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Abstract. This paper presents a probabilistic algorithm for collaborative mobile
robot localization. Our approach uses a sample-based version of Markov local-
ization, capable of localizing mobile robots in an any-time fashion. When teams
of robots localize themselves in the same environment, probabilistic methods are
employed to synchronize each robot’s belief whenever one robot detects another.
As a result, the robots localize themselves faster, maintain higher accuracy, and
high-cost sensors are amortized across multiple robot platforms. The paper also
describes experimental results obtained using two mobile robots. The robots de-
tect each other and estimate their relative locations based on computer vision and
laser range-finding. The results, obtained in an indoor office environment, illus-
trate drastic improvements in localization speed and accuracy when compared to
conventional single-robot localization.

1 Introduction

Sensor-based robot localization has been recognized as one of the fundamental prob-
lems in mobile robotics. The localization problem is frequently divided into two sub-
problems: Position tracking, which seeks to compensate small dead reckoning errors
under the assumption that the initial position of the robot is known, and global self-
localization, which addresses the problem of localization with no a priori information
about the robot position. The latter problem is generally regarded as the more difficult
one, and recently several approaches have provided sound solutions to this problem.
In recent years, a flurry of publications on localization—which includes a book solely
dedicated to this problem [2]—document the importance of the problem. According to
Cox [8], “Using sensory information to locate the robot in its environment is the most
fundamental problem to providing a mobile robot with autonomous capabilities.”

However, virtually all existing work addresses localization of a single robot only.
At first glance, one could solve the problem of localizing N robots by localizing each
robot independently, which is a valid approach that might yield reasonable results in
many environments. However, if robots can detect each other, there is the opportunity
to do better. When a robot determines the location of another robot relative to its own,
both robots can refine their internal believes based on the other robot’s estimate, hence
improve their localization accuracy. The ability to exchange information during local-
ization is particularly attractive in the context of global localization, where each sight
of another robot can reduce the uncertainty in the estimated location dramatically.

The importance of exchanging information during localization is particularly strik-
ing for heterogeneous robot teams. Consider, for example, a robot team where some



robots are equipped with expensive, high accuracy sensors (such as laser range-finders),
whereas others are only equipped with low-cost sensors such as ultrasonic range find-
ers. By transferring information across multiple robots, high-accuracy sensor informa-
tion can be leveraged. Thus, collaborative multi-robot localization facilitates the amor-
tization of high-end, high-accuracy sensors across teams of robots. Thus, phrasing the
problem of localization as a collaborative one offers the opportunity of improved per-
formance from less data.

This paper proposes an efficient probabilistic approach for collaborative multi-robot
localization. Our approach is based on Markov localization [23, 27, 16, 6], a family
of probabilistic approaches that have recently been applied with great practical suc-
cess to single-robot localization [4, 3, 30]. In contrast to previous research, which re-
lied on grid-based or coarse-grained topological representations, our approach adopts
a sampling-based representation [10, 12], which is capable of approximating a wide
range of belief functions in real-time. To transfer information across different robotic
platforms, probabilistic “detection models” are employed to model the robots’ abili-
ties to recognize each other. When one robot detects another the individual believes
of the robots are synchronized, thereby reducing the uncertainty of both robots during
localization. While our approach is applicable to any sensor capable of (occasionally)
detecting other robots, we present an implementation that integrates color images and
proximity data for robot detection.

In what follows, we will first introduce the necessary statistical mechanisms for
multi-robot localization, followed by a description of our sampling-based Monte Carlo
localization technique in Section 3. In Section 4 we present our vision-based method to
detect other robots. Experimental results are reported in Section 5. Finally, related work
is discussed in Section 6, followed by a discussion of the advantages and limitations of
the current approach.

2 Multi-Robot Localization

Throughout this paper, we adopt a probabilistic approach to localization. Probabilistic
methods have been applied with remarkable success to single-robot localization [23, 27,
16, 6], where they have been demonstrated to solve problems like global localization
and localization in dense crowds.

Let us begin with a mathematical derivation of our approach to multi-robot local-
ization. Let N be the number of robots, and let dn denote the data gathered by the n-th
robot, with 1 � n � N . Each dn is a sequence of three different types of information:
1. Odometry measurements, denoted by a, specify the relative change of the position
according to the robot’s wheel encoders.
2. Environment measurements, denoted by o, establish the reference between the
robot’s local coordinate frame and the environment’s frame of reference. This infor-
mation typically consists of range measurements or camera images.
3. Detections, denoted by r, indicate the presence or absence of other robots. Below, in
our experiments, we will use a combination of visual sensors (color camera) and range
finders for robot detection.



2.1 Markov Localization

Before turning to the topic of this paper—collaborative multi-robot localization—let
us first review a common approach to single-robot localization, which our approach is
built upon: Markov localization (see [11] for a detailed discussion). Markov localization
uses only dead reckoning measurements a and environment measurements o; it ignores
detections r. In the absence of detections (or similar information that ties the position of
one robot to another), information gathered at different platforms cannot be integrated.
Hence, the best one can do is to localize each robot individually, i.e. independently of
all others.

The key idea of Markov localization is that each robot maintains a belief over its
position. Let Bel(t)n (L) denote the belief of the n-th robot at time t. Here L denotes
the random variable representing the robot position (we will use the terms position and
location interchangeably), which is typically a three-dimensional value composed of a
robot’s x-y position and its orientation �. Initially, at time t = 0, Bel(0)n (L) reflects the
initial knowledge of the robot. In the most general case, which is being considered in
the experiments below, the initial position of all robots is unknown, hence Bel(0)n (L) is
initialized by a uniform distribution.

At time t, the belief Bel(t)n (L) is the posterior with respect to all data collected up
to time t:

Bel(t)
n
(L) = P (L(t)

n
j d(t)

n
) (1)

where L
(t)
n denotes the position of the n-th robot at time t, and d

(t)
n denotes the data

collected by the n-th robot up to time t. By assumption, the most recent sensor mea-
surement in d

(t)
n is either an odometry or an environment measurement. Both cases are

treated differently, so let’s consider the former first:

1. Sensing the environment: Suppose the last item in d
(t)
n is an environment mea-

surement, denoted o
(t)
n . Using the Markov assumption (and exploiting that the robot

position does not change when the environment is sensed), the belief is updated using
the following incremental update equation:

Bel(t)
n
(L = l) � � P (o(t)

n
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= l) Bel(t�1)

n
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Here � is a normalizer which ensures that Bel(t)n (L) sums up to one. Notice that the
posterior belief of being at location l after incorporating o(t)n is obtained by multiplying
the observation likelihood P (o

(t)
n j L

(t)
n = l) with the prior belief. This likelihood is

also called the environment perception model of robot n. Typical models for different
types of sensors are described in [11, 9, 18].
2. Odometry: Now suppose the last item in d

(t)
n is an odometry measurement, denoted

a
(t)
n . Using the Theorem of Total Probability and exploiting the Markov property, we

obtain the following incremental update scheme:
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Here P (L
(t)
n = l j a

(t�1)
n ; L

(t�1)
n = l0) is called the motion model of robot n. In the

remainder, this motion model will be denoted as P (l j an; l
0) since it is assumed to be

independent of the time t. It is basically a model of robot kinematics annotated with
uncertainty and it generally has two effects: first, it shifts the probabilities according
to the measured motion and second it convolves the probabilities in order to deal with
possible errors in odometry coming from slippage etc. (see e.g. [12]).

These equations together form the basis of Markov localization, an incremental
probabilistic algorithm for estimating robot positions. As noticed above, Markov lo-
calization has been applied with great practical success to mobile robot localization.
However, it is only designed for single-robot localization, and cannot take advantage of
robot detection measurements.

2.2 Multi-Robot Markov Localization

The key idea of multi-robot localization is to integrate measurements taken at differ-
ent platforms, so that each robot can benefit from data gathered by robots other than
itself. At first glance, one might be tempted to maintain a single belief over all robots’
locations, i.e.,

L = fL1; : : : ; LNg (4)

Unfortunately, the dimensionality of this vector grows with the number of robots: Since
each robot position is three-dimensional, L is of dimension 3N . Distributions over L
are, hence, exponential in the number of robots. Thus, modeling the joint distribution
of the positions of all robots is infeasible for larger values of N .

Our approach maintains factorial representations; i.e., each robot maintains its own
belief function that models only its own uncertainty, and occasionally, e.g., when a robot
sees another one, information from one belief function is transfered from one robot to
another. The factorial representation assumes that the distribution of L is the product of
its N marginal distributions:

P (L
(t)
1 ; : : : ; L

(t)
N
j d(t)) = P (L

(t)
1 j d

(t)) � : : : � P (L
(t)
N
j d(t)) (5)

Strictly speaking, the factorial representation is only approximate, as one can easily
construct situations where the independence assumption does not hold true. However,
the factorial representation has the advantage that the estimation of the posteriors is con-
veniently carried out locally on each robot. In the absence of detections, this amounts
to performing Markov localization independently for each robot. Detections are used to
provide additional constraints between the estimated pairs of robots, which will lead to
refined local estimates.

To derive how to integrate detections into the robots’ beliefs, let us assume the last
item in d

(t)
n is a detection variable, denoted r

(t)
n . For the moment, let us assume this

is the only such detection variable in d(t), and that it provides information about the
location of the m-th robot relative to robot n (with m 6= n). Then
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which suggests the incremental update equation:

Bel
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In this equation the term P (L
(t)
m = l j L

(t)
n = l0; r

(t)
n ) is the robot perception model.

A typical example of such a model for visual robot detection is described in Section 4.
Of course, Eq. (7) is only an approximation, since it makes certain independence as-
sumptions (it excludes that a sensor reports “I saw a robot, but I cannot say which
one”), and strictly speaking it is only correct if there is only a single r in the entire run.
However, this gets us around modeling the joint distribution P (L1; : : : ; LN j d), which
is computationally infeasible as argued above. Instead, each robot basically performs
single-robot Markov localization with these additional probabilistic constrains, hence
estimates the marginal distributions P (Lnjd) separately.

The reader may notice that, by symmetry, the same detection can be used to con-
strain the n-th robot’s position based on the belief of the m-the robot. The derivation is
omitted since it is fully symmetrical.

3 Monte Carlo Localization

The previous section left open how the belief is represented. In general, the space of
all robot positions is continuous-valued and no parametric model is known that would
accurately model arbitrary beliefs in such robotic domains. However, practical consid-
erations make it impossible to model arbitrary beliefs using digital computers.

3.1 Single Robot MCL

The key idea here is to approximate belief functions using a Monte Carlo method. More
specifically, our approach is an extension of Monte Carlo Localization (MCL), which
was shown to be an extremely efficient and robust technique for single robot position
estimation (see [10, 12] for more details). MCL is a version of Markov localization
that relies on a sample-based representation and the sampling/importance re-sampling
algorithm for belief propagation [25]. MCL represents the posterior beliefs Beln(L) by
a set S = fsi j i = 1::Kg of K weighted random samples or particles1. Samples in
MCL are of the type

si = hhxi; yi; �ii; pii (8)

where hxi; yi; �ii denote a robot position, and pi � 0 is a numerical weighting fac-
tor, analogous to a discrete probability. For consistency, we assume

P
K

i=1 pi = 1. In
analogy with the general Markov localization approach outlined in Section 2, MCL
proceeds in two phases:
1. Robot motion. When a robot moves, MCL generates K new samples that approx-
imate the robot’s position after the motion command. Each sample is generated by

1 A sample set constitutes a discrete distribution. However, under appropriate assumptions
(which happen to be fulfilled in MCL), such distributions smoothly approximate the “correct”
one at a rate of 1=

p
K as K goes to infinity [29].



(a) (b)
Fig. 1. (a) Map of the environment along with a sample set representing the robot’s belief during

global localization, and (b) its approximation using a density tree.

randomly drawing a sample from the previously computed sample set, with likelihood
determined by their p-values. Let l0 denote the position of such a sample. The new sam-
ple’s position l is then generated by producing a single, random sample fromP (l j a; l 0),
using the action a as observed. The p-value of the new sample is K�1. An algorithm to
perform this re-sampling process efficiently in O(K) time is given in [7].
2. Environment measurements are incorporated by re-weighting the sample set, which
is analogous to Bayes rule in Markov localization. More specifically, let hl; pi be a
sample. Then, in analogy to Eq. (2) the updated sample is hl; � P (o j l)pi where o is a
sensor measurement, and � is a normalization constant that enforces

P
K

i=1 pi = 1. The
incorporation of sensor readings is typically performed in two phases, one in which p

is multiplied by P (o j l), and one in which the various p-values are normalized.

3.2 Multi-Robot MCL

The extension of MCL to collaborative multi-robot localization is not straightforward.
This is because under our factorial representation, each robot maintains its own, local
sample set. When one robot detects another, both sample sets are synchronized accord-
ing to Eq. (7). Notice that this equation requires the multiplication of two densities
which means that we have to establish a correspondence between the individual sam-
ples in Bel(Lm) and the density representing the robot detection.

To remedy this problem, our approach transforms sample sets into density functions
using density trees [17, 22]. These methods approximate sample sets using piecewise
constant density functions represented by a tree. The resolution of the tree is a function
of the densities of the samples: the more samples exist in a region of space, the more
fine-grained the tree representation. Figure 1 shows an example sample set along with
the tree generated from this set. Our specific algorithm grows trees by recursively split-
ting in the center of each coordinate axis, terminating the recursion when the number
of samples is smaller than a pre-defined constant. After the tree is grown, each leaf’s
density is given by the quotient of the sum of the weights p of all samples that fall into
this leaf, divided by the volume of the region covered by the leaf. The latter amounts to
maximum likelihood estimation of (piecewise) constant density functions.

To implement the update equation above, our approach approximates the densityZ
P (L(t)

m
= l j L(t)

n
= l0; r(t)

n
) Bel(t)

n
(L = l0) dl0 (9)

using samples, just as described above. The resulting sample set is then transformed into
a density tree. These density values are then multiplied into the weights (importance
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Fig. 2: Examples of successful robot detections and Gaussian density representing the robot
perception model. The x-axis represents the deviation of relative angle and the y-axis the

uncertainty in the distance between the two robots.

factors) of the samples in Bel(Lm), effectively multiplying both density functions. The
result is a refined density for the m-th robot, reflecting the detection and the belief of
the n-th robot.

4 Visual Robot Detection

To implement collaborative multi-robot localization, robots must possess the ability to
sense each other. The crucial component is the detection model P (Lm = l j Ln =

l0; rn) which describes the conditional probability that robot m is at location l, given
that robot n is at location l0 and perceives robotm with measurement rn. In this section,
we briefly describe one possible detection method which integrates camera and range
information to estimate the relative position of robots.

Our implementation uses camera images to detect other robots and extracts from
these images the relative direction of the other robot. After detecting another robot and
its relative angle, it uses laser ranger finder scans to determine its distance. Figure 2
shows two examples of camera images taken by one of the robots. Each image shows
another robot, marked by a unique, colored marker to facilitate the recognition. Even
though the robot is only shown with a fixed orientation in this figure, the markers can be
detected regardless of a robot’s orientation. The small black rectangles, superimposed
at the center of each marker in the images in Figure 2, illustrate the center of the marker
as identified by this visual routine. The bottom row in Figure 2 shows laser scans for
the example situations depicted in the top row of the same figure. Each scan consists
of 180 distance measurements with approx. 5 cm accuracy, spaced at 1 degree angular
distance. The dark line in each diagram depicts the extracted location of the robot in
polar coordinates, relative to the position of the detecting robot. The scans are scaled
for illustration purposes.

The Gaussian distribution shown in Figure 2 models the error in the estimation of a
robot’s location. Here the x-axis represents the angular error, and the y-axis the distance
error. This Gaussian has been obtained through maximum likelihood estimation based
on training data (see [13] for more details). As is easy to be seen, the Gaussian is zero-
centered along both dimensions, and it assigns low likelihood to large errors. Please note
that our detection model additionally considers a 6.9% chance to erroneously detecting
a robot when there is none.
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Robin Path

Fig. 3: Map of the environment along with a typical path taken by Robin during an experiment.

5 Experimental Results

Our approach was evaluated using two Pioneer robots (Robin and Marian) marked op-
tically by a colored marker, as shown in Figure 2. The central question driving our
experiments was: Can cooperative multi-robot localization significantly improve the
localization quality, when compared to conventional single-robot localization?

Figure 3 shows the setup of our experiments along with a part of the occupancy
grid map [31] used for position estimation. Marian operates in our lab, which is the
cluttered room adjacent to the corridor. Because of the non-symmetric nature of the
lab, the robot knows fairly well where it is (the samples representing Marian’s belief
are plotted in Figure 4 (a)). Figure 3 also shows the path taken by Robin, which was
in the process of global localization. Figure 5 (a) represents the typical belief of Robin
when it passes the lab in which Marian is operating. Since Robin already moved several
meters in the corridor, it developed a belief which is centered along the main axis of
the corridor. However, the robot is still highly uncertain about its exact location within
the corridor and even does not know its global heading direction. Please note that due
to the lack of features in the corridor the robots generally have to travel a long distance
until they can resolve ambiguities in the belief about their position.

(a) (b) (c) (d)

Fig. 4. Detection event: (a) Sample set of Marian as it detects Robin in the corridor. (b) Sample
set reflecting Marian’s belief about Robin’s position (see robot detection model in Eq. (7)).

(c) Tree-representation of this sample set and (d) corresponding density.

The key event, illustrating the utility of cooperation in localization, is a detection
event. More specifically, Marian, the robot in the lab, detects Robin, as it moves through
the corridor (see right camera image and laser range scan of Figure 2 for a characteristic
measurement of this type). Using the detection model described in Section 4, Marian
generates a new sample set as shown in Figure 4 (b). This sample set is converted into a
density using density trees (see Figure 4 (c) and (d)). Marian then transmits this density
to Robin which integrates it into its current belief. The effect of this integration on



Marian

(a) (b)

Fig. 5. Sample set representing Robin’s belief (a) as it passes Marian and (b) after incorporating
Marian’s measurement.

Robin’s belief is shown in Figure 5 (b). It shows Robin’s belief after integrating the
density representing Marian’s detection. As this figure illustrates, this single incident
almost completely resolves the uncertainty in Robin’s belief.

We conducted ten experiments of this kind and compared the performance to con-
ventional MCL for single robots which ignores robot detections. To measure the perfor-
mance of localization we determined the true locations of the robot by measuring the
starting position of each run and performing position tracking off-line using MCL. For
each run, we then compared the estimated positions (please note that here the robot was
not told it’s starting location) with the positions on the reference path. The results are
summarized in Figure 6.
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Fig. 6. Comparison between single-robot localization and localization making use of robot
detections. The x-axis represents the time and the y-axis represents (a) the estimation error and

(b) the probability assigned to the true location.

Figure 6 (a) shows the estimation error as a function of time, averaged over the ten
experiments, along with their 95% confidence intervals (bars). Figure 6 (b) shows the
probability assigned to the true locations of the robot, obtained by summing over the
weighting factors of the samples in an area �50 cm and �10 degrees around the true
location. As can be seen in both figures, the quality of position estimation increases
much faster when using multi-robot localization. Please note that the detection event
typically took place 60-100 seconds after the start of an experiment.

Obviously, this experiment is specifically well-suited to demonstrate the advantage
of detections in multi-robot localization, since the robots’ uncertainties are somewhat
orthogonal, making the detection highly effective. A more thoroughly evaluation of the
benefits of MCL will be one topic of future research.

6 Related Work

Mobile robot localization has frequently been recognized as a key problem in robotics
with significant practical importance. A recent book by Borenstein, Everett, and Feng [2]
provides an overview of the state-of-the-art in localization.



Almost all existing approach address single-robot localization only. Moreover, the
vast majority of approaches is incapable of localizing a robot globally; instead, they are
designed to track the robot’s position by compensating small odometric errors. Thus,
they differ from the approach described here in that they require knowledge of the
robot’s initial position. Furthermore, they are not able to recover from global localizing
failures. Probably the most popular method for tracking a robot’s position is Kalman
filtering [15, 20, 21, 26, 28], which represents the belief by a uni-modal Gaussian dis-
tribution. These approaches are unable to localize robots under global uncertainty. Re-
cently, several researchers proposed Markov localization, which enables robots to lo-
calize themselves under global uncertainty [6, 16, 23, 27]. Global approaches have two
important advantages over local ones: First, the initial location of the robot does not
have to be specified and, second, they provide an additional level of robustness, due to
their ability to recover from localization failures. Among the global approaches those
using metric representations of the space such as MCL and [6, 5] can deal with a wider
variety of environments than the methods relying on topological maps. For example,
they are not restricted to orthogonal environments containing pre-defined features such
as corridors, intersections and doors.

The issue of cooperation between multiple mobile robots has gained increased inter-
est in the past. In this context most work on localization has focused on the question of
how to reduce the odometry error using a cooperative team of robots [19, 24, 1]. While
these approaches are very successful in reducing the odometry error, none of them in-
corporates environmental feedback into the estimation. Even if the initial locations of
all robots are known, they ultimately will get lost although at a slower pace than a com-
parable single robot. The problem addressed here differs in that we are interested in
collaborative localization in a global frame of reference, not just reducing odometry
error.

7 Conclusions

In this paper, we presented a probabilistic method for collaborative mobile robot lo-
calization. At its core, our approach uses probability density functions to represent the
robots’ estimates as to where they are. To avoid exponential complexity in the number
of robots, a factorial representation is advocated where each robot maintains its own,
local belief function. A fast, universal sampling-based scheme is employed to approx-
imate beliefs. The probabilistic nature of our approach makes it possible that teams
of robots perform global localization, i.e., they can localize themselves from scratch
without initial knowledge as to where they are.

During localization, detections are used to introduce additional probabilistic con-
straints between the individual belief states of the robots. As a result, our approach
makes it possible to amortize data collected at multiple platforms. This is particularly
attractive for heterogeneous robot teams, where only a small number of robots may be
equipped with high-precision sensors.

Experimental results, carried out in a typical office environment, demonstrate that
our approach can reduce the uncertainty in localization significantly, when compared
to conventional single robot localization. Thus, when teams of robots are placed in
a known environment with unknown starting locations, our approach can yield much



faster localization at approximate equal computation costs and relatively small commu-
nication overhead.

The approach described here possesses several limitations that warrant future re-
search. First, in our current system, only “positive” detections are processed. Not see-
ing another robot is also informative, and the incorporation of such negative detections
is generally possible in the context of our statistical framework. Another limitation of
the current approach arises from the fact that our detection approach must be able to
identify individual robots. The ability to integrate over the beliefs of all other robots is a
natural extension of our approach although it increases the amount of information com-
municated between the robots. Furthermore, the collaboration described here is purely
passive, in that robots combine information collected locally, but they do not change
their course of action so as to aid localization as, for example, described in [14]. Fi-
nally, the robots update their belief instantly whenever they perceive another robot. In
situations in which both robots are highly uncertain at the time of the detection it might
be more appropriate to delay the update and synchronize the beliefs when one robot has
become more certain about its position.

Despite these open research areas, our approach provides a sound statistical basis for
information exchange during collaborative localization, and empirical results illustrate
its appropriateness in practice. While we were forced to carry out this research on two
platforms only, we conjecture that the benefits of collaborative multi-robot localization
increase with the number of available robots.
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