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Abstract— This paper proposes a hybrid approach to
the problem of collision avoidance for indoor mobile robots.
The �DWA (short for: model-based dynamic window ap-
proach) integrates sensor data from various sensors with
information extracted from a map of the environment, to
generate collision-free motion. A novel integration rule en-
sures that with high likelihood, the robot avoids collisions
with obstacles not detectable with its sensors, even if it is
uncertain about its position. The approach was recently im-
plemented and tested extensively as part of an installation,
in which a mobile robot gave interactive tours to visitors of
the “Deutsches Museum Bonn.” Here our approach was es-
sential for the success of the entire mission, because a large
number of ill-shaped obstacles prohibited the use of purely
sensor-based methods for collision avoidance.

I. INTRODUCTION

In order to operate safely in populated environments, many suc-
cessful mobile robot systems rely on fast, sensor-based colli-
sion avoidance modules to control the robot (see e.g. [12, 2,
7, 16, 11, 9]). The predominant paradigm of these approaches
is strictly sensor-based: Sensor readings are continuously ana-
lyzed to determine collision-free motion.

Unfortunately, the sensor-based paradigm has important lim-
itations. If the environment is complex, it might be difficult
to equip a robot with a sensor suite capable of detecting ar-
bitrary obstacles. For example, if the environment possesses
large obstacles made of glass (such as in our testing environ-
ment, see below), light-based sensors will not be able to detect
them and even sound-based sensors such as sonars usually have
severe problems due to specular reflections, which often occur
at smooth surfaces such as glass. The severity of the problem
increases with the speed of the robot, as obstacles have to be
detected early enough to allow the robot to decelerate safely.

In a recent attempt to move away from office-type environ-
ments into more difficult ones, we found the problem of unde-
tectable obstacles to be a major obstacle in the way of success-
ful mobile robot navigation. In particular, we recently installed
our mobile robot RHINO [3, 19] in the Deutsches Museum
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Fig. 1. RHINO, as it gives a tour through the museum. The
label o3 points to a hard-to-detect obstacle.

Bonn (German Museum Bonn), where it served the function
of an interactive robotic tour-guide. The robot’s task was to
engage visitors and guide them through the exhibition, provid-
ing verbal explanations for the various exhibits (see Figure 1).
What made this task specifically challenging was the nature
of the environment. While RHINO is equipped with five dif-
ferent sensor systems (see Figure 2), various obstacles were
virtually undetectable for the robot, such as: glass cages, put
up to protect exhibits (the label o1 marks such a barely visi-
ble cage in Figure 2), metal bars at various heights (see label
o2 in Figure 2), small socles or metal plates on which exhibits
were placed (e.g., o3 in Figure 1), just to name some. For the
museum tour-guide application to be successful, the robot had
to move at walking speed. Avoiding collisions was of uttermost
importance due to the nature of the “obstacles” in a museum.
The reader may notice that similar conditions are expected to
be found in private homes and various other anticipated task
environments for future service robots.

This paper proposes a hybrid approach to collision avoid-
ance, called �DWA (short for model-based dynamic window
approach), which integrates our strictly sensor-based dynamic
window approach [7], with a map of the environment. The
location of the map (and hence the obstacles) relative to the
robot is estimated using a metric version of the recently pro-
posed Markov-localization algorithm, an algorithm that has
been shown to be extremely robust and reliable for position es-
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Fig. 2. Sensors of the robot RHINO. The label o1 highlights
an almost invisible glass surface, and the label o2 shows a

metal console which is just below the robot’s sonar sensors.

timation in populated environments [15, 17, 10, 5, 8]. Markov-
localization is a probabilistic algorithm that outputs a proba-
bility density function over all possible positions, rather than a
single position. A key feature of Markov localization is that it
can represent ambiguities and handle uncertainty in a mathe-
matically consistent and elegant way.

�DWA uses a conservative, probabilistic integration rule to
provide maximum safety in situations where the robot is un-
certain about its actual position. If the robot knows its position
with absolute certainty, �DWA degrades to the obvious exten-
sion of DWA using a map; however, if the robot is unable to dis-
ambiguate its position (which typically occurs in crowded en-
vironments),�DWA is guaranteed to avoid collisions with high
(e.g. 99%) probability. �DWA has been successfully tested for
more than 18.5 km in a crowded museum, where it has been
essential for RHINO’s safety, as elaborated further in the ex-
perimental results section of this paper.

The remainder of this paper reviews the DWA approach to
collision avoidance, as previously used successfully for vari-
ous applications within office environments [7, 19]. It then
describes our implementation of Markov localization, which
differs from previous implementations in that (1) it estimates
the robot’s location in fine-grained metric coordinates and not
in coarse-grained topological entities—which is crucial for the
approach described in this paper–, and (2) it does not rely on
specific geometric properties of the environment (previous ap-
proaches required entities such as hallways, openings, and so
on, most of which did not exist in the Deutsches Museum). Fi-
nally, it describes the �DWA approach for avoiding collisions
by generating virtual sensor readings using a geometric map
of the environment. The paper concludes with a description of
some experimental results and a discussion of the implications
and limitations of this research.

II. THE DYNAMIC WINDOW APPROACH

The Dynamic Window Approach (in short: DWA) has recently
been proposed for collision avoidance for high-speed (up to .95
cm/sec) indoor navigation [7, 6, 16]. It differs from the major-
ity of work in the field in that it does not consider the robot
a kinematic entity that can move in arbitrary directions at any
point in time. Instead, DWA models robots as dynamic objects,
paying specific attention to the dynamic constraints imposed by
the inertia of a fast moving system. Here we will only review
the key ideas of the algorithm; see [7] for more details and var-
ious experimental results.

The key idea in DWA is to choose control in the velocity
space of the robot. In DWA, the velocity space of synchro-drive
robots is parameterized by the translational and rotational ve-
locity. As shown in [7], robots with fixed velocity (no torque)
always travel on a circular trajectory (whose diameter is de-
termined by the ratio of translational and rotational velocity).
Motor current (torque) change the velocity of the robot and, as
a consequence, its motion direction.

In regular time intervals (e.g., every .25 seconds), DWA
chooses velocities so as to best obey various hard and soft con-
straints:

Hard constraints are vital for a robot’s safety and are im-
posed by torque limits. For example, the maximum torque in-
duces a maximum change of velocity, which severely limits the
space of possible control (e.g., a fast moving robot cannot take
a 90 degree turn). Hard constraints are also imposed if a veloc-
ity would inevitably lead to a collision with an obstacle. Hard
constraints rule out certain controls from further consideration.
Notice that hard constraints do not specify preferences among
the different control options; neither do they take into account
the robot’s task.

Soft constraints express preferences for both the motion di-
rection and the velocity of the robot. DWA utilizes three dif-
ferent soft constraints, which measure (1) progress towards the
goal, (2) forward velocity, and (3) forward clearance. If com-
bined in the right ratio, these criteria lead to goal-directed be-
havior with freedom to graciously move around obstacles.

In previous experiments [7], DWA was found to yield safe
robot navigation in various indoor office environments, at
speeds of up to 95 cm/sec, and using robots equipped with
sonar sensors, laser range finders, or both. In fact, the DWA
approach has been adopted by a leading mobile robot manufac-
turer, Real World Interface, Inc., as their sole collision avoid-
ance package for their B14/B21 robots. It is now in use at
more than 15 academic institutions. As noticed above, DWA
is purely sensor-based. �DWA extends DWA by a map-based
component, as described in turn.

III. METRIC MARKOV LOCALIZATION

The central problem in integrating map-based information into
collision avoidance is the problem of localization, which is



the problem of determining a robot’s position relative to its
map. While many approaches for mobile robot localization
have been proposed in the literature (see [1] for a compre-
hensive overview), the majority of approaches is too brittle
and/or depends on specific assumptions/modifications of the
robot’s environment. Recently, Markov localization has been
proposed and implemented with considerable success by sev-
eral groups [15, 17, 10, 5, 8]. Markov localization uses prob-
abilistic data structures to estimate a robot’s position, enabling
it to deal with perceptual limitations, uncertainty and ambi-
guity in a principal and mathematically elegant way. For ex-
ample, if past sensor readings are insufficient to uniquely de-
termine the robot’s location, Markov localization assigns high
likelihood to multiple locations. As a result, this family of ap-
proaches exhibit improved level of robustness, as demonstrated
in [5, 19, 13].

Markov localization differs from most traditional ap-
proaches in that the robot does not represent its internal belief
by just a single position. Instead, it represents all possible po-
sitions, where each position is weighted by a likelihood factor.
To see, let l denote a location in x-y-� space where x and y are
Cartesian coordinates and � is the robot’s orientation (all rela-
tive to the map). Markov localization maintains a probability
density function, denoted by P , that models the robot’s belief
of being at the different positions in the environment. Initially,
the position of the robot relative to its map might be entirely un-
known. In such cases P is initialized uniformly. As the robot
senses, it updates P using the following equations, which are
easily derived using Bayes rule or Markov chain theory (see [5]
for a derivation):

P (l)  �
P (s j l) P (l)

P (s)
(1)

where P (s) is a normalizer that ensures that the probabilities
P (l) over all l sum up to 1. Here s denotes a sensor measure-
ment and P (s j l) is the probability of measuring s at location
l. In �DWA, the sensors are assumed to measure proximity
and s are proximity measurements (obtained from laser range
finders and/or sonar sensors). P (s j l) is obtained using the
map and a simplistic sensor model, which is described in more
detail in [4].

When the robot moves, P is convolved using a probabilistic
model of robot motion:

P (l)  �
X

l0

P (l j u; l0) P (l0) (2)

where P (l j u; l0) denotes the probability that the robot is at l
upon executing control u at position l

0. In �DWA, P (l j u; l0)
is implemented by a bounded-Gaussian distribution centered at
the geometrically expected position. These two equations are
sufficient to refine a robot’s belief upon sensing and moving;
they are at the core of the various implementations of Markov
localization.

In most existing implementations, P is represented dis-
cretely, where each location corresponds to a node in a
pre-supplied coarse-grained, topological map of the environ-
ment [15, 17, 10, 8]. �DWA employs a geometric variant of
Markov localization. More specifically, P is represented by a
fine-grained, regularly spaced grid, where the spatial resolution
is usually between 10 and 15 cm and the angular resolution is
usually 1 or 2 degrees. The advantage of such a high resolution
is obvious: To avoid collisions reliably, the robot needs highly
accurate position information.

At first glance, one might be inclined to think that a dis-
advantage of the geometric approach lies in its computational
complexity: An environment of size 30� 30 m2 with a spatial
resolution of 15 cm and an angular resolution of 2� possesses
approximately 7:2 � 106 discrete entities. While this is gener-
ally true, a variety of additional techniques has been developed
in our previous work to update such large tables in real-time,
while the robot is in motion. Among these techniques, two
are most essential: (1) The various conditional densities are
stored as fast look-up tables whose access is extremely effi-
cient, and (2) instead of computing probabilities for all loca-
tions, the robot selectively updates only the most likely ones.
These modifications sped up the basic algorithm by several or-
ders of magnitude, making it possible to estimate the robot’s
position in real-time, while the robot is in motion. In extensive
experimental tests, we did not observe evidence that these mod-
ifications impact the robot’s behavior in any noticeable way.
Basically, most of the time the likelihood of almost all posi-
tions is so close to zero, that not updating them has almost no
effect on the resulting belief; yet it reduces the computational
complexity by orders of magnitude.

Figure 3 shows an outline of the exhibition in the Deutsches
Museum Bonn where RHINO served as a tour-guide. The size
of the fraction of the museum where RHINO gave tours was
approximately 20� 20 m2. The figure also shows the position
probabilities P during global localization (darker positions are
more likely). Several local maxima in the distribution show that
the position of the robot is not yet uniquely determined. During
localization, the certainty of the position estimation increases
and the density typically concentrates on the real position of the
robot (see Figure 4). As noticed above, all computation is car-
ried out in real-time, while the robot moves. Often, each sensor
scan is processed in less than .1 seconds, using a 200MHz Intel
PentiumPro. Localizing the robot from scratch (without telling
it where it is) requires less than two minutes.

IV. MODEL-BASED DWA

The key idea of the model-based dynamic window approach
(�DWA) is the integration of real and “virtual” sensor data, de-
rived from a map of the environment. To translate the map into
local, robot coordinates, the robot must know where it is. If
the robot always knew its position with absolute certainty, in-
tegrating maps into sensor-based collision avoidance would be
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straightforward. Markov localization, however, does not pro-
duce a single estimate; instead, it provides a probability density
function over all possible robot positions that reflect the robot’s
belief of actually being there. If the robot is not quite certain
about its position, the probability density function might be
multi-modal with peaks at the most plausible locations. This
raises the important question as to how to best synthesize the
“virtual” sensor data. On the one hand, one wants to ensure
safe operation even with high probability. On the other hand,
one does not want to restrict the robot’s freedom too much,
even when it is uncertain as to where in the world it is.

In the following, we introduce a probabilistic representa-
tion of a perfect virtual sensor “mounted” at angle � relative
to the robot’s coordinate system. Let d�(l) be the distance to
the nearest obstacle when the robot’s position (in x-y-� space)
is l. d�(l) can be computed using a map.1 Furthermore, let
X� denote a random variable that models a measurement of
such a virtual sensor. Obviously, if l is known the probability
P (X� = d j l) that this sensor returns a value d � 0 is 1 if
d = d�(l) and 0 otherwise.
P (X� = d j l) assumes knowledge of the robot’s position.

Suppose the position l of the robot is unknown; instead, one is
given a belief P (l) about its current position. Then, the proba-
bility that the sensor returns a value d and the probability that
the sensor returns a value larger than d is given by Equations
(3) and (4), respectively.

P (X� = d) =
X

l

P (X� = d j l) P (l) (3)

P (X� > d) =
X

di>d

P (X� = di) (4)

Figure 5 depicts the density of the measurement X� in the two
situations shown in Figures 3 and 4: one, in which the robot

1In fact, in our implementation d�(l) is computed in advance for all possi-
ble l and � and stored in a look-up table, which maximizes run-time efficiency.
See [4] for a more detailed discussion of efficient retrieval.

does not know its position well, and one where it is fairly cer-
tain about its position. As can easily be seen, when the robot
is uncertain about its position, X� is spread over many dif-
ferent measurements (solid line). If the robot knows its po-
sition well, the distribution of X� is centered around a sin-
gle distance (dashed line). In both cases, however, the robot
assigns non-zero likelihood to extremely short measurements,
since Markov localization never excludes a position with abso-
lute certainty.
�DWA selects the “virtual” measurements using a conserva-

tive rule: The virtual measurement of a sensor is the largest
distance d

�, such that with probability .99 a distance larger
than d

� is measured:

d
� = maxfd j P (X� > d) � :99g (5)

The vertical lines in Figure 5 illustrate this value for the cor-
responding density (imagine the robot being on the left side of
each plot). By conservatively picking a sensor value that, with
high probability, is shorter than the proximity of the obstacle,
the robot is likely to avoid a collision even in the face of uncer-
tainty. Notice that our approach provides maximum freedom
under the constraints of 1% error probability.2

For collision avoidance, the virtual sensor has to be fired
frequently (e.g. every 50 cm of robot motion) into all direc-
tions. In our implementation of �DWA we have modified the
basic code to fulfill this task in real-time. The most impor-
tant modification concerns the computation of the density of
the measurement X�: instead of integrating over all locations
l in Eq. (3), only a subset of the all possible locations is con-
sidered, including only cells with probability above a threshold.
The threshold is set such that these cells in most cases represent
more than 99% of the position probabilities. Our simplification
is somewhat justified by the observation that in practice, P is

2Alternative schemes, such as picking the minimum distance among those
locations l whose likelihood is above a certain threshold are not guaranteed to
yield the same probabilistic bound in the likelihood of failure.



usually quickly centered on a small number of hypotheses and
approximately zero anywhere. In the worst case, one can show
that this modification yields an additional 1% error probability,
lowering the probabilistic safety bound to 98%.

V. EXPERIMENTAL RESULTS

A. Museum Tour-Guide Project

�DWA was tested extensively in a recent installation in the
Deutsches Museum Bonn, where the mobile robot RHINO was
deployed as an interactive tour-guide robot. Here the robot’s
task was to engage visitors and to guide them through the mu-
seum, providing verbal explanations for the various exhibits.
Safe navigation was of uttermost importance, since RHINO is
strong and heavy enough to severely violate children, and since
some of the exhibits were unique or extremely expensive.

Several factors contributed to the difficulty of the problem:

1. Invisible obstacles. As noticed in the introduction to his
paper, various obstacles were basically “invisible” to the
robot, despite the fact that our robot applied four differ-
ent sensor systems for obstacle detection (c.f. Figure 2).

2. Speed requirements. To be “interesting” to people, the
robot had to navigate at least at walking speed.

3. Dynamic obstacles. Large crowds often blocked much
of the free space, and they often challenged the robot in
various ways. Operating on a pre-planned, static path
was not feasible. Instead, the robot had to continuously
assess the situation and plan its motion accordingly.

4. Sensor blockage. The large number of people also made
accurate localization a difficult and challenging problem,
since they often blocked RHINO’s sensors for extended
durations of time (see Figure 6).

5. Lack of features. The problem of localization was par-
ticularly difficult in the center portion of the environ-
ment, a large open space that mostly lacked features nec-
essary to determine the robot’s position.

Avoiding collisions was clearly more difficult than in any of the
various office environments in which our software was previ-
ously developed and tested.

During a total of 47 hours within six days of robot naviga-
tion, �DWA proved to be highly reliable, and was clearly es-
sential for the success of the entire system. Figure 6 shows a
map of the museum. Here grayly shaded areas indicate obsta-
cles that can only hardly (or even not at all) be perceived using
the robot’s sensors. Shown also is a path that the robot took.
This path is approximately 1.6 km long, and captures 4.5 hours
of robot motion. When the robot was not explaining an exhibit,
it moved at an average speed of 36.6 cm/sec. In crowded situ-
ations, the average velocity was often lower; however, at times

the robot moved at speeds of 70 cm/sec or higher for extended
durations of time. The results of the entire project are sum-
marized in Table 1: In the six days of the museum tour-guide
project RHINO traveled more than 18.6 km. Whenever possi-
ble, it chose its maximum speed of 80 cm/sec. Although the
robot’s path was frequently blocked by visitors, RHINO kept
an average speed of 36.6 cm/sec when traveling from one ex-
hibit to another. More than 2,000 real visitors and over 600
“virtual” Web-based visitors3 were guided by RHINO, some
of whom followed the robot for more than an hour. RHINO
fulfilled 2,400 tour requests by real and virtual visitors of the
museum. Only six requests were not fulfilled (mostly due to
scheduled battery changes at the time of the request), which
lead to an overall success-rate of 99:75%.

This project demonstrates the reliability of �DWA. During
the entire project, the robot never collided with any of the vis-
itors. We counted a total of six collisions with exhibits in the
museum, all of which were minor and neither of them caused
any damage. Out of those six collisions, only one was di-
rectly related to �DWA: Here an “invisible” obstacle was ap-
proximately 20 cm closer than �DWA had determined, caus-
ing the robot to touch the metal platform of one exhibit (o3 in
Figure 1). This incident was preceded by a failure of a ma-
jor sensor system which introduced error into the localization
(the duration of this failure is not known to us, but we actu-
ally observed the failure before the collision occurred). Three
other collisions were caused by hardware problems (such as
low battery power). The remaining two collisions were caused
by flaws in the hand-crafted map, which initially lacked some
essential obstacle information.

B. The Role of Probabilistic Integration

A key aspect of �DWA is its ability to generate virtual sensor
readings even if the robot does not know where it is (c.f., Equa-
tions (4) and (5)). To illustrate the importance of considering
the entire distribution P instead of just a single estimate, we
empirically compared �DWA to an approach which only con-
siders the most likely robot position (argmaxl P (l)) to generate
virtual sensor readings. This approach can be thought of as the
logical counterpart of �DWA if the localization component is
not probabilistic and just maintains a single estimate.

Our experiments indicate that �DWA’s integration is safer
when the robot is not certain about its location. The upper part
of Figure 9 shows a map of one of our testing environments,
a mostly symmetric office environment in our university build-
ing. The situation shown there is one where the robot has not
been able to uniquely determine its location.

While the robot is truly at the location labeled a, it assigns
slightly higher probability to the location labeled b. Such sit-
uations often occur in symmetric environments, specifically if
the robot is not told its initial position (as was the case in this

3http://www.cs.uni-bonn.de/˜rhino/tourguide/



RHINO

o3

Hours of operation 47

Number of visitors > 2000

Kilometers traveled 18.6

Maximal speed of travel > 80 cm/sec

Average speed during motion 36.6

Number of collisions 6

Number of requests 2400

Percentage of completed requests 99.75

Fig. 6. A typical situation: Rhino seeks
its way through the crowd.

Fig. 7. Path of the robot during a
single 4.5 hour run (1.6 km).

Tab. 1. Some key figures from the
museum tour-guide project.

b
a

Fig. 9. Ambiguous situation in a corridor.

particular experiment). Here the advantage of �DWA is obvi-
ous: While the maximum likelihood approach considers exclu-
sively location b when generating the virtual sensor readings,
�DWA takes both potential locations into account, thus picking
the most conservative virtual sensor reading. To see, consider
the Figure 10. Here the dashed lines shows P (d) when aver-
aged over all locations (as in �DWA), whereas the solid line
shows P (d) determined on the most likely estimate only. As
a result, the maximum likelihood approach will falsely gener-
ate long reading, whereas �DWA will generate a reading that
prevents the robot from colliding. For �DWA to err, the robot
has to assign less than 2% probability to the correct location—
something that we observed only once, throughout all our ex-
periments.
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Fig. 10. Distance probabilities in an ambiguous situation.

VI. DISCUSSION

This paper described a hybrid approach to collision avoidance,
called �DWA, which integrates both sensor data and data from
a previously supplied map into collision avoidance. This ap-
proach combines the best of both worlds: it reacts adequately to
unexpected obstacles (such as humans), but it also avoids col-
lisions with undetectable obstacles whose locations are known.
It has been tested extensively in various densely populated en-
vironments (including a museum), in which a large number of
obstacles (exhibits) were impossible to detect with the robot’s
sensors.

The work presented here has significant impact on future
low-cost robot applications. The ability to integrate map-based
information into collision avoidance, even if the robot is not
certain about its actual location, reduces some of the burden to
equip robots with potentially high-cost sensors. For example,
in (ongoing) experiments using data recorded in the museum,
we have found strong evidence that sonar sensors alone would
have been sufficient for localization, and thus for collision
avoidance. Such a finding suggests the feasibility of installing
robots that only use sonar sensors (instead of the much more
expensive laser sensors) in environments as complex and un-
structured as this specific museum. Hybrid approaches to colli-
sion avoidance, which react to sensor readings but also consider
models of the environment, have not received much attention in
the literature. However, we believe that many environments re-
quire such hybrid approaches, of which the Deutsches Museum
is certainly one.

The current approach also suffers limitations, which mainly
arise from the need of an accurate metric map. In the partic-
ular experiments reported here, the map was constructed man-
ually, using measuring tape. In most robot applications such
an approach is justifiable by the fact that the installation costs
(i.e., acquiring a map) are small compared to the day-to-day
operational costs. However, in some environments, such as
private homes, the need for a metric map might make it dif-
ficult to apply the method described here. Recent research on



map acquisition [19, 18] provides a way to acquire the map
autonomously. While the real-time requirements for reactive
collision avoidance prohibit the use of time-consuming sensor-
interpretation techniques such as complex visual scene inter-
pretation, such techniques can be applied to improve the model
of the environment. Of course, methods for map acquisition
model only those obstacles that can be detected by the robot’s
sensors. It appears to be feasible, however, to “label” either
undetectable obstacles or even forbidden areas by driving the
robot (manually) along the boundary of its legal operational
space. With such an approach, �DWA should be applicable
even in many domains were up-front map information is un-
available. The feasibility of this approach is subject to future
research.
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