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Abstract - In the paper, we consider an
occupancy-based approach for range data fu-
sion, as it is used in mobile robotics. We tackle
the major problem of this approach, which is
the redundancy of stored and processed data
caused by using the grid representation of the
occupancy function, by proposing a parametric
plece-wise linear representation. When applied
to vision-based world exploration, the new rep-
resentation is shown to have advantages, which
include its suitability for radial range data,
its efficiency in representing and fusing range
data, and its convenience for navigation map
extraction. The proposed technique is imple-
mented on a mobile robot, Boticelli. The re-
sults obtained from running the robot are pre-
sented.
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1 Introduction

In mobile robot world exploration, the occupancy-
based approach is one of the most commonly used
[9, 3, 8, 16, 4, 10, 14]. In this approach, the explo-
ration policy is determined by the occupancy model
of the world which is built from range data registered
by robot sensors. The following information is usually
extracted from the model: the observed obstacles, the
navigation area, which is the area free of obstacles, and
the unexplored area, which 1s area where insufficient
range data has been acquired.

When this information is obtained, it is processed
in order to produce the command for the robot. Such
methods as potential fields [8], value iteration [13] and
other reinforcement learning techniques [12] are most

common at this stage.

As understood, no matter what a technique is used
at later stages, the success of the occupancy-based
world exploration depends on the quality of the oc-
cupancy model and also its suitability for extraction
of the information required for navigation.

Occupancy function

The occupancy world model 1s defined by an occupancy
function which maps 3D points of the world into a real
interval so that higher values of the function indicate
points that are more likely to be occupied®:

m=F), mel0,1], 7eR® (1)

The major problem of occupancy-based world mod-
eling concerns the representation of this function. A
conventional grid representation, which represents the
occupancy function as a multi-dimensional array, re-
sults in storing huge amount of data and very time-
consuming calculations required to process these data.
This makes modeling of 3D and large-scale environ-
ments in real time practically impossible.

Because of the problem described above, up till now
in mobile robotics, where the issue of time is critical,
only 2D occupancy models have been used. That is,
instead of treating a world the way it is, a robot has to
consider only a 2D shadow of it in making a navigation
decision. And this is not the only problem encountered
using the grids. Grid models are not suitable for radial
range data, which i1s the most frequent case, and they
are very inefficient for map extraction.

Thus, there is a need for another representation of
the occupancy function which would suit range data
well, be optimal space-wise and allow efficient naviga-
tion. This led us to propose a regression-based tech-

'In some cases, a similarly defined emptiness function is
used, and sometimes both functions are used [10].



nique for range data fusion using a piece-wise linear
representation for the occupancy function. While the
regression issues of the approach are covered in [6], this
paper focuses on the issue of the occupancy function
representation and its application to the world explo-
ration problem. We show how the occupancy model of
the world can be efficiently represented using a min-
max tree of combining linear functions and then we
show how the information needed for exploration can
be efficiently extracted from the constructed model.
We demonstrate the validity and the promise of our
approach by implementing it on the mobile robot Bo-
ticelli, which searches for objects in an unknown en-
vironment using a single camera stereo range sensor

described in [7].

The paper is organized as follows. In the next sec-
tion, we describe the problem of vision-based world
modeling the way it 1s used for world exploration and
define range data fusion as a regression problem. Para-
metrically represented occupancy models are built in
Section 3 and extraction of the navigation maps from
the models is described in Section 4. Discussions con-
clude the paper.

2 Vision-based world modeling

Single-camera range data

In [7] we present the design of a single-camera
stereo range sensor, which registers visible 3D fea-
tures around a robot. Along with a 3D vector 7
of a registered visual feature measured in the robot-
centered system of coordinates (see Figure 1), the
sensor provides the evidence value m of the feature,
which is calculated according to the evidence theory
paradigm [15]. More specifically, the evidence value of
a feature is determined by the match error obtained
during the stereo acquisition and is a value between
zero and one.

An example of range data registered by a single-
camera sensor 1s shown in Figure 5.a. These data are
acquired by observing the room shown in Figure 4.
Registered 3D features are shown projected on the
floor (Oxy plane), the robot is located in the center.
The features with higher evidence are shown brighter.

As can be seen, the range data acquired by this
sensor are very suitable to be represented by a para-
metric occupancy function m = F(7) defined in the
robot-centered system of coordinates.

World model

3D features

Figure 1: Vision-based world modeling.

Using the evidential approach

Our preference of the evidence theory over the prob-
ability theory in building the occupancy function is
for to the following three reasons. First, as discussed
in [7], the evidence approach provides a straightfor-
ward way of assigning the evidence values to features
based on the uncertainty parameters of the sensor.
Second, using only one occupancy function in Eq. 1
does not resolve the “contradictory vs unknown” prob-
lem, which occurs when m = % This makes the ex-
traction of the unexplored area, i.e. the area where no
features have been observed yet, impossible. There-
fore, two occupancy functions: belief and plausibility,
— have been suggested [10] instead of the one occu-
pancy function to combine range data, which is an
approach supported by the evidential theory. Third,
since we use regression for combining evidence values,
the probability axioms do not hold for combined ev-
idence values. In [6] we describe the reasons for us-
ing regression for range data fusion, the major one of
which is the desire to handle dependent range data.

Exploration task

The task we consider for the robot is the following: to
explore an unknown environment for the purpose of
finding an object, where the exploration policy is de-
termined by a world model obtained from range data
registered by robot sensors. Let us describe this task
in more detail.

Since we use a visual range sensor only, we consider
an environment full of visual features in almost any di-
rection the robot looks at. The range data registered
by the visual sensor are pairs of numbers {my, 7} pro-
vided by the sensor. The fusion of these data is a batch
process, that is, the occupancy function m = F(7) is
built only after all visual features around the robot
are observed, rather than being updated continuously
with one observed feature at a time. This allows us to
consider fusion of these data as a regression problem.

Since only the range data registered from the cur-
rent robot position are used in fusion, the constructed



world model will be a local model. The exploration
policy of the robot is determined by obstacle and ex-
ploration points extracted from multiple local models.

Fusion as regression

We formulate the fusion of range data as a regression
problem as follows. Given a set of sample points 7
along with their evidence values m, find a smooth ap-
proximation of the function m = F(7) on the whole
input domain.

The strategies to be used when choosing and apply-
ing a regression technique are described in [6]. Here,
we concentrate on the issue of representing the models
constructed by regression techniques and its applica-
tion to navigation.

We use the Adaptive Logic Network (ALN) [2] as a
regression tool. As a result of the fitting process, the
ALN produces a binary tree of minimums and maxi-
mums of linear functions on polyhedra in 3D space as
illustrated in Figure 2. This has certain advantages,
the main ones being the controlled generalization and
high-speed execution.

Key idea:
Approximating a function using
piecewise linear surfaces |

g 9 b) .)

)
&«
=%

I:l is a linear function

How this is achieved:

new xc R
+ - sample points

Figure 2: Approzimating a function with linear sur-
faces.

3 Piece-linear representation

Choosing coordinate system

Each feature i registered by a sensor induces a set
of sample points {m?, 7}, which are the functions of
the feature values {m;, 7} in accordance with what
is called a sensor model. Figure 3.a shows a sensor
model of the single camera stereo. According to this
model, if a feature is registered at distance r from the
camera with the evidence value m, then all points on
the ray of view are given the values of believe evidence
(Bel) and plausibility evidence (P!) as shown in the
figure. In this paper we use the plausibility evidence
values only in constructing occupancy models. Belief
evidence models can be built in a similar fashion yet
require extra postprocessing.

The relationship of the range data defined by the
sensor model determines the choice of the radial-based
coordinate system as the most appropriate system to
be used in representing the occupancy functions. In
particular, we use the coordinate system? (see Figure
1), which uses the pan angle « (radians), the height A
(decimeters), and the distance r from the pan-tilt unit
center on the top of the robot (decimeters). In the
next section we show the convenience of this system
for local horizontal-plane straight-line navigation.

In this system of coordinates, the form of the oc-
cupancy function m = F(a, h,r) constructed by the
ALN can be written as

(MIN,MAX

(MINMAD Lot bh 4 eor + di}, (2)

m = tree

where L is the number of linear pieces used in regres-
sion.

This system of coordinates allows us to incorpo-
rate the sensor model into regression by imposing con-
straints on the occupancy function. In particular, we
impose the constraint

IF (o, h,7)

o >0, (3)

which implies that the occupancy function is mono-
tonic increasing in the horizontal plane in the direc-
tion from the robot. In the case of the ALN repre-
sentation of the occupancy function, the monotonicity
constraint of Eq. 2 reduces to (¢; > 0).

This constraint results in drastic reduction in the
number of sample points needed in regression, as illus-
trated in Figure 3.b. In particular, we generate only
five sample points per feature: two with evidence m
to account for error in depth calculation, two with
evidence less than m to correspond to decreasing oc-
cupancy values along the ray towards the robot, and
one 1n the center of the robot with the evidence value
equal to zero. The specific locations of these points
are defined by the parameters of the sensor model.
For comparison, grid-based approaches practically ig-
nore the fact that many sample points used in regres-
sion are function of other points and generate sample
points as many as there are grid cells between an ob-
served point and the camera, as illustrated in Figure
3.a.

Figure 5.b shows a 3D occupancy model obtained
from the range data shown in Figure 5.a using the
ALN representation of the occupancy function de-
scribed above with eight linear pieces (L = 8). The
points with the occupancy value higher than 0.4 are

2 Another very suitable system of coordinates is the spherical
one.



shown projected onto the floor. The circular appear-
ance of the data is due to uniform sampling in the
coordinate system we use.

We would like to emphasize that the constructed
model is the occupancy model of the environment
and should not be confused with geometry-based mod-
els, which are very common in 3D reconstruction and
which, in many cases, are also built by fitting piece-
wise linear surfaces.

As seen in the figure, the constructed occupancy
model does not follow exactly the contour of the range
data in the depth map. However, while using only a
few parameters, it is able to show clearly the areas
of high evidence of occupancy as well as the areas of
insufficient occupancy information.

Figure 3: The wvisual sensor model sampled accord-
ing to the grid-based (a) and regression-based (b) tech-
niques.

4 Extracting Maps

Once a 3D occupancy model of the world is con-
structed as a tree of minima and maxima of linear
functions of three variables, it is possible to determine
a 2D polygon within which it is safe for the robot to
navigate.

Occupancy Function Inversion

The volume with occupancy less than a certain thresh-
old (e.g. 0.6), is considered unoccupied and therefore
available for navigation. In order to find this volume,
the first step is to invert the occupancy function. The
inverse function returns a distance within which it is
safe to move as a function of pan angle, height and
occupancy. This can be done theoretically due to the
strong monotonicity condition imposed on the occu-
pancy function (Eq. 3) during ALN training.

The ALN max-min tree representation of the occu-
pancy function allows the inversion to be done very
efficiently. The inverted ALN is constructed as fol-
lows: in the original ALN tree, each maximum node
is replaced by a minimum node, and each minimum

node by a maximum. Then the weights on variables
are normalized in such a way that the weight on the
new output variable (occupancy) is —1. The simplic-
ity and speed of this inversion is another advantage of
using ALNs for robot navigation.

The inverse occupancy function, which can be now
written as

r:F_l(oz,h,m), (4)

where the occupancy is fixed at some level, say m =
0.6, 1s now applied at several values of height i. The
r values are converted to a horizontal distance by tak-
ing V2 — h2. The result of this computation is a set
of polygons obtained at different heights centered at
the robot’s current position. In addition to the mono-
tonicity constraint imposed in the regression (Eq. 3),
we also impose upper and lower bounds on the weights
for pan angle and height. This allows us to use a fi-
nite set of height values and yet be sure that no point
on the robot at any height will collide with any point
of the environment exceeding a certain value of occu-
pancy.

The final step in calculation of the polygon of the
2D local map of the area available for navigation con-
sists in shrinking all polygons by the radius of the
robot and taking the intersection of their areas. This
ensures that the whole body of the robot can go in a
straight line to any point inside the intersection poly-
gon.

An example of a polygon obtained using the de-
scribed techniques is shown in Figure 5.c. The poly-
gon shown in the figure is extracted from the occu-
pancy model shown in Figure 5.b using a threshold of

m = 0.6.

Obstacle and exploration points

The polygon boundary far from the robot is most sus-
ceptible to error. This could be the result of absence
of depth data or error in depth estimation. This led us
to upper-bound the distance to the periphery of the
polygon from the robot position (e.g. with distance at
most one meter). Thus, the polygon’s points lie on a
circle of radius one meter, except where the occupancy
of the environment causes incursions into the circle.

The points of the navigation polygon which lie in-
side the bounding circle represent obstacles. Obstacle
points are defined for evenly spaced angles in angular
sectors where obstacles occur. When making a de-
cision where to navigate, these points will be given
negative reinforcement values to keep the robot from
hitting the obstacles.

Points of the navigation polygon on the periphery of
the one meter circle represent points where the knowl-



edge of the environment becomes undependable, so
further data must be collected near them. A collec-
tion of exploration points is defined at evenly spaced
angles in sectors where the navigation polygon lies on
the circle. The density of exploration points is cho-
sen to be adequate to find channels through which the
robot could pass, but which may not be observable
from the current robot position. Exploration points
have positive reinforcement values, thus encouraging
the robot to move near to exploration points.

More details on using obstacle and exploration
points for planning the navigation can be found in [1].

Figure 4: Robot Boticellt exploring the room.

5 Discussions

We described the technique for representing the occu-
pancy world model in a parametric way — using equa-
tions of linear surfaces. We showed that the paramet-
ric representation of the occupancy function can be
very efficiently achieved and then used for world ex-
ploration. The proposed technique is implemented on
the mobile robot Boticelli. The data obtained from
actual runs of the robot are shown in Figure 5. In
our application, the robot explores a room shown in
Figure 4 in order to find a goal hidden behind a wall,
which is a green triangle glued on white paper seen on
the back wall in the figure. During the course of explo-
ration, in each of its locations, the robot acquires the
range data, which is then converted to a 3D occupancy
world model. The constructed model is then used to
provide the robot with the navigation map consisting

of the list of obstacle and exploration points, which is
used by the robot to decide where to go. A reinforce-
ment learning method is applied at this stage.

With the technique described in the paper the robot
was able to find the goal, while maintaining the world
model. We used less than 32 linear pieces in the oc-
cupancy function representation. This appeared to be
sufficient for the problem and did not take much time
to evaluate. More specifically, it takes approximately
the same amount of time to build a model as it takes
to collect the range data in the vision stage, that is,
about one minute on a Pentium Pro 200 MHz com-
puter.

There was an assumption made about the environ-
ments the robot is exploring that there are visual fea-
tures present all around the robot. In our experiments
this is achieved by putting camouflage clothes on oth-
erwise featureless walls, which can be seen in Figure 4.
If there are no features available in a part of the envi-
ronment, then, because of the linear regression fitting,
this could result in undesirably high occupancy values
in that part. This situation however can be handled
by generating a few samples points all over the space
with occupancy values equal zero.

Another thing to be mentioned 1s that the visual
range data we used in the experiments contain a lot
of imprecise data. Approximately 5% of the data are
estimated to be outliers. This is another reason why
we build a coarse model of the world, i.e. with only
few linear pieces. However, if range data are obtained
by more robust range sensors like laser range finders
[5, 11], for instance, then there is reason to believe
that the proposed piece-wise linear representation of
the occupancy function would yield a better approxi-
mation of the world, if more linear pieces are used in
regression.

Since the number of sample points used in build-
ing the occupancy model of an environment does not
depend on the scale of the environment, it can be as-
sumed that the proposed technique of representing oc-
cupancy models can be used equally well for represent-
ing environments at different scales. This is currently
under investigation as well as the question of how to
combine two local occupancy models obtained from
two different locations.
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Figure 5: Range data (a), the occupancy model (b) and the navigation polygon (¢) obtained from these data.
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