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Abstract
The problem of map building is the problem of
determining the location of entities-of-interest in
a global frame of reference. Over the last years,
probabilistic methods have shown to be well suited
for dealing with the uncertainties involved in mo-
bile robot map building. In this paper we intro-
duce a general probabilistic approach to concurrent
mapping and localization. This method poses the
mapping problem as a statistical maximum likeli-
hood problem, and devises an efficient algorithm
for search in likelihood space. We furthermore ad-
dress the problem of using occupancy grid maps
for path planning in highly dynamic environments.
The approaches have been tested extensively and
several experimental results are given in the paper.

1 Introduction
The problem of acquiring maps in indoor environments has
received considerable attention in the mobile robotics com-
munity. In its most general form, the problem of map build-
ing is the problem of determining the location of entities-of-
interest (such as: landmarks, obstacles, objects) in a global
frame of reference (such as a Cartesian coordinate frame or a
topological graph). To build a map of its environment, a robot
must know where it is. Since robot motion is inaccurate, the
robot must solve a concurrent localization problem, whose
difficulty increases with the size of the environment (and
specifically with the size of possible cycles therein). Thus, the
problem of map building is an example of a chicken-and-egg
problem: To determine the location of the entities-of-interest,
the robot needs to know where it is. To determine where it
is, the robot needs to know the locations of the entities-of-
interest.

Probabilistic methods have been shown to be well suited
for dealing with the uncertainties involved in this problem.
In this paper we present a statistical method for dealing with
the general problem of concurrent localization and map build-
ing. The method is based on a variant of the EM algo-
rithm, which is an efficient hill-climbing method for maxi-
mum likelihood estimation in high-dimensional spaces. In
the context of mapping, EM iterates two alternating steps:
a localization step, in which the robot is localized using a

previously computed map, and amapping step, which com-
putes the most likely map based on the previous pose esti-
mates. The resulting approach can be applied to different
kinds of sensors and is general enough for topologicaland
metric map building (see also[Thrun et al., 1998b; 1998c;
Burgardet al., 1999]).

A very popular approach to metric maps are occupancy
grid maps, which were originally proposed in[Elfes, 1989;
Moravec, 1988] and which since have been employed suc-
cessfully in numerous mobile robot systems. Occupancy
grids are designed to estimate the occupancy of allhx; yi-
locations in the environment. The key advantages of such
maps are that they (1) are easy to build and maintain, (2) facil-
itate path planning, and (3) enable accurate position estimates
(see e.g.[Burgardet al., 1996; Thrun, 1998]). However, a ma-
jor drawback of occupancy grids is caused by their pure sub-
symbolic nature. For example, they provide no framework
for representing symbolic entities-of-interest such as doors,
desks, etc. They furthermore provide no means for treating
static obstacles such as walls differently from dynamic obsta-
cles such as doors. However, in order to operate autonomous
mobile robots over long periods of time, it is essential to be
able to deal with changes in the environment. For example,
in populated environments, a robot must be able to detect
blocked passages and to dynamically plan detours.

Therefore, maintaining world models in changing environ-
ments is another important aspect of map building. In this
paper we introduce an approach that allows to apply occu-
pancy grid maps for path planning in highly dynamic envi-
ronments. Th key idea of our approach is to represent the
world by a combination of different occupancy grid maps.
One of these maps models only the static obstacles in the en-
vironment. This map is typically built beforehand, when the
environment is empty. The other maps are updated on-the-fly
as the robot moves and senses. The static and dynamic maps
are constantly integrated to allow the robot to quickly react
to blocked passages and to plan detours. The common refer-
ence frame needed to integrate the different maps is achieved
by estimating the position of the robot relative to the static
map. Robust position estimation in dynamic environments
is attained by using a filter technique to detect sensor mea-
surements corrupted by dynamic obstacles[Fox et al., 1998;
Burgardet al., 1998].

The techniques described in this paper have been imple-



mented and extensively tested. We used the mapping tech-
niques to compute large-scale maps of3000m2 containing
large open spaces and long cycles. The map updating and
sensor filtering techniques have been applied in two different
long-term experiments in which the mobile robots Rhino and
Minerva were applied for long periods of time as interactive
museum tour-guides.

The remainder of this paper is organized as follows.
Section 2 introduces our statistical approach to concurrent
mapping and localization. Implementations of this general
method and results are presented in Section 3. An application
of occupancy grid maps in highly dynamic environments is
given in Section 4, followed by a review of related work.

2 Concurrent Mapping and Localization
In this section, we propose an algorithm for solving the
global alignment problem that occurs in map building with
unbounded odometric error and perceptual ambiguity. The
approach is an instance of a class of statistical estimation
problems, where a robot seeks to find the most likely map
from a set of observations and motion commands. This esti-
mation problem is solved by a variant of the EM algorithm,
which is an efficient hill-climbing method for maximum like-
lihood estimation in high-dimensional spaces. In the context
of mapping, EM iterates two alternating steps: alocalization
step, in which the robot is localized using a previously com-
puted map, and amapping step, which computes the most
likely map based on the previously pose estimates.

The statistical framework is general enough to deal with
different types of sensors and for simplicity we will introduce
the approach by assuming that the robot can observe land-
marks. A different implementation of the approach based on
sonar sensors will be discussed in Section 3.2.

2.1 Statistical Foundations
We pose the problem of mapping as a statisticalmaximum
likelihood estimation problem [Thrunet al., 1998b]. To gen-
erate a map, we assume that a robot is given a stream of data,
denoted

d = fo(1); u(1); o(2); u(2); : : : o(T�1)
; u

(T )
; o

(T )g; (1)

whereo(t) stands for anobservation that the robot made at
time t, andu(t) for an action command that the robot exe-
cuted between timet to timet + 1. T denotes the total num-
ber of time steps in the data. Without loss of generality, we
assume that the data is an alternated sequence of actions and
observations.

In statistical terms, the problem of mapping is the prob-
lem of finding the most likely map given the data.Maps
will be denoted bym = fmx;ygx;y. A map is an as-
signment of “properties”mx;y to eachx-y-location in the
world. In topological approaches to mapping, the properties-
of-interest are usually locations of landmarks[Chownet al.,
1995] or, alternatively, location of significant places[Kuipers
and Byun, 1991; Choset, 1996]. Metric approaches, on the
other hand, usually use the location of obstacles as properties-
of-interest [Chatila and Laumond, 1985; Moravec, 1988;
Lu and Milios, 1997a].

Our approach assumes that the robot is given two basic,
probabilistic models, one that describes robot motion, and
one that models robot perception.

� The motion model, denotedP (�0ju; �), describes the
probability that the robot’s pose is� 0, if it previously ex-
ecuted actionu at pose�. Here� is used to refer to a
pose, that is thex-y-location of a robot together with its
heading direction. Figure 1 illustrates the motion model,
by showing the probability distribution for� 0 upon exe-
cuting two different actions. Notice that in these and
other diagrams, poses are projected intox-y-space (the
heading direction is omitted).

(a) (b)

Fig. 1. Motion model. The grayly shaded area shows the pose dis-
tributions (projected into 2D) after the motion commands indicated
by the solid lines.

� The perceptual model, denotedP (ojm; �), models the
likelihood of observingo in situations where both the
worldm and the robot’s pose� are known.
For low-dimensional sensors such as proximity sensors,
perceptual models can readily be found in the litera-
ture [Burgardet al., 1996; Moravec, 1988; Konolige,
1999]. Figure 2 illustrates a perceptual model for a
robot that can detect landmarks and that can measure,
with some uncertainty, their relative orientations and
distances. Figure 2 (a) shows an example mapm, in
which the dark spots indicate the locations of two in-
distinguishable landmarks. Figure 2 (b) plotsP (ojm; �)
for different poses�, for the specific observation that the
robot observed a landmark ahead in five meters distance.
The darker a pose, the more likely it is under this obser-
vation.

(a) (b)

Fig. 2. Perceptual model. (a) Shows a map with two indistinguish-
able landmarks, and (b) displays the uncertainty after sensing a land-
mark in 5 meter distance.

These three quantities—the datad, the motion model
P (�0ju; �), and the perceptual modelP (ojm; �)—form the



statistical basis of our approach.

2.2 The Map Likelihood Function
In statistical terms, the problem of mapping is the problem of
finding the most likely map given the data

m
� = argmax

m

P (mjd): (2)

The probabilityP (mjd) can be written as

P (mjd) =

Z
P (mj�; d) P (�jd) d�: (3)

Here the variable� denotes theset of all poses at times
1; 2; : : : ; T , that is,� := f�(1); : : : ; �(T )g, where�(t) denotes
the robot’s pose at timet. By virtue of Bayes rule, the prob-
ability P (mj�; d) on the right hand side of Equation (3) can
be re-written as

P (mj�; d) =
P (djm; �) P (mj�)

P (dj�)
(4)

Based on the observation thato
(t) at timet depends only on

the mapm and the corresponding location�(t), the first term
on the right hand side of Equation (4) can be transformed into

P (djm; �) =

TY
t=1

P (o(t)jm; �
(t)) (5)

Furthermore,P (mj�) = P (m) in Equation (4), since in the
absence of any data,m does not depend on�. P (m) is the
Bayesianprior over all maps, which henceforth will be as-
sumed to be uniformly distributed. Finally, the termP (�jd)
in Equation (3) can be re-written as

P (�jd) =

T�1Y
t=1

P (�(t+1)ju(t); �(t)) (6)

The latter transformation is based on the observation that the
robot’s pose�(t+1) depends only on the robot’s pose�(t) one
time step earlier and the actionu(t) executed there. Putting
all this together leads to the likelihood function

P (mjd) =

Z QT

t=1P (o(t)jm; �
(t)) P (m)

P (dj�)
T�1Y
t=1

P (�(t+1)ju(t); �(t)) d�: (7)

Since we are only interested in maximizingP (mjd), not in
computing an exact value, we can safely drop the constants
P (m) andP (dj�). The resulting expression,

argmax
m

Z TY
t=1

P (o(t)jm; �
(t))

T�1Y
t=1

P (�(t+1)ju(t); �(t)) d�; (8)

is a function of the datad, the perceptual modelP (ojm; �),
and the motion modelP (�0ju; �). Maximizing this expression
is equivalent to finding the most likely map.

2.3 Efficient Estimation

Unfortunately, computing (8) is computationally challenging.
This is because finding the most likely map involves search
in the space of all maps. For large-scale environments, this
space often has106 dimensions or more if crude approxima-
tions are used. To make matters worse, the evaluation of a
single map would require integrating over all possible poses
at all points in time, which for the datasets considered in this
paper would require integration over more than105 indepen-
dent pose variables, each of which can take108 values or so.

Fortunately, there exists an efficient and well-understood
technique for hill-climbing in likelihood space: theEM algo-
rithm [Dempsteret al., 1977], which in the context of Hidden
Markov Models is often referred to asBaum-Welch or alpha-
beta algorithm [Rabiner, 1989]. EM is a hill-climbingroutine
in likelihood space, which alternates two steps, anexpecta-
tion step (E-step) and amaximization step (M-step). In the
context of robot mapping, these steps correspond roughly to
a localization step and a mapping step (see also[Koenig and
Simmons, 1996; Shatkey and Kaelbling, 1997]):

1. In the E-step, the robot computes probabilities
P (�jm; d) for the robot’s poses� at the various points
in times, based on the currently best available mapm

(in the first iteration, there will be no map).

2. In the M-step, the robot determines the most likely map
by maximizingargmaxm P (mj�; d), using the location
estimates computed in the E-step.

The E-step corresponds to a localization step with a fixed
map, whereas the M-step implements a mapping step which
operates under the assumption that the robot’s locations (or,
more precisely, probabilistic estimates thereof) are known. It-
erative application of both rules leads to a refinement of both,
the location estimates and the map. Our approach is, thus, a
hill-climbing procedure that does not provide a guarantee of
global optimality; given the complexity of the problem, how-
ever, it is unclear whether a globally optimal routine exists
that is computationally tractable.

The E-Step
The E-step uses the current-best mapm along with the
data to compute probabilitiesP (�(t)jd;m) for the robot’s
poses at timest = 1; : : : ; T . With appropriate assumptions,
P (�(t)jd;m) can be expressed as the normalized product of
two terms

P (�(t)jd;m) = (9)

� P (�(t)jo(1); : : : ; o(t);m)| {z }
:=�(t)

P (�(t)ju(t+1); : : : ; o(T );m)| {z }
:=�(t)

Here� is a normalizers that ensure that the left-hand side of
Equation (9) sums up to one (see[Thrunet al., 1998b] for a
mathematical derivation). Both terms,�(t) and�(t), as de-
fined in (9), are computed separately, where the former is
computed forward in time and the latter is computed back-
wards in time. Notice that�(t) and�(t) are analogous to
those in the alpha-beta algorithm[Rabiner, 1989].



The computation of the�-values is a version ofMarkov
localization, which has recently been used with great suc-
cess for robot localization inknown environments by vari-
ous researchers[Burgardet al., 1996; Kaelblinget al., 1996;
Koenig and Simmons, 1996; Nourbakhshet al., 1995; Sim-
mons and Koenig, 1995]. The�-values add additional knowl-
edge to the robot’s pose, typically not captured in Markov-
localization. They are, however, essential for revising past be-
lief based on sensor data that was received later in time, which
is a necessary prerequisite of building large-scale maps.

Computing the �-Values: Initially, the robot is assumed
to be at the center of the global reference frame and�

(1) is
given by a Dirac distribution centered at(0; 0; 0):

�
(1) = P (�(1)jo(1);m) =

�
1; if �(1) = (0; 0; 0)

0; if �(1) 6= (0; 0; 0)
(10)

All other�(t) are computed recursively:

�
(t) = � P (o(t)j�(t);m) P (�(t)jo(1); : : : ; u(t�1)

;m) (11)

where� is again a probabilistic normalizer. The rightmost
term of (11) can be transformed to

P (�(t)jo(1); : : : ; u(t�1)
;m)

=

Z
P (�(t)ju(t�1)

; �
(t�1)) �(t�1)

d�
(t�1) (12)

Substituting (12) into (11) yields a recursive rule for the com-
putation of all�(t) with boundary condition (10). See[Thrun
et al., 1998b] for a more detailed derivation.

Computing the �-Values: The computation of�(t) is
completely analogous but takes place backwards in time. The
initial �(T ), which expresses the probability that the robot’s
final pose is�, is uniformly distributed, since�(T ) does not
depend on data. All other�-values are computed in the fol-
lowing way:

�
(t) = �

Z
P (�(t+1)ju(t); �(t))

P (o(t+1)j�(t+1);m) �(t+1) d�(t+1) (13)

The derivation of the equations are analogous to that of the
computation rule for�-values and can be found in[Thrunet
al., 1998b]. The result of the E-step, the products�(t)�(t),
are estimates of the robot’s locations at the various points in
time t.

The M-Step
The M-step maximizesP (mj�; d), that is, in the M-step the
robot computes the most likely map based on the pose proba-
bilities computed in the E-step. Generating maps withknown
robot poses, which is basically what the M-step amounts to,
has been studied extensively in the literature on mobile robot
mapping (see e.g.,[Borenstein and Koren, 1991; Elfes, 1989;
Moravec, 1988]).

By applying Bayes rule and with the appropriate assump-
tions, the estimation problem can be temporally decomposed
into

P (mj�; d) = �

TY
t=1

P (o(t)j�(t);m) (14)

where� is a normalizer that can safely be ignored in the max-
imization. It is common practice to decompose the problem
spatially, by solving the optimization problem independently
for differentx-y-locations:

argmax
m

P (mj�; d) =

(
argmax
mx;y

TY
t=1

P (o(t)j�(t);mx;y)

)
x;y

(15)

While technically speaking, this independence assumption is
not warranted for sensors that cover manyx-y-locations (such
as sonar sensors), it is typically made in the literature to make
the estimation problem tractable. The resulting local max-
imum likelihood estimation problems are highly tractable,
since each of them involves only a single, discrete random
variable.

3 Generating Metric Maps
A key feature of our statistical approach is that it can equally
be applied to both topological and metric maps. In this sec-
tion we will show how to generate metric maps using this
technique. This can be done in two different ways: First, us-
ing the landmark-based approach presented in the previous
section to solve theglobal alignment problem, thus generat-
ing a topologically correct path of the robot. Such a corrected
path can then be used to build a detailed metric map using
the proximity data collected during map building (see Sec-
tion 3.1). The disadvantage of this technique is that is relies
on the detection of landmarks. Another method is to use the
same statistical framework to directly generate metric maps
without the need for landmark detections. An approach to
solving this more challenging problem will be proposed in
Section 3.2.

3.1 Landmark-based Mapping
This mapping algorithm first constructs coarse-grained topo-
logical maps, based on which it then builds detailed metric
maps. Both of the mapping steps are specialized versions of
the same statistical approach described above.

Generating Topologically Correct Maps
Following [Kuipers and Byun, 1991; Choset, 1996; Matari´c,
1990; Shatkey and Kaelbling, 1997], the topological com-
ponent of our algorithm seeks to determine the location of
significant places in the environment, along with an order in
which these places were visited by the robot.

In the topological mapping step, the robot can only observe
whether or not it is at asignificant place. Our definition of
significant places follows closely the notion of “distinctive
places” in Kuipers’s Spatial Semantic Hierarchy[Kuipers and
Byun, 1991], and the notion of “meetpoints” in Choset’s Gen-
eralized Voronoi Graphs[Choset, 1996]. In our experiments,
we simulated these methods by manually pressing a button
whenever the robot crossed a significant place. To test the
most general (and difficult) case, our approach assumes that
the significant places areindistinguishable. Thus, the robot
observes only a single bit of information, namely whether or
not it is at a significant place. This deviates from Kuipers
and Byun’s work, in which places are assumed to be locally



(a) (b)

Fig. 3. (a) Raw data (2,972 controls). The box size is 90 by 90 meters. Circles indicate the locations where landmarks were observed. The
data indicates systematic drift, in some of the corridors. The final odometric error is approximately 24.9 meter. (b) Occupancy grid map,
constructed from sonar measurements using the raw odometry data.

(a) (b)

Fig. 4. (a) Maximum likelihood map, along with the estimated path of the robot. (b) Occupancy grid map constructed using these estimated
locations.

distinctive. Nodes in the topological map correspond tosig-
nificant places. Arcs between nodes are created if nodes are
adjacent in the data setd. The robot is not told how many sig-
nificant places exist in its environment; neither does it know
whether or not it visited a significant place more than once.
Instead, it guesses the number of nodes as a side-effect of
maximizing the map likelihood function.

The topological mapper represents all probabilities (poses,
maps,. . . ) with evenly-spaced, piecewise constant functions
(also called: grids). In all our experimental results, the spatial
resolution was 1 meter and the angular resolution was 5�.

Figures 3 (a) and 4 (a) illustrate the capabilities of this ap-
proach. Figure 3 (a) shows a dataset collected in our univer-
sity building, in which circles indicate significant place obser-
vations. Here the final odometric error is approximately 24.9
meter. What makes this dataset challenging is the large circu-
lar hallway (60 by 25 meter). When traversing the circle for
the first time, the robot cannot exploit landmarks to improve
its pose estimates; thus, it accumulates odometric error. Since
significant places are indistinguishable, it is difficult to deter-
mine the robot’s position when the circle is closed for the first
time (here the odometric error is larger than 14 meter). Only
as the robot proceeds through known territory can it use its
perceptual clues to estimate where it is (and was), in order to
build a consistent map. Figure 4 (a) shows the result of topo-

logical mapping, including the “corrected” path taken by the
robot.

Building Metric Maps
The result of the topological estimation routine can be used
to build more accurate occupancy grid maps[Elfes, 1989;
Moravec, 1988]. Figure 4 (b) shows an occupancy grid map
constructed from sonar measurements (using a ring of 24
Polaroid sonar sensors), using the guessed maximum likeli-
hood positions as input to the mapping software described in
[Thrun, 1998]. Here, sonar measurements are converted into
local occupancy grid maps using neural networks (see Fig-
ure 6). These maps are integrated using Bayesian integration
rules.

To see the benefit of using the path corrected by the topo-
logical mapper, Figure 3 (b) shows a map using the raw, un-
corrected data. The map constructed from raw data is un-
usable for navigation, whereas the corrected map is suffi-
cient for mobile robot navigation (see[Burgardet al., 1996;
Thrunet al., 1998a] for a description of our navigation rou-
tines).

When using data collected by laser range-finders, even
more accurate maps can be built. This metric mapper, which
is based on the same statistical framework as the topologi-
cal mapper, is a modified version of an approach previously
proposed in[Gutmann and Schlegel, 1996; Lu and Milios,



(a) (b)

Fig. 5. (a) The metric map, generated using laser measurements and the pose estimates derived in the topological mapping phase, is still
imperfect, although the errors are small. (b) The metric mapper finally generates a highly detailed map.

Figure 6:The top row shows raw sensordata, the bottom row shows
a likelihood field (local map): the brighter a pixel, the higher its
likelihood for being unoccupied. This perceptual model has been
learned from hand-labeled data, using artificial neural networks.

1997a].
The perceptual model of the laser-based mapper is de-

fined through a geometric map matching method, which de-
termines the likelihood of laser scans based on the proximity
of perceived obstacles inx-y-coordinates. The metric map-
per represents all densities (poses, maps, motion model, and
perceptual model) by Gaussian distributions (Kalman filters).
Gaussians have a dual advantage: First they permit determin-
ing robot poses and location of obstacles with floating-point
resolution, yielding high-resolutionmaps. Second, they make
it possible to apply highly efficient linear programming meth-
ods when maximizing the likelihood function[Lu and Milios,
1997a]. However, Gaussians are uni-modal; Thus, the metric
mapper cannot represent two distinct hypotheses, as can the
topological mapper. As a direct consequence, the metric map-
per can only be applied if the initial odometric error is small
(e.g., smaller than 2 meters), so that the correct solution lies
in the vicinity of the initial guess. Fortunately, the topological
mapper, if successful, generates maps that meet this criterion.

Technically, the metric mapper builds anetwork of spa-
tial relations among all poses where range scans have been
taken. Spatial probabilistic constraints between poses are de-
rived from matching pairs of range scans and from odometry
measurements. In the E-step, the metric mapper estimates
all poses. In the M-step, it re-maps the scans based on the
previously estimated poses. Both steps are iterated. In our
experiments, we found that the metric mapper consistently
converged to the limit of machine accuracy after four or five

iterations of EM.
The metric mapper is computationally highly efficient. As

noticed above, our approach employs linear programming for
efficient likelihood maximization. To do so, it approximates
the likelihood function linearly, which leads to a closed form
solution for all pose variables. Figure 5 (a) shows a map
based on laser measurements and the positions estimated by
the topological approach (c.f. 4 (a)). As can be seen there,
the position estimates are only approximately correct. Fig-
ure 5 (b) shows the map subsequently generated by the laser-
based metric mapper.

3.2 Sonar-based Mapping

In the previous section we described how the EM method can
be used to compute a metric map of the environment by first
computing a topological map. The disadvantage of this ap-
proach is that it requires a human operator or special detectors
to identify significant places. Fortunately, this drawback can
be eliminated by introducing a two-layered representation in
which a global occupancy grid map is built from a set of local
maps generated from short sequences of sensor data[Bur-
gardet al., 1999], a technique also used in[Yamauchi, 1996;
Schiele and Crowley, 1994]. Examples of such local maps
are shown in Figure 7. For such maps, which replace the
landmarks used above, we assume that the odometric error
can be neglected since the robot only moves a short distance.
In the E-step, the localization is not carried out with respect
to a global map but rather with respect to the different local
maps (see[Burgardet al., 1999] for details).

Fig. 7: Examples of local maps, annotated by robot trajectories.
These maps have been constructed from sonar measurements.

This approach has two advantages. First, the local maps in-
tegrate data over time and thus allow to deal with noisy range
sensors such as ultra-sound sensors. Thus, this technique
does not rely on expensive and highly accurate sensors like
laser range-finders as used in[Gutmann and Schlegel, 1996;
Lu and Milios, 1997a]. Second, the use of static local grid
maps maintains dependencies between individual grid cells.



This for example allows the approach to accurately represent
the width of a corridor or the structure of rooms.

Figure 8 illustrates the capabilities of this approach. The
experiment was carried out with the robot Amelia in the
Wean Hall of the Carnegie Mellon University. Figure 8 (a)
shows the map constructed from ultrasound data using the
raw odometry measurements. Figure 8 (b) shows the result
of applying the EM method to our layered map representa-
tion. As can be seen from the figure, the odometry errors are
corrected and the corridor in the lower right corner is now
mapped correctly.

(a) (b)

Fig. 8. Maps built in Wean Hall of Carnegie Mellon University, (a)
using raw odometry, and (b) using our new algorithm. These maps
are comparable to those generated by our previous EM method, but
without reliance on manually labeled reference positions.

4 Dealing with Dynamic Environments
In the previous sections we showed how to build metric maps
from sensor data. To keep the mapping problem tractable,
our approach – as well as virtually all existing approaches to
concurrent mapping and localization – makes the assumption
that the environment isstatic. While this assumption might be
reasonable during the phase of initial map acquisition, it cer-
tainly does not hold for robots that operate over long periods
of time in populated environments. Especially for path plan-
ning in changing environments, a robot’s ability to modify its
map and hence its paths on-the-fly is essential for efficient
navigation.

Consider, for example, our mobile robot RHINO in the
“Deutsches Museum Bonn” (German Museum Bonn), where
it served the function of an interactive robotic tour-guide
(cf. 10). The robot’s task was to engage visitors and guide
them through the exhibition, providing verbal explanations
for the various exhibits. Here, updating the world model

Fig. 10. Rhino as it gives a tour through the “Deutsches Museum
Bonn”.

is essential, since entire passages can be blocked by visitors
making it necessary to plan detours. Please note that office
delivery robots face similar situations, e.g. when doors are
closed.

One way to deal with such dynamic environments would
be to constantly update the map of the environment using an
approach for concurrent mapping and localization. Unfortu-
nately, this solution is intractable in practice since it entails
concurrent estimation of the position of the robot, the po-
sitions of all static obstacles, and the positions (and motion
vectors!) of all non-static obstacles. Furthermore, occupancy
grid maps are not designed to distinguish between static and
dynamic obstacles. Therefore, whenever new sensor informa-
tion arrives, grid cells containing walls are updated the same
way as grid cells containing people passing by.

To deal with these problems, we decouple the task of learn-
ing a model of the environment from the task of updating
it according to changes of the environment. Our approach
maintains different maps of the environment. One map only
containsstatic obstacles such as walls. This map can either
be built by a method discussed in the previous sections or
it can be a hand-crafted CAD map (as used during this mu-
seum tour-guide project). In addition to this map, occupancy
grids are built on-the-fly to model the dynamic obstacles in
the environment (note that these maps can be adapted much
faster than the static map). All grid maps are combined to get
complete information about the obstacles in the environment.
Figure 9 illustrates this integration of maps built from dif-
ferent sensor modalities (see[Burgardet al., 1998] for more
details).

In order to integrate the different occupancy grids into a
single map, the position of the robot is estimated with respect
to the global coordinate frame of the static map. To allow
reliable position estimation in dynamic environments using
only a static world model, we extended our implementation
of Markov localization by filter techniques to detect measure-
ments corrupted by non-modeled, i.e. dynamic, obstacles.
The resulting technique has been shown to be able to robustly
estimate the position of mobile robots over long periods of
time even in densely crowded environments such as muse-
ums and office environments[Fox et al., 1998; Fox, 1998;
Burgardet al., 1998; Thrunet al., 1999].

To allow the robot to react to unforeseen blockage of pas-
sages, the path planner consults the integrated map to de-
termine shortest paths to arbitrary target points (see[Thrun,
1998] for a detailed description). Since this map is up-
dated continuously, the motion planner continuously revises
its plans. Figure 11 shows a typical output of the path plan-
ner. Here, the target location is in the lower left corner of the
map and the gray shading indicates the distance of each loca-
tion to this target point under consideration of the occupancy
probability of grid cells.

Figure 12 illustrates the benefit of our approach. It shows
an integrated map recorded during peak traffic hours in the
museum. In this case, a massive congestion made it impos-
sible for the robot to progress along the original path. Due
to the map integration, the blocked path is detected and the
robot is able to chose a detour. A further advantage of our
distributed map representation is the ability to adapt the maps



(a) (b) (c) (d)

Fig. 9. Integrating multiple maps: (a) CAD map of the museum (21�20m
2 ) modeling only the static obstacles, (b) laser map, (c) sonar map,

and (d) the integrated map used for path planning.

Fig. 11. The motion planner uses dynamic programming to compute
the shortest path to the nearest goal(s) for every location in the un-
occupied space, as indicated by the gray shading. Once the distance
has been computed, paths are generated by hill-climbing in distance
space.

Fig. 12. An integrated map, acquired in a situation where a massive
congestion of the museum forced the robot to take a detour.

at different time scales. Once the robot reached a target loca-
tion, all obstacles were deleted from the dynamic maps and
path planning to the next exhibit was based only on the static
map shown in Figure 9 (a). However, since the dynamic maps
are updated as the robot moves, this plan can be adapted to
unforeseen situations.

5 Related Work
Over the last decade, there has been a flurry of work on met-
ric map building for mobile robots. Probably the most suc-
cessful metric approach to date are occupancy grids, which
were originally proposed in[Elfes, 1989; Moravec, 1988;
Borenstein and Koren, 1991] and which since have been em-
ployed successfully in numerous systems. Other metric ap-
proaches, such as those described in[Chatila and Laumond,

1985; Cox and Leonard, 1994; Lu and Milios, 1997a], de-
scribe the environment by geometric atoms such as straight
lines (walls) or points (range scans).

Approaches that fall strictly into the topological paradigm
can be found in[Chown et al., 1995; Kortenkamp and
Weymouth, 1994; Kuipers and Byun, 1991; Matari´c, 1990;
Shatkey and Kaelbling, 1997]. Some of these approaches do
not annotate topological maps with metric information at all;
instead, they rely on procedural knowledge for moving from
one topological entity to another.

Our approach to concurrent map building and localiza-
tion differs from most work in the field (see also the sur-
veys in[Thrun, 1998; Lu and Milios, 1997a]) in three impor-
tant technical aspects. First, robot poses are revised forward
and backwards in time—as pointed out by[Lu and Milios,
1997a], most existing approaches do not revise pose estima-
tions backwards in time. Second, it does not rely on highly
accurate proximity sensors such as laser range-finders. Third,
by using probabilistic representations, the approach consid-
ers multiple hypotheses as to where a robot might have been,
which facilitates the recovery from errors.

The approaches in[Lu and Milios, 1997a; Cox and
Leonard, 1994; Shatkey and Kaelbling, 1997] are similar in
this respect to the one proposed here.[Shatkey and Kael-
bling, 1997] proposed to use the alpha-beta algorithm for
learning topological maps, based on[Koenig and Simmons,
1996], who used the same algorithm for a restricted version
of the mapping problem.[Cox and Leonard, 1994] intro-
duced a mapping algorithm that estimates the positions of ge-
ometric features. Here, Bayesian methods and Kalman filters
are applied to deal with sensor uncertainty. Their approach
keeps track of possible feature locations by using multiple
hypothesis trees. To avoid exponential growth of the number
of hypotheses, these trees are pruned after a short period of
time, which limits the ability to revise estimations backwards
in time. The approach by Lu/Milios matches laser scans
into partially built maps, using Kalman filters for positioning.
Together with[Gutmann and Schlegel, 1996], they demon-
strated the appropriateness of this algorithm for mapping en-
vironments with cycles. Their approach, however, is inca-
pable of representing ambiguities and multi-modal densities.
It can only compensate a limited amount of odometric error
in x-y-space, due to the requirement of a “sufficient overlap
between scans”[Lu and Milios, 1997a]. In all cases stud-
ied in [Gutmann and Schlegel, 1996; Lu and Milios, 1997a;
1997b], the odometric error was an order of magnitude



smaller than the one reported here. In addition, the approach
is largely specific to robots equipped with laser range find-
ers. It is unclear if the approach can cope with less accurate
sensors such as sonars.

6 Conclusion
This paper presented a general probabilistic approach to con-
current mapping and localization. It phrased the problem of
map building as a maximum likelihood estimation problem,
where robot motion and perception impose probabilistic con-
straints on the map. It then devised an efficient algorithm for
maximum likelihood estimation. Simplified speaking, this al-
gorithm alternates localization and mapping, thereby improv-
ing estimates of both the map and the robot’s locations. Ex-
perimental results in large, cyclic environments demonstrate
that appropriateness of the approach to topological and metric
map building.

We furthermore showed how to apply occupancy grid maps
to path planning in highly dynamic environments. The key
idea of this approach is to treat static and dynamic obstacles
differently by representing them in different maps. Thereby
we decouple the problems of estimating the position of the
robot and estimating the positions of static/dynamic obstacles
in the environment. This approach resulted in robust naviga-
tion of a mobile robot in a crowded museum over extended
periods of time.
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