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Abstract. One of the fundamental problems in the �eld of mobile robotics is the

estimation of the robot's position in the environment. Position probability grids

have been proven to be a robust technique for the estimation of the absolute position

of a mobile robot. In this paper we describe an application of position probability

grids to position tracking. Given a starting position our approach keeps track of the

robot's current position by matching sensor readings against a metric model of the

environment. The method is designed to work with noisy sensors and approximative

models of the environment. Furthermore, it is able to integrate sensor readings of

di�erent types of sensors over time. By using raw sensor data, the method exploits

arbitrary features of the environment and, in contrast to many other approaches,

is not restricted to a �xed set of prede�ned features such as doors, openings or

corridor junction types. An adaptable sensor model allows a fast integration of new

sensings. The results described in this paper illustrate the robustness of our method

in the presence of sensor noise and errors in the environmental model.

1 Introduction

In order to autonomously operate in their environments, mobile robots must

know their position. The problem of estimating the robot's position can be

divided into two sub-problems: the estimation of the absolute position in

the environment and the tracking of the robot's position relative to a given

starting point [1]. The task of the tracking techniques is the correction of

accumulated dead reckoning errors caused by the inherent inaccuracy of the

wheel encoders and other factors such as slipping. Position tracking in fact can

be regarded as a special case of estimating the absolute position, because it

uses a restricted search space generally centered around the robot's estimated

position instead of considering each point in the environment as a possible

position. We have the following requirements to such a method:

1. It must able to deal with uncertain information. This is important

because
{ sensors are generally imperfect. This concerns wheel encoders as well

as proximity sensors such as ultrasonic sensors or laser range-�nders.
{ models of the environment are generally inaccurate. Possible reasons

for deviations of the map from the real world come from imperfect

sensors, measuring errors, simpli�cations, open or closed doors, or

even moving objects such as humans or other mobile robots.



2. It must allow the integration of sensor readings from di�erent

types of sensors over time. Sensor fusion improves reliability while

the integration over time compensates noise.

3. It must be able to exploit arbitrary features of the environment

which are visible by the sensors.Many techniques for position track-

ing are based on landmarks such as doorways, openings or junction types

in corridors. These approaches are therefore not able to exploit geometric

features of the environment such as the width of corridors or even the

size of rooms and objects.

Our fast grid-based position tracking technique presented in this paper

meets all these requirements. The principle of the position probability grid

approach is to accumulate in each cell of the grid the posterior probability

that this cell refers to the current position of the robot. Since each possible

state of the robot is de�ned by a tuple (x; y; �) representing the position and

orientation of the robot, position probability grids have three dimensions.

Such a grid provides a discrete approximation of the probability function of

the robot's current position. The approximation is adapted by integrating the

likelihoods of sensor information over time. These likelihoods are computed

by matching the measurements against a given environmental model.

In [3] we showed that this technique allows a mobile robot to determine

its absolute position in typical o�ce environments within a short time. In this

paper we describe a specialization of the position probability grid approach to

the tracking problem. Instead of considering all possible positions of the robot

which leads to large state spaces even for environments with a reasonable size,

we consider a small cubic state space containing only those positions centered

around the currently estimated position of the robot. In addition, we apply

a fast sensor model allowing frequent updates of the state space given new

sensory input. In di�erent examples we demonstrate the robustness of this

tracking technique even if noisy sensors such as ultrasonic sensors are used

and if approximative environmental models are given. After discussing related

work, Section 3 shows how to build position probability grids for tracking the

position of a mobile robot. In Section 4 we describe our fast and adaptable

model for proximity sensors. Finally, Section 5 describes di�erent experiments

in typical o�ce environments.

2 Related work

Di�erent techniques for the tracking of the position of mobile vehicles by

matching sensor readings with maps of the environment have been developed

in the past (see [1] for a comprehensive overview). Recently, more and more

probabilistic techniques are applied to position estimation problems. These

approaches can be distinguished according to the type of maps they rely on.

Techniques based on metric or grid-based representations of the environ-

ment generally produce Gaussian distributions representing the estimation



of the robot's position. Wei� et al. [18] store angle histograms constructed

out of range-�nder scans taken at di�erent locations of the environment. The

position and orientation of the robot is calculated by maximizing the corre-

lation between histograms of new measurements with the stored histograms.

Schiele and Crowley [14] compare di�erent strategies to track the robot's po-

sition based on occupancy grid maps. They use two di�erent maps: a local

grid computed using the most recent sensor readings, and a global map built

during a previous exploration of the environment or by an appropriate CAD-

tool. The local map is matched with the global map to produce a position and

orientation estimate. This estimate is combined with the previous estimate

using a Kalman �lter [9], where the uncertainty is represented by the width

of the Gaussian distribution. Compared to the approach of Wei� et al., this

technique allows the integration of di�erent measurements over time rather

than taking the optimum match of the most recent sensing as a guess for the

current position.

Other techniques are designed to deal with topological maps. Nourbakhsh

et al. [12] apply Markov Models to determine the node of the topological

map which refers to the current position of the robot. Di�erent nodes of the

topological map are distinguished by walls, doors or hallway openings. Such

objects are detected using ultrasonic sensors, and the position of the robot

is determined by a \state-set progression technique", where each state repre-

sents a node in the topological map. This technique is augmented by certainty

factors which are computed out of the likelihoods that the items mentioned

above will be detected by the ultrasonic sensors. Hertzberg and Kirchner [6]

apply a similar approach for mobile robot navigation in sewerage pipes. Sim-

mons and Koenig [15] additionally utilize metric information coming from

the wheel encoders to compute state transition probabilities. This metric in-

formation puts additional constraints on the robot's location and results in

more reliable position estimates. Kortenkamp and Weymoth [8] combine in-

formation obtained from sonar sensors and cameras using a Bayesian network

to detect gateways between nodes of the topological map. The integration of

sonar and vision information results in a much better place recognition which

reduces the number of necessary robot movements respectively transitions

between di�erent nodes of the topological map.

Due to the separation of the environment into di�erent nodes the meth-

ods based on topological maps, in contrast to the methods based on metric

maps, allow to deal with ambiguous situations. Such ambiguities are repre-

sented by di�erent nodes having high position probabilities. However, the

techniques based on topological maps provide a limited accuracy because of

the low granularity of the discretization. This restricted precision is disad-

vantageously if the robot has to navigate fast through the environment or

even perform manipulation tasks.

Position probability grids provide a metric discretization of the environ-

ment and thus provide metric estimates of the robot's position. A further

advantage is the ability to exploit every sensing instead of only those taken



at certain reference points or such sensor readings identifying pre-de�ned

landmarks, such as doors, openings or junction types. By using raw sensory

information arbitrary features that are seen by the sensors are exploited. Fur-

thermore, the fast sensor model allows the direct integration of new readings

without constructing local maps of the environment. Finally, the increased

number of parameters in the discrete state space results in more accurate rep-

resentations of the position probability density than obtained with Kalman

�lters.

3 Position tracking with position probability grids

The position probability grid approach [3] initially has been designed to es-

timate the global position of a mobile robot in its environment. The basic

idea of this approach is to provide a discrete approximation of the position

probability density function for the given environment. A position probability

grid is a three-dimensional array containing in each �eld the probability that

this �eld refers to the current position and orientation of the robot. For a

grid �eld x this value is obtained by repeatedly �ring the robot's sensors and

accumulating in x the likelihoods of the sensed values supposed the center of

x currently is the position of the robot in the environment.

p(pos(x) | s  ... s  )x

pos
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Figure 1. Transformation of grid coordinates into real world coordinates

Whenever the global position of the robot is uniquely determined, the

huge state space of the estimation problem can be reduced to a small cube

P centered around the robot's estimated position. In this case, tracking the

robot's position is equivalent to estimating a function pos transforming the

coordinates of the cells x in P to the corresponding coordinates pos(x) in the

environment. This mapping is updated whenever new input is obtained from

the wheel encoders or the other sensors of the robot:



1. The coordinate transformation pos is updated according to the move-

ments measured by the wheel encoders of the robot since the last update.

2. After each integration of a sensor input, the cell x containing the maxi-

mum probability within P is regarded as referring to the current position

of the robot. If necessary, the cells in P are shifted such that the cell with

the maximum probability becomes the center of P . The transformation

pos is adopted accordingly.

3.1 Integrating sensor readings of proximity sensors

To update P given new sensory input sn we apply the well-known Bayesian

update formula. We compute the likelihood p(s j pos(x) ^ m) that s is ob-

tained given the robot is in position pos(x) in the environment, where m is a

model of this environment. This likelihood is combined with the probability

in x, thus obtaining a new probability that the robot at position pos(x).

Suppose p(x j s1 ^ : : : ^ sn�1 ^ m) is the (posterior) probability that

pos(x) is the current position of the robot, given m and the sensor readings

s1; : : : ; sn�1. Then the probability of x referring to the current position of

the robot given new sensory input sn is de�ned as

p(x j s1 ^ : : : ^ sn ^m) =
p(x j s1 ^ : : : ^ sn�1 ^m) � p(sn j pos(x) ^m)

�
(1)

where � =
P

x2P
p(x j s1 ^ : : : ^ sn�1 ^m) � p(sn j pos(x) ^m) is a normal-

izer ensuring that the position probabilities over all x sum up to 1 [13].

For an implementation of this approach Equation (1) de�nes the update

of P given new sensory input sn. If P [x] is the value of �eld x in P , then

all we have to do is to multiply P [x] by p(sn j pos(x) ^m) and to store the

result in x. After that, we have to normalize P . To initialize P [x] we use the

a priori probability p(pos(x) j m) of x referring to the position of the robot

given m.

Obviously, the term p(sn j pos(x) ^ m) is the crucial component of the

update equation. It speci�es the likelihood of observing sn at location pos(x),

for any choice of sn and x. In [3,10] p(sn j pos(x) ^ m) is computed at

runtime from a metric model of the environment and a model of sonar sensors.

[6,7,12,15] use topological representations of the location space and �rst scan

the sensor data for the presence or absence of certain landmarks. In these

approaches the probabilities p(sn j pos(x) ^m) are stored in a lookup table.

In Section 4 we show how the sensing probabilities can be computed o�-line

and compactly stored in a lookup table even for our geometric grid-based

approach.

3.2 Integrating the movements of the robot

To integrate the dead-reckoning information of the wheel encoders, we update

the coordinate transformation pos according to the measured movement �



which is equivalent to shifting P by �. In order to deal with possible dead

reckoning errors we use a general formula coming from the domain of Markov

chains. We regard each cell in P as one possible state of the robot, and

determine a state transition probability p(x j ~x^�) for each pair x, ~x of cells

in P , which depends on the trajectory taken by the robot and the time elapsed

since the previous update. Then we apply the following update formula:

P [x] :=
X
~x2P

P [~x] � p(x j ~x ^�) (2)

Additionally, we consider how the trajectory taken by the robot �ts into

the environment. A trajectory leading through free space leads to a higher

position probability than a trajectory leading through an obstacle. Therefore,

we multiply each �eld x in P with the a priory position probability p(pos(x) j
m). Assuming that the robot does not leave the environmental model m, the

update formula is

P [x] :=

�
� � P [x] � p(pos(x) j m) if pos(x) 2 m

0 otherwise
(3)

where � again is a normalizing constant. To estimate the a priori probability

p(pos(x) j m) that the robot is at position pos(x), we use an occupancy

probability map o of the environment [11,10], which in our case is computed

from m. We assume that p(pos(x) j m) directly depends on the occupancy

probability o(pos(x)) of the �eld pos(x) in o:

p(pos(x) j m) =
1� o(pos(x))P
~x2o

(1� o(~x))
(4)

4 A fast sensor model for proximity sensors

To compute the likelihood p(s j x ^ m) that a sensor reading s is received

given a position x we analyze the model m of the environment. Since this

likelihood has to be estimated for each possible position x of the robot, the

necessary computation time has a high impact on the e�ciency of the overall

approach.

In [3] we applied an approach similar to Moravec's [10] for estimating

the probability that a sensor measures a certain distance. One disadvantage

of this approach, however, lies in its computational complexity. For each

location x one has to compute a generally not Gaussian probability density

function over a discrete set of possible distances measured by the sensor.

For an environment of 15 � 15m2, a discretization of 15 � 15cm2, and an

angular resolution of 1 degree, the state space of the robot contains already

3:600:000 states. Consequently, representing the complete densities for all

possible states would by far exceed the memory of typical computers and

especially such mobile robots generally are equipped with.
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Figure 2. Distances measured by the

robot

Figure 3. Approximation of the

measured data

The key idea of our approach is to use a simpli�ed sensor model which

allows us to compute the likelihood of a proximity sensing solely given the

distance to the next obstacle in the sensing direction. This sensor model is

based on the following observations. First, if an obstacle is detected by the

sensor then the measured distance is generally normally distributed around

the exact distance to the object. Second, because of the limited accuracy of

the sensors and the world models, there is a small chance for any distance

to be perceived by the sensor. Finally, there is an additional probability that

the beam is absorbed or completely re
ected, which results in a maximum

range measurement. Figure 2 shows the probability density of measuring a

distance d1 given an expected distance d2 and justi�es these assumptions.

This function was obtained from approximately 190.000 sonar sensings in

di�erent environments. Figure 3 shows the density obtained by adapting our

model to these data.

Given this model, it su�ces to store for each possible state of the robot

the distance which is expected to be measured by the sensor. These expected

distances can be computed o�-line given metric representations of the envi-

ronment. Because of a compact representation of the expected distances in

a table only two lookup operations are necessary to compute the likelihood

of a given sensing at runtime. Although this sensor model, in contrast to the

original model introduced by Moravec and Elfes [10], has only a small number

of parameters, we obtained a signi�cant speed up which results in a better

positioning performance for global localization as well as position tracking.

In [4] we successfully utilized this model even for active self-localization of

mobile robots.

5 Experimental results

The grid-based tracking technique described above has been implemented and

extensively tested. The current system is able to interpret sensor readings of

ultrasonic sensors and match them with occupancy probability grid maps.

The experiments described in this section were carried out with our mobile



Figure 4. The mobile robot RHINO Figure 5. RHINO's sister Amelia

robot RHINO [2,17] (see Figure 4). as well as Amelia (see Figure 5) which

is one of the mobile robots in the mobile robot laboratory of the computer

science department of the Carnegie Mellon University. Both robots are B21

robots manufactured by Real World Interface Inc. They are equipped with a

ring of 24 Ultrasonic sensors, each having a cone of 15 deg. Throughout the

experiments we used a position probability grid of 15 � 15� 15 �elds, each

15cm�15cm�1deg in size. The integration of a sweep of all 24 sensors takes

about 0.2 seconds on a Pentium 120 computer.

5.1 Position tracking in large environments

As a complex example we used a typical run of the mobile robot Amelia

in the Wean Hall of the Carnegie Mellon University. Figure 6 shows the

map of the environment as well as Amelia's trajectory as measured by the

wheel-encoders. The size of the environment is a about 75� 35m2, and the

length of the trajectory is over 200m. The starting point is in the northern

corridor facing east. As can be seen in the �gure the error of the orientation

permanently increases up to a value of more than 30 degree. Obviously the

model of the environment would be useless after short time if the position

tracking would rely on the wheel encoders only.

Figure 7 shows the corrected trajectory of the robot computed with our

position probability grid approach based on the information coming from the

wheel encoders and the 24 ultrasonic sensors. The likelihoods of the sonar

measurements were computed by matching them with the displayed map.

At this point it should be noted, that this map is very approximative as it

only represents an outline of the environment. For example, the hallway in

the south-west of the Wean Hall contains a cafeteria with two bars as well

as tables and chairs. Furthermore, the corridors contain several objects not

included in the map such as thrash bins, information boards etc. Finally, the

state of doors was not represented correctly by the map, and there were many

people which walked through the environment and additionally produced

unexpected readings. Nevertheless, our approach is able to reliably keep track

of the robot's position.



Figure 6. Trajectory measured by the wheel-encoders

Figure 7. Corrected path

Figure 8 illustrates an example position probability grid. The grid shows

the position probability distribution of the robot in a corridor. The di�erent

layers represent the position probabilities for 9 orientations. The layers are

marked with the deviation of the orientation from the current orientation.

Each layer represents a 225 � 225cm2 area centered around the currently

estimated position of the robot. For simplicity only 9 of the 15 orientations

are plotted. Notice that the maximal value lies in the center of the cube.

5.2 Accuracy of the approach

To demonstrate the accuracy of the approach we performed 8 di�erent runs

with our mobile robot RHINO in a part of our department which has a s size

of 20� 25m2. In all theses runs shown in Figure 9 the robot's starting posi-

tion was in the southern o�ce. We steered RHINO on di�erent trajectories

through the corridor and measured the �nal position in the northern o�ce.

In this experiment we used only 12 ultrasonic sensors. As in the previous
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in eight test runs

experiment the side length of one grid cell was 15cm. The average distance

between the estimated and the measured position of the robot was less than

the resolution of the grid. This shows that the position of the robot can be

tracked accurately even if noisy sensors are used.

6 Discussion

In this paper we presented a fast grid-based technique for tracking a mobile

robot's position in a known environment. The advantage of this technique is

the ability to deal with noisy sensors (e.g. ultrasonic sensors) and approxi-

mative environmental models, and to integrate sensor readings from di�erent

types of sensors over time. Based on a fast and adaptable sensor model the

approach quickly integrates new sensory input. Because it directly uses the

proximity information coming from the sensors, it is able to exploit arbitrary

features of the environment which are visible by the sensors.

Our technique has been implemented and tested in several complex real-

world environments. The experiments presented here demonstrate the ro-

bustness of this method in tracking the position of a mobile robot. As the

experiment in the over 2000m2 wide o�ce environment shows, trajectories

longer than 200m are tracked successfully even if only approximative models

are given. Due to the fast sensor model, the evaluation of a complete sweep

consisting of 24 ultrasonic sensors measurements into a grid consisting of

more than 3000 cells takes about 0.2 seconds on a Pentium 120 computer,

which turned out to be su�cient for a reliable on-line tracking of the robot's

position.

An interesting question concerns the relation of the position probabil-

ity grid technique to Kalman �lters [9,16]. The di�erence between both ap-

proaches lies in the approximation of the position probability density func-

tion. Whereas our method provides a discrete approximation of this function,



Kalman �lters generally approximate the overall distribution by a Gaussian

density function. There are di�erent situations which cannot be represented

by single Gaussian distributions. Consider a situation where the robot is close

to a wall or another kind of obstacle. In Figure 10, the robot is in corridor

and in front of a pillar. This situation leads to a non-Gaussian distribution

Figure 10. Trajectory of the robot Figure 11. Resulting density

of the position probability. As illustrated in Figure 11 (more likely positions

are darker) our technique adequately represents that the robot cannot be at

the same position as the pillar. A similar situation is given when the robot is

close to a wall. The resulting density is non-Gaussian, because the robot is

more likely in the corridor than in the wall. Thus, a Kalman �lter tends to

shift the position estimate to the center of the corridor, which is obviously

wrong. On the contrary, our approach is able to deal with such situations

accordingly (see Figure 11).

Despite these encouraging results, there are further warrants for future

research. The most important question concerns the integration of global

position estimation and position tracking. In our experiments we sometimes

observed a failure of our tracking technique, if the robot was in a large hallway

for a long time. In such situations the accumulated dead reckoning errors

cannot be corrected due to the lack of features detectable by the proximity

sensors. To deal with such cases, we are currently working on a combination

of this fast tracking approach with our global position estimation technique

described in [3].
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