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Abstract

Ships often use the coasts of continents for navigation in
the absence of better tools such as GPS, since being close
to land allows sailors to determine with high accuracy
where they are. Similarly for mobile robots, in many en-
vironments global and accurate localization is not always
feasible. Environments can lack features, and dynamic ob-
stacles such as people can confuse and block sensors.

In this paper, we demonstrate a technique for generat-
ing trajectories that take into account both the information
content of the environment, and the density of the people
in the environment. These trajectories reduce the average
positional certainty as the robot moves, reducing the like-
lihood the robot will become lost at any point. Our method
was successfully implemented and used by the mobile robot
Minerva, a museum tourguide robot, for a 2 week period in
the Smithsonian National Museum of American History.

1 Introduction

One essential component of any operational mobile
robot system is the ability for the robot to localize itself;
that is, to determine its position in space consistently and
accurately from sensor data. Dead reckoning using only
odometry data does not solve this problem; small errors in
odometry build up quickly, eventually causing dramatic er-
rors in the robot’s belief of its position. Over distances
longer than a few meters, the robot must use informa-
tion from its environment to track where it is. There are
many successful localization methods that can determine
the robot’s position relative to a map using sonar, laser and
camera data [MD94, DZ96, SD98, FBT98, KCK96].

However, most localization methods fail under com-
mon environmental conditions. Proximity sensors such as

laser or sonar range-finders have finite range, which means
that in sufficiently wide-open spaces, they cannot see any-
thing to use as a reference point. Such sensors can also be
fooled by unmodelled or dynamic obstacles; people mov-
ing around the robot are a very good example of unmod-
elled, dynamic obstacles. Cameras can also fail in regions
which lack sufficient visual structure, such as blank walls
or ceilings. Since these environmental conditions are rel-
atively common, a mobile robot navigating reliably in the
real world must allow for the potential failure of its local-
ization methods.

Our solution to these problems is inspired by traditional
navigation of ships. Ships often use the coasts of conti-
nents for navigation in the absence of better tools such as
GPS, since being close to the land allows sailors to deter-
mine with high accuracy where they are. The success of
this method results from coast lines containing enough in-
formation in their structure for accurate localization. By
navigating sufficiently close to areas of the map that have
high information content, the likelihood of getting lost can
be minimized.

The coastal navigation technique1 consists of the fol-
lowing:
� Modelling the information content of the environment.

The model accounts both for sensor limitations and un-
modelled, dynamic obstacles.

� Planning trajectories that account for the information
content model of the environment and obstacle informa-
tion in the map, respecting localization uncertainty.

In the following sections, we first develop the coastal
navigation model of the information content of the environ-
ment, starting with the sensor limitations and then account-
ing for dynamic obstacles. Secondly, we develop a method

1The term “coastal navigation was suggested by Thomas Christaller
in a private communication about the work reported here.



of combining the information content with the path plan-
ner to generate plans that reduce the expected localization
error. Finally we show experimental results.

The framework that we use for navigation is a proba-
bilistic one. Figure 1 shows an overhead (bird’s-eye view)
of an example environment. This map is a probabilistic oc-
cupancy grid [ME85, Elf90], where each cell contains the
probability that it is occupied. The black cells are those
with a high probability of occupancy, such as cells inside
walls. The white cells are cells in free space.

Figure 1: An example map of the National Museum of American History.
The white areas correspond to open space, and the black areas are walls,
or occupied space. The size of this map is 53m by 67m

This map is the National Museum of American History
(NMAH), and was learned by the robot Minerva as part of
a demonstration of robot technology (see [BCF+98] for a
description of a previous demonstration). Figure 2 shows
Minerva, a RWI B-18 base, that was used for a two week
period in the museum.

Figure 2: Minerva, the robot used for the experiments presented in this
paper.

The sensors used to generate this map were two SICK
laser range finders which provide 360� field of view around
the robot at 45cm height, with an angular resolution of1�.
The resolution of the map in figure 1 is 20cm/cell.

The NMAH was considered to be a good testbed for the
idea of navigating with uncertainty, because it has two fea-
tures relevant to developing coastal navigation: large areas
with minimal environmental structure, and dynamic obsta-
cles. The ideas were tested on the Minerva robot over the
two week period, encountering approximately 50,000 peo-
ple and travelling 44 km total in this environment. The area
of the museum that Minerva operated in was 53m by 67m.

The primary result of this paper is that we were able to
reduce the average positional uncertainty on a real robot,
in a large, open and extremely dynamic environment (the
museum). We will show experimental results for trajecto-
ries in the museum, including a detailed case of a specific
trajectory. The coastal navigator in fact was in successful
operation in the adverse conditions of the museum, over a
long-term period of two weeks.

2 Previous Work

Developing motion planning algorithms based on po-
sitional uncertainty is not a new idea. Erdmann devel-
oped motion planning strategies with uncertainty [Erd84,
Erd86] and probabilistic strategies. Nourbakhsh and col-
leagues [NPB95] developed probabilistic navigation tech-
niques on DERVISH, a robot similar in many respects to
Minerva.

Considerable work in in the field of partially observable
Markov decision processes (POMDPs) [CKL94, KS96]
has allowed many mobile robots to model positional un-
certainty explicitly. However, one drawback to the use of
traditional POMDPs is that they can become computation-
ally intractable with a large number of states. Markov lo-
calization, however, has been used successfully on multiple
robot platforms [KCK96, FBT98].

Work has been done on trajectory generation with re-
spect to positional uncertainty; Takeda et al. [TFL94] do
not use the localization process to generate the positional
uncertainty across space, but generate probability distribu-
tions based on an explicit model of the sensor. Further-
more, the environment is assumed to be static, so the effect
of dynamic obstacles on localization is not modelled.

3 Modelling Information Content

The motivation for coastal navigation is generating tra-
jectories for the mobile robot that reduce the likelihood
of localization error. For example, localization error can
arise when a mobile robot follows a path through a wide-
open space, such as outdoors, or in a very large or crowded
room. In these cases, all reference points are outside the
range of the sensors, or even blocked. Therefore, the like-
lihood of the robot becoming lost as it moves through the
open or crowded space is high.



Our solution is to have the robot identify how good re-
gions of space are for localization, and alter the path plan-
ning accordingly. We have developed a planner that uses
maps of the environment, where each cell in the map con-
tains a notion of information content available at that point
in the map, which corresponds to the ability of the robot
to localize itself. The higher the information content, the
better the localization ability.

We first develop the general principles of the local-
ization method and the information model in a statistical
framework, before presenting the actual implementation of
the algorithm.

3.1 Statistical Framework

The position,x, of the robot is given as the location
(x; y) and direction�, defined over a spaceX = (X;Y;�).
Our localization method is a grid-based implementation of
Markov localization [FBT98, KCK96]. This method rep-
resents the robot’s belief in its current position using a 3-
dimensional grid overX = (X;Y;�), which allows for
a discrete approximation of arbitrary probability distribu-
tions. The probability that the robot has a particular posex

is given by the probabilityp(x).

Markov Localization

Let the robot’s position be given by the initial probabil-
ity distribution,Px, defined overX = (X;Y;�). The
robot acquires a sensor measurements, for example a set
of range data from a laser sensor. The localization process
takesPX and the sensor data,s, and returns the posterior
probability distributionP

Xjs = p(xj s), again defined over
the space of poses of the robot,(X;Y;�).

The probabilityp(xj s) is given by Bayes’ Rule:

p(xj s)=
p(sjx)p(x)

p(s)
(1)

wherep(x) is the position distribution, andp(sjx) is com-
puted from the sensor model and the robot’s map of the
environment.

The termp(s) is the likelihood of observing sensor data
s, and is computed from the prior position distribution, the
sensor model and the environmental map.

p(s) =

Z

X

p(sjx)p(x)dx (2)

Entropy Computation

The entropy,H(PX), of a probability function,PX, pro-
vides a good measure of the certainty with which the robot

is localized. The entropy of a probability distribution,PX,
is computed over the space of all possible poses(X;Y;�)

and is defined as:

H(PX) = �

Z

X

p(x) log(p(x)) dx (3)

This measure can be considered as the “purity” of the
probability distribution. If the distribution is highly fo-
cused at a single pose(x = x; y; �), then the entropy will
be low. If the distribution is spread over a wide space,
then the entropy will be high. The effect that a particu-
lar set of sensing data has on the robot’s belief in its po-
sition can therefore be measured in this way. Combining
equations (1) and (3) gives the entropy of the posterior dis-
tribution after sensing:

H(P
Xjs) = �

Z

X

p(xj s) log(p(xj s)) dx

= �

Z

X

p(sjx)p(x)

p(s)
log
�
p(sjx)p(x)

p(s)

�
dx (4)

Equation (4) gives the entropy of the posterior distribu-
tion, given a particular set of sensor measurements. Recall
that p(x) is the prior position distribution,p(sjx) is the
probability of the sensor measurement conditioned on the
position, computed from the sensor model and the envi-
ronmental map.p(s) is the prior distribution of the sensor
measurement, given by equation (2).

A particular location in the environment can result, with
different probability, in different sensor measurements.
The entropy is therefore averaged from all possible sen-
sor measurements,s, where each term is weighted by the
likelihood of the sensor measurement. Equation (5) com-
putes the expected value of the entropy over all posterior
distributionsP .

E(H(P
XjS)) = �

Z

S

p(s)

Z

X

p(xj s) log(p(xj s))dxds

= �

Z

S

p(s)

Z

X

p(sjx)p(x)

p(s)
log
�
p(sjx)p(x)

p(s)

�
dxds

= �

Z

S

Z

X

p(sjx)p(x) log
�
p(sjx)p(x)

p(s)

�
dxds (5)

E(H(P
XjS)) is the expected value of the entropy after

firing the sensors, computed over all possible sensor mea-
surements, given the initial position distributionPX.

For a particular pose distribution, we can compute the
information content,I, of the robot’s current position by
computing the difference between the expected entropy of



the positional probability conditioned on the sensor mea-
surement,E(H(P

Xjs)) and the entropy of the prior posi-
tion distribution,H(PX):

I = E(H(P
XjS))�H(PX) (6)

Note that equation (7) inverts the intuitive sense of in-
formation content; the higher the quantityI, the lower the
information content.

Recall that the goal of measuring the information con-
tent of the environment, is to be able to construct a map of
areas of the environment that have low and high informa-
tion. The algorithm for constructing this map is the follow-
ing procedure:

1. For each positionx and initial probability distribution
PX, generate all possible sensor measurements,s and
the probabilityof these estimates,p(s) as in equation (2).

2. For each sensor measurements, compute the entropy of
the posterior probability distribution given by Markov
localization as in equation (4)

3. Compute the expected value of the entropy as in equa-
tion (5), and take the difference from the initial entropy,
as in equation (6).

In the above analysis, we have ignored the issue of the
prior probability distribution of the robot’s position. The
entropy computation is heavily dependent on the robot’s
prior belief in its position,p(x). Modeling robot navi-
gation as a partially observable Markov decision process,
or POMDP, would be one method for handling this de-
pendency [CKL94]. However, the POMDP requires ex-
amining all possible prior probability beliefs and also all
possible paths leading up to the prior probability belief.
This process provides extremely accurate characterization
of uncertainty. However, for planning, the computation is
intractable, as it is exponential in the size of the environ-
ment. We have therefore made some simplifying assump-
tions in the implementation of the algorithm which dra-
matically reduce the complexity. One such simplification
allows us to ignore the problem of the prior positional dis-
tribution.

3.2 Implementation

The first simplification we make immediately is to use a
tracking assumption. The mobile robot has internal odom-
etry which, while insufficient for long-term position esti-
mation (as discussed), provides a reasonable estimate on
the bounds and type of uncertainty of the robot position.
Because the robot tracks its position using its odometry, we
can in fact assume a Gaussian prior probability distribution
centered at the assumed location of the robot,(x; y; �), and
limited to a small region of the environment. The Gaussian

nature of the distribution is a result of the kinds of error
that accumulate using odometry. It is this simplification
that makes our POMDP-style approach tractable.

Also, since we use the same initial distribution at every
point in the environment, it is not necessary to compute the
change in entropy as in equation (6), but instead simply to
compute the new entropy estimate.

We do not simulate every possible sensor measurement
s, but instead sample the sensor space, choosing only the
most likely sensor data sets for a particular position. The
samples we choose are maximum-likelihood sensor mea-
surements, simulated using the map and the sensor model,
from the cells in the3 � 3 square centered at the assumed
location of the robot. This particular sampling method has
the effect of attributing all sensor errors to positional error
in the robot – we assume that every sensor measurement
corresponds correctly to some feature in the environment.

Furthermore, we do not in fact have a continuous distri-
bution for the position of the robot, but a discrete grid. We
also do not generate every possible sensor measurement,
but use a sampling of the sensor measurement space. This
reduces the integration into a summation in equation (5).

Finally, we can use the fact that our particular robot
has360� field of view, to eliminate the dependence on�.
Because the robot can see around its circumference com-
pletely, there is no positional certainty dependent on its ori-
entation – it always knows its orientation exactly, given
its location (x; y). Since the entropy is independent of
� in this case, we no longer need to integrate over it. It
is important to note that in general, if the robot does not
have rotationally-invariant perceptions, then� cannot be
ignored; indeed, coastal navigation is not very helpful if
the ship is always pointed out to sea.

The above simplifications change the information con-
tent into the following equation:

I(x; y) = �

X
S

X
X

p(sjx)p(x) log
�
p(sjx)p(x)

p(s)

�
(7)

Figure 3 shows an example map of the information con-
tent of the same museum. The darker an area is, the less
information it contains. Notice that the darkest area is
the center of the large open space in the middle, and that
the lightest areas, with the lowest entropy are close to the
walls.

4 Dynamic Environments

Entropy as described above is useful for determining the
information content of a particular point in the environ-
ment, however the model assumes a static environment.
In a dynamic environment, the data gathered by the sen-
sors can be corrupted, for example by people blocking the



Figure 3: An example map of the entropy, or information content, of the
National Museum of American History. The darker an area is, the less
information content it contains. The blackest areas of the map are the
walls.

proximity sensors. We therefore must also account for the
likelihood that information can be corrupted.

In the example of the laser range sensors, the probability
that a given laser range measurement will be corrupted by
a person is modelled as a geometric distribution along the
length of the beam; the longer the beam, the more likely it
will be corrupted.

p
corrupt(s) = 1� 


ksk (8)

s : 0 � ksk � MaxRange is the particular range mea-
surement,ksk is its length and
 : 0 � 
 � 1 is the
probability that any particular point in the environment is
occupied by a dynamic obstacle: for the case of museum,
this is simply the number of people in the museum, divided
by the area of the free space of the museum.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 80 160 240 320 400 480 520

P
ro

ba
bi

lit
y 

of
 C

or
ru

pt
io

n

Length of Laser Beam in cm

Probability of Laser Measurement being Corrupted

Probability Based on 
Density of 2000 people

Figure 4: Probability of corruption of laser measurement, as a function
of measured distance, given 2000 people in the museum.

Figure 4 shows an example distribution for the proba-
bility of a measurement’s corruption, as a function of the
measured distance. This distribution assumes that there are
2000 people, evenly distributed through a space the size of
the NMAH.

In order to alter the information content computation
to account for this corruption model, we need to alter
the effect that individual sensor measurements have on
the total information content. One approach is to inte-
grate the information content over all possible distribu-
tions of people in the museum, weighting the information
by the likelihood of each distribution. This approach has
the disadvantage of being computationally intractable. We
therefore make a simplifying assumption that each com-
ponent of the sensor measurementsi(x; y) : s(x; y) =

fs1(x; y); : : : ; sn(x; y)g is independent. This allows us to
compute the expected value ofI(x; y) by averaging over
the information content,Ii(x; y) of each component of the
measurement. We make this independence assumption for
the sake of computational speed.2

Equation (7) gives the information based on data sets.
For a typical laser range scan,s contains 360 measure-
ments. We now consider the data asn individual suc-
cessive measurements,s1 : : : sn. The information con-
tent I(x; y) can be computed for eachsi alone, giving
I1(x; y) : : : In(x; y), computed as in equation (7). Then
measurements are averaged, weighting each measurement
by the probability that the measurement was corrupted.

I(x; y) =

nX
i=1

(Ii(x; y) � p
corrupt

i
(x; y)) (9)

Ii(x; y) is the information content at(x; y) as in equa-
tion (7), based only on thei-th sensor reading. The prob-
ability pcorrupt

i
(x; y) is the probability that thei-th sensor

reading is corrupted, computed from the distribution given
in equation (8).

For a laser range scanner, each measurement is taken at
some angle�i around the circumference of the robot. The
Ii(x; y) is computed from the entropy using the prior dis-
tribution centered at(x; y) and the range measurement at
�i. One effect of the model of people as discussed above
is that, since longer laser measurements are more likely to
become corrupted than shorter measurements, the informa-
tion content of a longer laser measurements is lower than
the information content of shorter beams. Thus, the best
points in the environment are those that have many, close
environmental features, such as walls. The worst points
in the environment are those that have few environmental
features that are far away. Between these two extrema are
positions that contain complete, but highly-corruptible in-
formation, compared with positions in the map that contain
incomplete, but more reliable information.

2In reality, the range to an obstacle at direction�i is highly correlated
with the range�i+1 in most environments. However, we can make rea-
sonable conclusions about the information content of each position in the
map nevertheless, and this method has the advantage of being computa-
tionally fast.



Figure 5 depicts the three stages of the information con-
tent development: the initial map, the information content
based on a static environment, and the information content
based on a dynamic environment. This particular environ-
ment is the Deutsches Museum in Bonn, Germany. The
size of the environment is 19.8m by 21.3m, discretized at
15cm/grid cell. The computation for this environment took
55 minutes to generate on a Pentium II 266 MHz machine.
The computation for the map of the NMAH depicted in
figure 3 took 3 hours on the same machine.

(a) Museum map (b) Information content for
a static environment

(c) Information content for
a dynamic environment

Figure 5: The various stages of the information content map construc-
tion process, for the Deutsches Museum in Bonn, Germany. The black
obstacles are visible to the laser range finder, the light-grey regions are
obstacles not visible to the robot.

5 Path planning

Having computed the information content, or entropy,
for each position in the map, the path planner must use the
secondary map to generate trajectories with greater posi-
tional certainty. Traditional path planners choose a trajec-
tory by optimizing some criterion such as minimizing dis-
tance, time, or power consumption, or maximizing distance
to obstacles (for safety). The quantity minimized in the
conventional planner is the following sum [Thr99], along

(a) Conventional tra-
jectory

(b) Coastal trajectory

Figure 6: Example trajectories using the conventional and coastal plan-
ners, in the National Museum of American History, for the same start and
goal positions. Note the motion of the robot along the wall for the coastal
planner.

the path given by the list of cells(xi; yi) from start to goal:

CostTotal =
X
X;Y

c(xi; yi) (10)

The costc(xi; yi) is the cost of crossing cell(xi; yi),
which increases with the probability that the cell is oc-
cupied, from some minimum cost associated with travel.
The minimumCostTotal is found by dynamic program-
ming (also known as Viterbi or Dijkstra method) [How60].

An example trajectory is shown in figure 6(a). The tra-
jectory of the robot is the line through the large open space,
where the start position is the left end of the line, and the
goal is the right end. People are not depicted in this im-
age, but typically, visitors to the museum would occupy
the space on either side of the robot, effectively blinding it
on its two sides, reducing substantially the main sources of
localization information.

The coastal planner, however, minimizes a sum of the
conventional cost and the information content:

CostTotal =
X
X;Y

�1c(xi; yi) + �2I(xi; yi)

(11)

The exponents�1 and�2 are weights, and were chosen
experimentally.

Figure 6(b) shows a coastal plan for the same start and
goal as figure 6(a), where the robot does not travel di-
rectly through the open space, but instead moves along the
wall, increasing travel distance, but preserving the ability
to gather sensor data down its right side (travelling left to
right again).

It should be emphasized that the computation of the in-
formation maps is a one-time operation for any particular
environment. The information content is computed off-
line, and used by the path planner to construct a single
static cost functionc(xi; yi). This cost function is used



by the dynamic programming search; a typical path for the
Museum of American History took under 100ms to com-
pute.

6 Experimental Results

Over the course of two weeks, our robot Minerva gave
tours of exhibits in the National Museum of American His-
tory, shown in figure 1, using the coastal planner to gener-
ate trajectories between exhibits. The robot operated from
10am to 5:30pm daily for 14 days. The total distance by
the robot covered was 44km, at an average speed of 38.8
cm/sec. The majority of this time was spent interacting
with people; approximately 50,000 people passed through
the museum during the two-week period. The main mo-
tivations for developing the coastal navigation technique
were the large open space in the main operational area for
Minerva and the many people gathered around the robot at
any given time.

The sensor and localization data was recorded during
the operation of Minerva, and some statistics were gath-
ered to compare the performance of the coastal planner to
the conventional planner. The conventional planner was
also used for part of Minerva’s operation, in order to al-
low comparison of the two navigation methods. The most
useful statistic is the average entropy of the probability dis-
tribution of the robot’s pose, as it travelled along the trajec-
tories.

Coastal Conventional
3.3� .1 4.4� .25

Table 1: Comparison of average entropy over the trajectories given by the
conventional and coastal planners..

(a) Conventional trajectory (b) Coastal trajectory

Figure 7: The coastal and conventional trajectories, for the same start and
goal.

In the best case, the robot followed trajectories that had
a measurably lower average entropy, which indicates the

success of the coastal navigation. Table 1 shows the result
of using a laser range finder with a 3m max range. The
trajectories are given in figure 7. The same start and goal
were given to the robot, using first the conventional and
then the coastal planner. The robot travelled between the
start and goal position 4 times, to generate trajectories of
length 87.0m (conventional) and 109.8m (coastal).

Figure 8 shows the performance of the coastal naviga-
tion under different sensor abilities, in a static environ-
ment. As the sensor range increases to 50m, the sensor
is able to use its entire field of view for localization at most
points in the museum, so the conventional planner gen-
erates paths that are equally in localization ability as the
coastal planner. The use of the sensors of different scales
illustrates that there are different environmental conditions
under which coastal navigation is more or less useful. This
graph indicates that if the museum were even spacious,
such as a typical outdoor environment, coastal navigation
would be even more important.
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Figure 8: This graph shows the averageentropy over trajectories of 87.0m
and 109.8m in the National Museum of American History.

7 Conclusion

In this paper, we have presented a method of generating
trajectories through environments where positional uncer-
tainty is likely to accrue. Localization methods can often
fail in environments that lack many reference points, for
example wide-open spaces with walls outside the range of
the sensors. Localization can also fail where the sensors
are obstructed by dynamic obstacles, such as people. The
solution is to generate trajectories that minimize the prob-
ability that the robot will fall victim to these problems, and
become lost. The method draws on ship-based navigation,
where ships lacking reliable global position estimation stay
close to known landmarks along shores.

The algorithm operates in two parts. The first part gen-
erates a map of the environment that contains the informa-
tion content of each position in the environment. This rep-
resentation includes the likelihood of the sensor data to be



corrupted by dynamic obstacles. Using this map, the path
planner generates trajectories that optimize over both dis-
tance and change in positional certainty. This path planner
was used for navigating in a highly dynamic environment
with large open spaces in the National Museum of Ameri-
can History successfully for 2 weeks.

This particular solution is a special case of a general
class of POMDP problems. However, POMDP prob-
lems are computationally intractable for systems with large
numbers of states. We reduce the complexity by making a
number of assumptions such as the ability of the robot to
track its position, and the kind of the positional error that
accrues.

One strength of the framework of coastal navigation is
that it generalizes to any sensor; indeed, using a probabilis-
tic localization module based on ceiling images generated
by a camera, the path planner generated trajectories that
did not stay close to obstacles. Instead, the path planner
generated trajectories that took the robot under as much vi-
sual structure on the ceiling as possible, most notably the
ceiling lights.

One avenue for future research lies with the path
planner. The dynamic programming technique currently
used for finding the minimum-cost trajectories demands a
monotonic integration of the entropy. Therefore, there is
no way to model actions that reduce uncertainty. Another
direction for future work lies in determining the planner
parameters appropriately. The weights�1 and �2 were
set empirically, as were the parameters of the geomet-
ric distribution describing the crowdedness of the envi-
ronment. It would be useful to have the planner choose
different parameters based on the perceived crowdedness
of the environment, following more coastal trajectories in
highly crowded environments, and more direct trajectories
in mostly-static environments.
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