far away

detection algorithm is devoted to formulate

obstacle hypotheses, and �nally a validation

algorithm checks the correctness of the de-
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Fig. 1. The area of interest (AOI) de�nition.

tection by recognizing the obstacle.

III. Lane boundary detection

The lane boundary detection algorithm

performs a region growing approach: start-

ing from the region of the image just in front

of the vehicle, it extends this region up to the

lane marks painted on the road surface. The

a priori knowledge of road models allows to

overcome di�culties that arise when inter-

rupted lane marks, horizontal road marks,

junctions, and exit ramps are present. The

algorithm is organized in three phases: the

�rst one detects the boundaries in a �rst im-

age, while the second tracks these boundaries

in the sequence. A boundary consistency

check phase completes the process and con-

trols the correctness of the detected borders,

starting new searches if incorrect results are

detected. The algorithm is fully described in

[4].

IV. Obstacle hypothesis formulation

The knowledge of the lane boundaries is

used to de�ne a rectangular search area (area

of interest AOI) at the end of the road where

the obstacles appear. The vanishing point

computed using the lowest part of the lane

boundaries is used to de�ne the horizon line,

which limits the top of the AOI (�gure 1a).

The bottom line limit is placed in correspon-

dence of the �rst occurrence (from the bot-

tom) of a negative transition of the function

G(r) =
1

(rb(r) � lb(r))

c=rb(r)X
c=lb(r)

f(r; c)

�
0 < r < image y size

0 < c < image x size

which represents the mean pixel luminance

on each row of the image between the lane

boundaries (lb(r) and rb(r) are the displace-

ments of the left and right borders respec-

tively) (�gure 1b). This abrupt and con-

sistent change is due to the shadow always

present under vehicles.

If this bottom line is not detected before

the end of the lane boundaries no obstacle

is present. The lateral limits of the AOI are

placed in correspondence of the intersection

of the left and right lane boundaries with the

bottom AOI line (�gure 1c).

Since obstacles are perceived because their

luminance di�ers from the road surface, the

luminance of the pixels inside the lane is av-

eraged to predict a luminance reference value

which is used to label the AOI points as

\road" or \non-road". \Non-road" pixels are

processed, �rstly, to improve the lane bound-

ary detection and, later, to point out those

regions that have a high probability of be-

longing to obstacles. Finally, region grow-

ing algorithms improve this labeling using

neighbour similarities. A tracking procedure

checks the consistency of these hypotheses,

verifying the persistence of these regions in

the succeeding images. The bounding box of
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Fig. 2. Dynamic model of a vehicle (a), and of a part (b).

\non-road" points is used to better �x the

size and position of the AOI.

V. Obstacle hypothesis validation

Whenever an object hypothesis is formu-

lated within the AOI, that \non-road" region

is analyzed in order to understand if it de-

notes an actual obstacle, namely a vehicle,

or a false alarm, as shadows or signs on the

road.

Since in the AOI only the back of a vehi-

cle is seen, parts such as the rear window,

the hatchback, the bumper, and the number

plate, are looked for to detect and recognize

the vehicle.

Although the shape and the spatial rela-

tionships between these parts can be easily

described for generic vehicles, their size and

their detectable details change substantially

according to the distance from the camera

and to the resolution of the vision system.

Then, a dynamic model is used to direct the

search. The parts of a vehicle are repre-

sented as nodes in a semantic net, with arcs

between the nodes representing over, under,

adjacent and inside structural relationships

(�gure 2a). Parts are included in the net

depending on the distance at which the ve-

hicle is seen, then the complexity of the net

grows while the vehicle approaches. In par-

ticular, the model of distant vehicles is de-

scribed by three nodes: the rear window, the

hatchback and the shadow between the rear

wheels; while the model of a close vehicle in-

cludes more details, such as a node represent-

ing the number plate.

Because all these parts appear approxi-

mately as rectangles, they can be mainly

pointed out by horizontal and vertical con-

tours. Each part is, therefore, represented by

a boundary graph, in which four nodes rep-

resent the four sides and arcs specify their

top, bottom, left, and right relationships (�g-

ure 2b). Also this graph is dynamic, in fact

each part is described by di�erent structures

according to the distance of the vehicle. The

shape of a part can be completely seen when

a vehicle is near, and then it can be mod-

eled as a rectangle. Instead, at a medium

distance only the horizontal longer sides can

be perceived, then the model turns into two

parallel lines. Finally, when the vehicle is

very distant, the sides of a part are merged

into a single horizontal line.

So straight edge segments are the main fea-

tures used for obstacle recognition. As soon

as an obstacle hypothesis is formulated in the

AOI, its distance from the camera is evalu-

ated, supposing that the road is 
at and us-

ing the approximated relation

d = h= tan(� + arctan((y0 � y)=f))

where h is the height of the camera from the

road surface, � is the elevation angle of the

camera with respect to the horizontal plane,

f is the focal length of the camera, y0 and
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Fig. 3. Possible groupings of the segments in a AOI.

y are the ordinates of the image center and

of the base of the AOI respectively. Such

distance de�nes the model to be used. As

overtaking vehicles are not considered, ob-

stacles usually appear at the end of the road

and the far-away model is used. Therefore,

groups of horizontal segments are looked for

to single out the presence of a meaningful

structure having a probability to correspond

to a vehicle. Instead, at a medium and close

distance, groups of segments arranged in L,

C or closed shapes and satisfying the rela-

tionships required by the appropriate model

are pointed out.

In particular, in each image of the se-

quence, from a set of initial candidate seg-

ments detected in the AOI, the algorithm

considers all possible groupings of the seg-

ments according to the model (�g. 3). Be-

cause of the cluttered background and of

segmentation errors, many sets of segments

can match the model. Then a search tree is

generated, in which segments are the nodes.

Each node of the tree is expanded pointing

to all the segments which can be added to

that structure. Segments corresponding to a

part (i.e. a rectangle) are searched in the fol-

lowing order: the �rst horizontal segment in

the top of the AOI is supposed to be the top

side of the rectangle, then parallel segments

under it are possible bottom sides, and nearly

vertical segments between the two previous

ones are probable left and right sides.

Each path from the root to each leaf is a

possible match with the model, that is an

obstacle hypothesis. The best hypothesis H

is chosen according to a completeness fac-

tor and a closure measure associated to each

match. The completeness factor expresses

how well the set of segments represents the

complete geometry of the structure, that is

how many sides of the rectangle have been

identi�ed. The closure measure signi�es how

much the structure is compact, taking into

account its area and the gaps between the

extrema of the segments.

Even if the semantic model allows the

recognition of vehicles of di�erent types

(such as car, vans, and lorries), physical

knowledge about speci�c vehicles (for ex-

ample, the dimensional ratios between the

parts) is used to adjust the aspect of the

model in the image. Such integration greatly

improves the search and the correctness of

the best hypothesis.

However, the obstacle hypotheses formu-

lated frame by frame are hardly reliable

enough to be regarded as validated. On

the analogy of the human visual persistence,

time integration is used to improve such re-

liability. Because of the apparent slow mo-

tion on the image plane of far away obsta-

cles, edges corresponding to parts of the ve-

hicle can be tracked along the sequence while

the misleading structures due to the back-

ground are lost either because of the head-
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Fig. 4. (a) Obstacle hypothesis formulation. (b) Obstacle detection.

ing changes of the camera when the road

bends or because of the perspective enlarge-

ments. So only the structures which can be

tracked allow the validation of obstacles to

verify their consistence and those segments

that really belong to the hypothesized obsta-

cle are pointed out. In particular, a persis-

tence factor, pf , is associated to each seg-

ment of the model. It records how many

times a model element has been matched by

the best hypotheses H formulated along the

sequence. When the pf of all the model ele-

ments reaches a pre�xed value, the hypothe-

sis active at the present frame is considered

as validated and a warning is given about the

presence of an obstacle.

VI. RESULTS

The proposed system has been tested on

sequences of video images, taken with a B/W

CCD camera (2/3" sensor and 16 mm lens)

placed on the bonnet of the mobile labora-

tory MOBLAB [5], 1.40 m height. The im-

age sequences have been sub-sampled in fre-

quency and time to avoid motion interlace

e�ects. The resulting image size is 340 x 280
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pixel at a repetition rate of 25 images/s.

Figure 4 shows the case where the super-

vised vehicle is approaching a slower station

wagon. An obstacle hypothesis is �red when

the vehicle is at 70 m (�g. 4a), while the

warning message is issued at 55 m (�g. 4b).

The relative speed The obstacle detection al-

gorithm requires about 80 frames, being the

relative speed of 30 km/h.

Even if the proposed algorithm is quite

simple, in order to satisfy the real time re-

quirements, the identi�cation criteria are suf-

�cient to warn a driver even if the actual type

of vehicle has not been recognized. This can

be considered a satisfactory result for a com-

puter vision system devoted to driving assis-

tance of vehicles.
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