
Integrating Topological and Metric Maps for Mobile Robot Navigation:
A Statistical Approach

Sebastian Thrun1 Jens-Steffen Gutmann2 Dieter Fox3 Wolfram Burgard3 Benjamin J. Kuipers4

1Computer Science Department 2Institut für Informatik 3Institut für Informatik III 4Computer Science Department
Carnegie Mellon University Universit¨at Freiburg University of Bonn University of Texas at Austin

Pittsburgh, PA 15213 D-79110 Freiburg, Germany D-53117 Bonn, Germany Austin, TX 78712

Abstract

The problem of concurrent mapping and localization has re-
ceived considerable attention in the mobile robotics commu-
nity. Existing approachescan largely be grouped into two dis-
tinct paradigms: topological and metric. This paper proposes
a method that integrates both. It poses the mappingproblem as
a statistical maximum likelihood problem, and devises an ef-
ficient algorithm for search in likelihood space. It presents an
novel mapping algorithm that integrates two phases: a topo-
logical and a metric mapping phase. The topological mapping
phasesolves a global position alignment problem between po-
tentially indistinguishable, significant places. The subsequent
metric mapping phase produces a fine-grained metric map of
the environment in floating-point resolution. The approach
is demonstrated empirically to scale up to large, cyclic, and
highly ambiguous environments.

Introduction
Over the past two decades, the problem of building maps in
indoor environments has received significant attention in the
mobile robotics community. The problem of building maps is
the problem determining the location of certain entities, such
as landmarks or obstacles, in a global frame of reference. To
build a map of its environment, a robot must know where
it is. Since robot motion is inaccurate, constructing maps
of large indoor environments requires a robot to solve an
inherent concurrent localization problem.

As of to date, there exist two major paradigms for mobile
robot mapping:Metric and topological. Approaches in the
metric paradigmgenerate fine-grained, metric descriptions
of a robot’s environment (Moravec 1988; Lu & Milios 1997).
Approaches in thetopological paradigm, on the other hand,
generate coarse, graph-like descriptions of environments,
where nodes correspond to significant, easy-to-distinguish
places or landmarks, and arcs correspond to actions or action-
sequences that connect neighboring places (Matari´c 1990;
Dudek et al. 1991). Examples of metric and topological
methods are provided towards the end of this paper.

It has long been recognized (Chatila & Laumond 1985;
Kuipers & Byun 1991) that either paradigm alone, met-
ric or topological, has significant drawbacks. In principle,
topological maps should scale better than metric maps to
large-scale environments, because a coarse-grained, graph-
structured representation is much more compact than a dense

array, and more directly suited to problem-solving algo-
rithms (Kuipers & Byun 1991; Dudeket al. 1991). How-
ever, purely topological maps have difficulty distinguish-
ing adequately among different places, and have not, in
practice, been applied successfully to large environments.
Recent progress in metric mapping (Lu & Milios 1997;
Thrun 1998) has made it possible to build useful and ac-
curate metric maps of reasonably large-scale environments,
but memory and time complexity pose serious problems.

In this paper, we propose and evaluate a new algorithmthat
integrates the topologicaland metric approach. We show that
both the topological and the metric mapping problems can
be solved as different instances of a class of statistical es-
timation problems, in which a robot seeks to find the most
likely map from a set of observations and motion commands.
These estimation problems are solved by a variant of the EM
algorithm, which is an efficient hill-climbing method for
maximum likelihood estimation in high-dimensional spaces.
In the context of mapping, EM iterates two alternating steps:
alocalizationstep, in which the robot is localized using a pre-
viously computed map, and amapping step, which computes
the most likely map based on the previously pose estimates.

The statistical framework is the foundation for two algo-
rithmic phases, one that builds topological maps and one
that builds metric maps. Both components possess orthogo-
nal strengths and weaknesses. The topological map builder
is capable of solving global alignment problems that occur
in datasets with unbounded odometric error and perceptual
ambiguity. Its result, however, is only approximate, partially
because it ignores much of the sensor data. The metric ap-
proach, on the other hand, builds fine-grained metric maps
in floating-point resolution. However, it can only compen-
sate small odometric errors. By integrating both, topological
and metric mapping, the algorithm can build high-resolution
maps in large and highly ambiguous indoor environments.

Statistical Foundations

This paper poses the problem of mapping as a statisticalmax-
imum likelihood estimation problem(Thrun, Fox, & Burgard
1998). To generate a map, we assume that a robot is given a
stream of data, denoted

d = fo(1); u(1); o(2); u(2); : : : o(T�1); u(T ); o(T )g; (1)
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Figure 1: Basic probabilistic models: (a) Robot motion model.
Shown here is the accumulated uncertainty after moving 40 meter,
starting at a known pose. (b-c) Perceptual model. (b) shows a
map with two indistinguishable landmarks, and (c) displays the
uncertainty after sensing a landmark in 5 meter distance.

where o(t) stands for anobservationthat the robot made
at time t, andu(t) for an action command that the robot
executed between timet to time t + 1. T denotes the total
number of time steps in the data. Without loss of generality,
we assume that the data is an alternated sequence of actions
and observations.

In statistical terms, the problem of mapping is the prob-
lem of finding the most likely map given the data.Mapswill
be denoted bym = fmx;ygx;y. A map is an assignment
of “properties” mx;y to eachx-y-locations in the world.
In topological approaches to mapping, the properties-of-
interest are usually locations of landmarks (Chown, Kaplan,
& Kortenkamp 1995) or, alternatively, location of signifi-
cant places (Kuipers & Byun 1991; Choset 1996). Metric
approaches, on the other hand, usually use the location of ob-
stacles as properties-of-interest (Chatila & Laumond 1985;
Moravec 1988; Lu & Milios 1997).

Our approach assumes that the robot is given two basic,
probabilistic models, one that describes robot motion, and
one that models robot perception.

� The motion model, denotedP (�0ju; �), describes the
probability that the robot’s pose is� 0, if it previously exe-
cuted actionu at pose�. Here� is used to refer to a pose,
that is thex-y-location of a robot together with its head-
ing direction. Figure 1a illustrates the motion model, by
showing the probability distribution for� 0 upon executing
the action“go forward 40 meters.” Notice that in these
and other diagrams, poses are projected intox-y-space
(the heading direction is omitted).

� The perceptual model, denotedP (ojm; �), models the
likelihood of observingo in situations where both the
world m and the robot’s pose� are known. For low-
dimensional sensors such as proximity sensors, perceptual
models can readily be found in the literature (Burgardet
al. 1996; Moravec 1988). Figure 1b&c illustrates a per-
ceptual model for a robot that can detect landmarks and
that can measure, with some uncertainty, their relative ori-
entations and distances. Figure 1b shows an example map
m, in which the dark spots indicate the locations of two in-
distinguishable landmarks. Figure 1c plotsP (ojm; �) for
different poses�, for the specific observation that the robot
observed a landmark ahead in five meters distance. The
darker a pose, the more likely it is under this observation.

These three quantities—the datad, the motion model
P (�0ju; �), and the perceptual modelP (ojm; �)—form the
statistical basis of our approach.

The Map Likelihood Function
In statistical terms, the problem of mapping is the problem
of finding the most likely map given the data

m�

= argmax
m

P (mjd): (2)

The probabilityP (mjd) can be written as

P (mjd) =

Z
P (mj�; d) P (�jd) d�: (3)

Here the variable� denotes theset of all posesat times
1; 2; : : : ; T , that is,� := f�(1); : : : ; �(T )g, where�(t) denotes
the robot’s pose at timet. By virtue of Bayes rule, the
probabilityP (mj�; d) on the right hand side of Equation (3)
can be re-written as

P (mj�; d) =
P (djm; �) P (mj�)

P (dj�)
(4)

Based on the observation thato(t) at timet depends only on
the mapm and the corresponding location�(t), the first term
on the right hand side of Equation (4) can be transformed
into

P (djm; �) =

TY
t=1

P (o(t)jm; �(t)) (5)

Furthermore,P (mj�) = P (m) in Equation (4), since in
the absence of any data,m does not depend on�. P (m)

is the Bayesianprior over all maps, which henceforth will
be assumed to be uniformly distributed. Finally, the term
P (�jd) in Equation (3) can be re-written as

P (�jd) =

T�1Y
t=1

P (�(t+1)ju(t); �(t)) (6)

The latter transformation is based on the observation that the
robot’s pose�(t+1) depends only on the robot’s pose�(t) one
time step earlier and the actionu(t) executed there. Putting
all this together leads to the likelihood function

P (mjd) =

Z QT

t=1P (o
(t)jm; �(t)) P (m)

P (dj�)
T�1Y
t=1

P (�(t+1)ju(t); �(t)) d�: (7)

Since we are only interested in maximizingP (mjd), not in
computing an exact value, we can safely drop the constants
P (m) andP (dj�). The resulting expression,

argmax
m

Z TY
t=1

P (o(t)jm; �(t))

T�1Y
t=1

P (�(t+1)ju(t); �(t)) d�; (8)

is a function of the datad, the perceptual modelP (ojm; �),
and the motion modelP (�0ju; �). Maximizing this expres-
sion is equivalent to finding the most likely map.



Efficient Estimation
Unfortunately, computing (8) is computationally challeng-
ing. This is because finding the most likely map involves
search in the space of all maps. For the size environments
considered here, this space often has 106 dimensions or more
if crude approximations are used. To make matters worse,
the evaluation of a single map would require integrating over
all possible poses at all points in time, which for the datasets
considered in this paper would require integration over more
than 105 independent pose variables, each of which can take
108 values or so.

Fortunately, there exists an efficient and well-understood
technique for hill-climbing in likelihood space: theEM al-
gorithm (Dempster, Laird, & Rubin 1977), which in the
context of Hidden Markov Models is often referred to as
Baum-Welchor alpha-beta algorithm(Rabiner & Juang
1986). EM is a hill-climbing routine in likelihood space,
which alternates two steps, anexpectation step(E-step) and
a maximization step(M-step). In the context of robot map-
ping, these steps correspond roughly to a localization step
and a mapping step (see also (Koenig & Simmons 1996;
Shatkay & Kaelbling 1997)):

1. In the E-step, the robot computes probabilitiesP (�jm; d)
for the robot’s poses� at the various points in times, based
on the currently best available mapm (in the first iteration,
there will be no map).

2. In the M-step, the robot determines the most likely map
by maximizing argmaxm P (mj�; d), using the location
estimates computed in the E-step.

The E-step corresponds to a localization step with a fixed
map, whereas the M-step implements a mapping step which
operates under the assumption that the robot’s locations (or,
more precisely, probabilistic estimates thereof) are known.
Iterative application of both rules leads to a refinement of
both, the location estimates and the map. Our approach
is, thus, a hill-climbing procedure that does not provide a
guarantee of global optimality; given the complexity of the
problem, however, it is unclear whether a globally optimal
routine exists that is computationally tractable.

The E-Step
The E-step uses the current-best mapm along with the
data to compute probabilitiesP (�(t)jd;m) for the robot’s
poses at timest = 1; : : : ; T . With appropriate assumptions,
P (�(t)jd;m) can be expressed as the normalized product of
two terms

P (�(t)jd;m) = (9)

� P (�(t)jo(1); : : : ; o(t);m)| {z }
:=�(t)

P (�(t)ju(t+1); : : : ; o(T );m)| {z }
:=�(t)

Here� is a normalizers that ensure that the left-hand side of
Equation (9) sums up to one (see (Thrun, Fox, & Burgard
1998) for a mathematical derivation). Both terms,�(t) and
�(t), as defined in (9), are computed separately, where the
former is computed forward in time and the latter is computed
backwards in time. Notice that�(t) and�(t) are analogous
to those in the alpha-beta algorithm (Rabiner & Juang 1986).

The computation of the�-values is a version ofMarkov
localization, which has recently been used with great suc-
cess for robot localization inknownenvironments by various
researchers (Burgardet al. 1996; Kaelbling, Cassandra, &
Kurien 1996; Koenig & Simmons 1996; Nourbakhsh, Pow-
ers, & Birchfield 1995; Simmons & Koenig 1995). The�-
values add additional knowledge to the robot’s pose, typically
not captured in Markov-localization. They are, however, es-
sential for revising past belief based on sensor data that was
received later in time, which is a necessary prerequisite of
building large-scale maps.

Computing the �-Values: Initially, the robot is assumed
to be at the center of the global reference frame and�(1) is
given by a Dirac distribution centered at(0; 0; 0):

�(1) = P (�(1)jo(1);m) =

�
1; if �(1) = (0; 0; 0)
0; if �(1) 6= (0; 0; 0)

(10)

All other�(t) are computed recursively:

�(t) = � P (o(t)j�(t);m) P (�(t)jo(1); : : : ; u(t�1);m) (11)

where� is again a probabilistic normalizer. The rightmost
term of (11) can be transformed to

P (�(t)jo(1); : : : ; u(t�1);m)

=

Z
P (�(t)ju(t�1); �(t�1)

) �(t�1) d�(t�1) (12)

Substituting (12) into (11) yields a recursive rule for the
computation of all�(t) with boundary condition (10). See
(Thrun, Fox, & Burgard 1998) for a more detailed derivation.

Computing the �-Values: The computation of�(t) is
completely analogous but takes place backwards in time.
The initial �(T ), which expresses the probability that the
robot’s final pose is�, is uniformly distributed, since� (T )

does not depend on data. All other�-values are computed
in the following way:

�(t) = �

Z
P (�(t+1)ju(t); �(t))

P (o(t+1)j�(t+1);m) �(t+1) d�(t+1) (13)

The derivation of the equations are analogous to that of the
computation rule for�-values and can be found in (Thrun,
Fox, & Burgard 1998). The result of the E-step, the products
�(t)�(t), are estimates of the robot’s locations at the various
points in timet.

The M-Step
The M-step maximizesP (mj�; d), that is, in the M-step the
robot computes the most likely map based on the pose proba-
bilitiescomputed in the E-step. Generating maps withknown
robot poses, which is basically what the M-step amounts to,
has been studied extensively in the literature on mobile robot
mapping (see e.g., (Borenstein & Koren. 1991; Elfes 1989;
Moravec 1988)).



By applying Bayes rule and with the appropriate assump-
tions, the estimation problem can be temporally decomposed
into

P (mj�; d) = �

TY
t=1

P (o(t)j�(t);m) (14)

where� is a normalizer that can safely be ignored in the max-
imization. It is common practice to decompose the problem
spatially, by solving the optimizationproblem independently
for differentx-y-locations:

argmax
m

P (mj�; d) =

(
argmax
mx;y

TY
t=1

P (o(t)j�(t);mx;y)

)
x;y

(15)

While technically speaking, this independence assumption
is not warranted for sensors that cover manyx-y-locations
(such as sonar sensors), it is typically made in the literature
to make the estimation problem tractable. The resulting
local maximum likelihood estimations problems are highly
tractable, since each of them involves only a single, discrete
random variable.

The Mapping Algorithm
A key feature of the statistical approach is that it can equally
be applied to both topological and metric maps. The map-
ping algorithm proposed in this paper first constructs coarse-
grained topological maps, based on which it then builds de-
tailed metric maps. Both of mapping steps are specialized
versions of the same statistical approach described above.

Both mapping steps exhibit orthogonal strengths and
weaknesses, arising from differences in representations and
the ways sensor data is processed. The topological step is
specialized to solve aglobal alignment problem. It can deal
with arbitrarily large errors in the robot’s odometry; yet it
only produces maps with low spatial resolution. The metric
step addresses alocal alignment problem. It assumes that the
odometric error is already small, and generates metric maps
of the robot’s environment with floating-point resolution.

Topological Maps
Following (Kuipers & Byun 1991; Choset 1996; Matari´c
1990; Shatkay & Kaelbling 1997), the topological compo-
nent of our algorithm seeks to determine the location of
significant placesin the environment, along with an order in
which these places were visited by the robot.

In the topological mapping step, the robot can only observe
whether or not it is at asignificant place. Our definition of
significant places follows closely the notion of “distinctive
places” in Kuipers’s Spatial Semantic Hierarchy (Kuipers &
Byun 1991), and the notion of “meetpoints” in Choset’s Gen-
eralized Voronoi Graphs (Choset 1996). In our experiments,
we simulated these methods by manually pressing a button
whenever the robot crossed a significant place. To test the
most general (and difficult) case, our approach assumes that
the significant places areindistinguishable. Thus, the robot
observes only a single bit of information, namely whether or
not it is at a significant place. This deviates from Kuipers
and Byun’s work, in which places are assumed to be locally
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Figure 2: Illustrative example. (a) A path taken by the robot, along
which it observed six indistinguishable landmarks (in the order of
the numbers). (b) The robot’s odometry yields erroneous readings
between the third and the fifth landmark observation.

distinctive. Nodes in the topological map correspond tosig-
nificant places. Arcs between nodes are created if nodes are
adjacent in the data setd. The robot is not told how many
significant places exist in its environment; neither does it
know whether or not it visited a significant place more than
once. Instead, it guesses the number of nodes as a side-effect
of maximizing the map likelihood function.

The topologicalmapper represents all probabilities (poses,
maps,: : : ) with evenly-spaced, piecewise constant functions
(also called: grids). In all our experimental results, the
spatial resolution was 1 meter and the angular resolution was
5�.

Figures 2 and 3 illustrate the topological mapper for an
artificial example. Figure 2a shows a path of a robot, in a
world that possesses four significant places. The numbers
indicate the order in which the robot traverses these places.
Figure 2b shows the odometry information. In our exam-
ple, the robot suffers significant odometric error between its
third and its fifth place observation. Based on the odometry
information alone, the fifth place appears to be closest to the
second, although the robot really went back to the third.

To illustrate the algorithm, let us first consider the situation
after the robot made its fifth place observation. Figure 3a
shows�(t), �(t), and�(t)�(t) / P (�(t)jd;m) after thefirst
iteration of EM, for the time stepst = 2; : : : ; 5 (t = 1 is
omitted since the pose�(1) is known by definition). Since
in the first iteration, there is no map available, the�-values
are directly obtained by iteratively “chaining together” the
motion model, and the�-values are fairly unspecific. Figure
3b shows the same values two EM iterations later, along with
the “corrected” odometry information. The most important
density is the one in the upper right corner of Figure 3b,
labeled�(5), �(5). As can be seen there, the maximum
likelihood estimate is incorrect in that it assumes the fifth
landmark observation corresponds to the second one (and
not the third, which would be correct). This comes at no
surprise, as the robot’s odometry suggested that the fifth
place is much closer to the second, than it is to the third. It
is interesting to notice, however, that the algorithm assigns
non-zero likelihood to both possibilities, as indicated by the
bimodal distribution in the upper right corner-diagram in
Figure 3b.

As the robot moves on to the next (=sixth) place observa-
tion, the picture changes. The final densities are shown in
Figure 3c. Now the robot assigns higher likelihood to the
correct topological assignment, and the resulting path (and
map) is topologically correct.

This example illustrates two important aspects: First, our
algorithm uses future data to revise beliefs backwards in time.
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Figure 3: The pose probabilitiesP (�) and their factors�, � for the
example. (a) Five-step dataset, first iteration of EM, (b) Five-step
dataset, third iteration, (c) Six-step dataset, third iteration.

Second, it considers multiple hypotheses, not just a single
one. Both aspects differ from the vast majority of work in
the field. We conjecture that both are essential for scaling up
mapping to larger environments.

Metric Maps
The metric mapper, which is based on the same statistical
framework as the topological mapper, is a modified version
of an approach previously proposed in (Gutmann & Schlegel
1996; Lu & Milios 1997).

The metric mapper uses proximity measurements (range
scans) obtained with a laser range finder for building the
metric map. Its perceptual model is defined through a ge-
ometric map matching method, which determines the like-
lihood of laser scan based on the proximity of perceived
obstacles inx-y-coordinates. The metric mapper represents
all densities (poses, maps, motion model, and perceptual

model) by Gaussian distributions (Kalman filters). Gaus-
sians have a dual advantage: First they permit determining
robot poses and location of obstacles with floating-point res-
olution, yielding high-resolution maps. Second, they make
possible to apply highly efficient linear programming meth-
ods when maximizing the likelihood function (Lu & Milios
1997). However, Gaussians are uni-modal; Thus, the met-
ric mapper cannot represent two distinct hypothesis, as can
the topological mapper. As a direct consequence, the metric
mapper can only be applied if the initial odometric error is
small (e.g., smaller than 2 meters), so that the correct solu-
tion lies in the vicinity of the initial guess. Fortunately, the
topological mapper, if successful, generates maps that meet
this criterion.

Technically, the metric mapper builds anetwork of spa-
tial relationsamong all poses where range scans have been
taken. Spatial probabilisticconstraints between poses are de-
rived from matching pairs of range scans and from odometry
measurements. In the E-step, the metric mapper estimates
all poses. In the M-step, it remaps the scans based on the
previously estimated poses. Both steps are iterated. In our
experiments, we found that the metric mapper consistently
converged to the limit of machine accuracy after four or five
iterations of EM.

The metric mapper is computationally highly efficient. As
noticed above, our approach employs linear programming for
efficient likelihood maximization. To do so, it approximates
the likelihood function linearly, which leads to a closed form
solution for all pose variables. Each iteration of the pro-
cedure involves solving a linear equation with a 3T x 3T
matrix, which can be computationally challenging for large
datasets. This matrix, however, is usually sparse (unless the
robot moves only on the spot). Our implementation employs
a highly efficient linear programming package that exploits
this sparseness. It also employs an efficient grouping mecha-
nisms for reducing the effective number of range scans, prior
to constructing the map.

Experimental Results
The mapping algorithm was applied to various datasets ob-
tained in indoor environments, using the RWI B21 robot
equipped with 24 sonar sensors and a SICK laser range
finder. Figures 4a&b show a dataset collected in our uni-
versity building, in which circles indicate significant place
observations. Here the final odometric error is approximately
24.9 meter.

What makes this dataset challenging is the large circular
hallway (60 by 25 meter). When traversing the circle for the
first time, the robot cannot exploit landmarks to improve its
pose estimates; thus, it accumulates odometric error. Since
significant places are indistinguishable, it is difficult to de-
termine the robot’s position when the circle is closed for the
first time (here the odometric error is larger than 14 meter).
Only as the robot proceeds through known territory can it
use its perceptual clues to estimate where it is (and was), in
order to build a consistent map.

Figure 4c shows the result of topological mapping, includ-
ing the “corrected” path taken by the robot. While this map
is topologically correct, the position estimates are only ap-
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Figure 4: (a) Raw data, obtained in an environment of size 80 by
25 meters. Circles indicate (indistinguishable) places. (b) Sensor
map generated from laser range finder data using the raw odometric
data. (c) The topological mapper generates a map that correctly
describes the topology of the environment. (d) The initial metric
map, generated using the pose estimates derived in the topological
mapping phase, is still imperfect, although the errors are small. (e)
The metric mapper finally generates a highly detailed map.

proximately correct, as demonstrated by Figure 4d. Figure 4e
shows the map subsequently generated by the metric mapper.
Although the final metric map is slightly bent (which, in fact,
appears more plausible given the originaldata), it is sufficient
for our current navigation routines (Gutmann & Nebel 1997;
Thrunet al. 1998).

Other examples are shown in Figure 5. As can be seen
there, our approach produces high-accuracy topological-
metric maps in all cases. So far, we did not observe a single
failure of the mapping routines. All maps displayed in this
paper were generated in less than one hour of computational
time, using a 200Mhz Pentium PC for topological mapping
and a Sparc Ultra-30 for metric mapping. In all cases, the
data collection required less than 20 minutes.

Related Work
Probably the most successful metric approach to date
are occupancy grids, which were originally proposed in
(Elfes 1989; Moravec 1988; Borenstein & Koren. 1991)
and which since have been employed in numerous sys-
tems. Other metric approaches, such as those described
in (Chatila & Laumond 1985; Cox 1994; Lu & Milios
1997), describe the environment by geometric atoms such
as straight lines (walls) or points (range scans). Ap-
proaches that fall strictly into the topological paradigm
can be found in (Chown, Kaplan, & Kortenkamp 1995;

(a)

(b)

(c)

Figure 5: Maps generated in other large-scale environments of
sizes (a) 75m, (b) 45m, and (c) 50m. In some of these runs, the
cumulative odometric error exceeds 30 meters and 90 degrees.

Kortenkamp & Weymouth 1994; Kuipers & Byun 1991;
Matarić 1990; Shatkay & Kaelbling 1997). Some of these
approaches do not annotate topological maps with metric in-
formation at all; instead, they rely on procedural knowledge
for moving from one topological entity to another.

Topological approaches often face severe problems of
disambiguating places that look alike. The need to inte-
grate both metric and topological representations has been
long recognized (Chatila & Laumond 1985; Kuipers 1978;
Thrun 1998), with the current approach just being one ex-
ample. Other related work is reviewed in (Thrun, Fox, &
Burgard 1998).

Our approach differs from most work in the field (see
also the surveys in (Thrun 1998; Lu & Milios 1997)) in two
important technical aspects. First, robot poses are revised
forwardandbackwards in time—as pointed out by Lu and
Milios (Lu & Milios 1997), most existing approach do not
revise pose estimations backwards in time. Second, by using
probabilistic representations, the approach considers multi-
ple hypotheses as to where a robot might have been, which
facilitates the recovery from errors. The approaches in (Lu
& Milios 1997) and (Shatkay & Kaelbling 1997) are similar
in this respect to the one proposed here. Shatkay/Kaelbling
proposed to use the alpha-beta algorithm for learning topo-
logical maps, based on (Koenig & Simmons 1996), who
used the same algorithm for a restricted version of the map-
ping problem. However, both methods face severe scaling
limitations. The approach by Lu/Milios, which in essence
constitutes the metric phase of our algorithm, is only able
to compensate small odometric error; thus, it alone is in-
sufficient for the problems investigated here. The method
by Shatkay/Kaelbling does not represent poses in Cartesian
coordinates. It is unclear whether the approach can produce
topologically correct maps for the data used in this paper.
To the best of our knowledge, no other method has been
demonstrated to generate maps of similar size and accuracy.



Conclusion
This paper proposes a statistical approach to building large
scale maps in indoor environments. This approach integrates
topological and metric representations: It first constructs a
coarse-grained topological map, based on which it generates
a detailed metric map. The topological approach tackles the
global alignment problem, thereby correcting large odomet-
ric errors. The metric approach fine-tunes the estimations
locally, resulting in maps with floating-point resolution.

Both the topological and the metric approaches are based
on the same statistical framework, which treats the prob-
lem of concurrent mapping and localization as a maximum
likelihood estimation problem. An efficient hill-climbing
algorithm was devised to maximize the likelihood function.
The algorithm has empirically been validated in cyclic en-
vironments of size up to 80 by 25 meters. While strictly
speaking, EM is not guaranteed to converge to the global
optimum, visual inspection of the results suggest that the
most likely map is indeed found in all experiments. In fact,
in every single experiment that we ran so far, the approach
successfully identified maps that were topologically correct
and sufficiently accurate for navigation.

We believe that the results reported here shed new light
onto the problem as to how to achieve scalability in mobile
robot mapping. First, they demonstrate that both paradigms,
metric and topological, can be expressed in the same statis-
tical framework. Under this model, the difference between
topological and metric mapping appears to be rather minor.
Second, this work illustrates that topological approaches in-
deed scale up to large and highly ambiguous environments.
The environments tested here are difficult in that they possess
large cycles, and in that local sensor information is insuffi-
cient to disambiguate locations. Our approach managed to
produce larger maps than, to the best of our knowledge, any
other approach ever has. Third, this paper demonstrates that
relatively basic statistical methods are well-suited to solve
large-scale mapping problems, suggesting that they might be
fit for other high-dimensional state estimation problems in
robotics.
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