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Abstract

Most existing localisation methods for mobile
robots make simplifying assumptions about the
properties of the sensors. These methods there-
fore work well only when the inherent assump-
tions hold for the particular robot, its be-
haviour, and its environment. Many methods,
for example, assume a large number of evenly
spaced sensors, which render them useless in
robots with very few sensors. In this paper,
we present a robust position tracking method
for a mobile robot with seven sonar sensors.
Our method integrates a feature-based detec-
tion method with a dense-sensor matching tech-
nique by using the Hough transform for fea-
ture detection and a grid-based approach to
update a distribution of position probabilities.
First, we compute a two-dimensional feature
space by applying a straight-line Hough trans-
form to the sonar readings. Second, we per-
form template matching in the feature space
by using the world map as reference pattern.
Third, we use the correlation counts obtained
in the previous step to update a position prob-
ability grid. We demonstrate that our detec-
tion method can avoid the common problems
of feature detection in sonar data such as er-
roneous lines through separate clusters, corner
inference, and line artifacts through re
ection.
In addition, the method is robust and compu-
tationally eÆcient.

1 Introduction

We are interested in building mobile robots that accom-
plish useful tasks without human intervention in real-
world environments. In most applications, a mobile
robot must be able to determine its position and ori-
entation in the environment using its sensors. The prob-
lem of position determination, referred to as localisation
problem, can be seen as a constituent part of the more
general navigation problem, in which the mobile robot
has to �nd a path to a speci�ed goal position.

In the last ten years, a large number of approaches
to robot localisation have been proposed. We can
distinguish between (1) behaviour-based [Arkin, 1990],
(2) landmark or feature-based [Leonard and Durrant-
Whyte, 1992], and (3) dense sensor matching tech-
niques [Gutmann et al., 1998]. Behavioural approaches
use history information about the robot's interaction
with the environment. Feature-based methods rely on
the detection of landmark features, such as corners and
wall-segments. Markov localisation and scan matching
form the third category. The majority of existing lo-
calisation methods are passive, that is, independent of
the robot control. Recently, also active approaches to
localisation have been proposed [Burgard et al., 1997a].
Active localisation methods are able to change the robot
motion and the orientation of the sensors in order to
increase the eÆciency and the robustness of localisation.

The robot's position and orientation, also referred to
as pose, have to be determined from sensor data. Un-
fortunately, robot sensors are generally imperfect and
provide only uncertain information. For example, the
sensor readings generally contain noise. In addition, the
readings can be ambiguous. That is, the environment
may contain places which cannot be distinguished. We
believe that for a localisation method to be reliable, it
must use a representation capable of handling uncertain
and ambiguous information. Among the possible forms
of representation, we can distinguish between geomet-
ric representations, such as hypotheses about landmark
features [Drumheller, 1987], and grid-based representa-
tions, such as position probability grids [Burgard et al.,
1997b]. Both representations have interesting and useful
features.

The localisation problem can be divided into two sub-
problems: (1) the estimation of the absolute position
in the environment, usually referred to as absolute lo-
calisation, and (2) the tracking of the robot's position
relative to a given starting point, commonly referred to
as position tracking. The aim of position tracking is to
correct the accumulated dead-reckoning errors caused by
the inherent inaccuracy of the information provided by
the wheel position encoders.

The work reported in this paper was motivated by the
need to build a position tracking system for the Pio-



Figure 1: The Pioneer 1 mobile robot.

neer 1, a mobile robot platform manufactured by Real
World Interface. The Pioneer 1 is equipped with seven
sonar sensors, one on each side and �ve forward fac-
ing (see Figure 1). In comparison to mobile robots that
have a ring of sonars, the sensing capabilities of the Pi-
oneer 1 are rather limited. In our experimental setup,
the robot had to collect objects in an oÆce-like environ-
ment. The pose of the robot was required as input to
a learning algorithm which controlled the robot motors
and the gripper [Gro�mann and Poli, 1998]. At �rst, we
tried to use a Markov localisation method [Burgard et

al., 1997b]. However, this approach failed. The robot
became lost when the sonar sensor readings were sparse
and noisy, for example, when the robot was moving di-
agonally through a corridor. In this situation, the walls
of the corridor re
ect the sonar beams and hardly any
distance readings from the front sonars are correct.
In further investigations, we developed the new locali-

sation method described in this paper that works reliably
in our setup. The approach consists of three steps. First,
we compute a two-dimensional feature space by applying
a straight-line Hough transform [Leavers, 1992] to the
sonar readings. Second, we perform template matching
in the feature space by using the world map as reference
pattern. Third, we use the correlation counts obtained in
the previous step to update a position probability grid.
This novel approach to localisation is unique in that it
combines the detection of landmark features with a grid-
based matching technique for sets of features.
The paper is organised as follows. In Section 2, we crit-

ically examine related localisation methods and discuss
their strengths and weaknesses for the given application.
In Section 3, we introduce the Hough transform and de-
scribe the problems occurring when it is used alone to
detect walls, corners, and edges from sonar data. In Sec-
tion 4, we explain how these problems can be avoided by
matching features in the Hough space. The algorithm
is summarised in Section 5. An experimental evaluation
of the approach is given in Section 6. Finally, we draw
some conclusions in Section 7.

2 Localisation using ultrasonic sensors

2.1 The problems of sonar sensing

In order to estimate the robot's position reliably, we want
a localisation method which exploits as many features of
the environment as possible. Since only those features
can be exploited that are visible to the robot's sensors,

the e�ectiveness of the position estimation depends very
much on the interaction between sensors and environ-
ment.
In this paper, we are interested in using proximity in-

formation. The problem is that ultrasonic sensors do
not measure proximity. Instead, they measure the time
elapsed between emitting and receiving a focused sound
impulse. For smooth objects, the reception of the sonar
echo depends on the angle between the main sonar cone
and the re
ecting object. The sound waves that hit an
object frontally are very likely to re
ect back in the di-
rection of the sonar sensor, whereas waves that hit an
object at a small angle are likely to be re
ected away in
a direction where they cannot be detected. This situa-
tion is called total re
ection. In other cases, the sound
waves are not re
ected directly back to the sensor, but
will undergo multiple re
ections before they are received.
Those are usually referred to as specular re
ections. Due
to the e�ects above, only some of the sonar readings rep-
resent proximity. In addition, there is uncertainty on
which part of the beam was actually re
ected.
To overcome the e�ects of re
ections and specularities,

it is very common to use redundant readings. The most
important sources of redundancy are alignment and mo-
bility [Crowley, 1989]. The former refers to the fact that
the readings which are due to specular re
ection rarely
align. We can therefore use points that are aligned for
the detection of object surfaces. The latter refers to
the possibility of taking sonar readings from di�erent
observation points. As the viewpoint changes, incor-
rect distance readings due to specular re
ection project
onto widely varying surfaces, while correct readings cor-
responding to an object surface project onto that surface.
Therefore, if objects have smooth surfaces, in theory it is
possible to identify incorrect distance readings. In prac-
tice, this is a very diÆcult task.
Ideally, we want to obtain distance information in

all possible directions. This is possible if the robot is
equipped with a ring of sonars or a single rotating sensor.
In this respect, the capabilities of the Pioneer 1 mobile
robot are rather limited. Its seven sonars are mounted
at positions of 0, �15, �30 and �90 degrees with respect
to the pointing direction of the robot, each sensor having
a beam width of about 25 degrees. The sonar readings
are accumulated in three bu�ers, the front and two side
bu�ers (left and right). The front bu�er accumulates
one reading each time one of the front sonars is �red,
regardless of whether an echo is received or whether the
robot has changed its position. The two side bu�ers
accumulate sonar readings only when a side sonar actu-
ally receives an echo and the robot moves. The size of
front bu�er is 20 readings. The two side bu�ers contain
40 readings each.
As the view of the robot is restricted to the front and

sides, visibility and appearance of features in the envi-
ronment change with the orientation of the robot. Fig-
ure 2 demonstrates how the robot's behaviour a�ects the
visibility of walls. If the robot travels through a corridor
along a straight line keeping a constant distance from



(a) The robot is moving parallel
to the walls of the corridor.

(b) The robot is changing its direction of
movement repeatedly.

Figure 2: Sonar sensor readings of a Pioneer 1 mobile robot operating in an indoor environment.

both sides, then the walls of the corridor are clearly
visible in the sonar data. However, if the direction of
movement is changed repeatedly, for example, when the
robot is trying to pick up an object, then the perception
of the walls degrades to a set of non-connected line seg-
ments. Considering this observation, there seem to be
two alternatives: (1) the localisation method should not
rely on the detection of individual landmark features, or
(2) the localisation method should be able to deal with
the uncertainty inherent in the detection of landmarks.

2.2 Dense sensor matching techniques

Recently, dense sensor methods have been proposed that
do not rely on the recognition of landmarks. Instead,
they attempt to use whatever sensor information is avail-
able. Examples of dense sensor methods are Markov
localisation [Burgard et al., 1997b], which uses a proba-
bility distribution across a grid of robot poses, and scan
matching [Gutmann et al., 1998], which uses Kalman �l-
tering techniques based on matching sensor scans. In the
following paragraph, we describe the method in [Burgard
et al., 1997b] in more detail, both to illustrate the im-
portance of each method's assumptions in determining
its reliability and to provide some background for our
extension of this method presented in Section 4.3.

Burgard and colleagues [Burgard et al., 1997b] pro-
posed a Markov localisation method that has been ap-
plied successfully in several real-world environments.
The method is based on a probabilistic representation
that can handle ambiguities and represent degree-of-
belief. In particular, they use a position probability
grid P to accumulate in each cell of the grid the prob-
ability p(L) that this cell refers to the current pose, L,
of the robot. The grid P is updated according to Bayes'

formula. Suppose p(L) is the prior probability that L
is the current pose of the robot. Then the (posterior)
probability of L referring to the current pose given the
new sensor reading, s, is de�ned as:

p(Ljs) = p(sjL) p(L)P
L02P

p(sjL0) p(L0)

This equation is used as an update rule when only an in-
dividual sensor reading is available. However, the robot
receives a set of readings, (s1; : : : ; sn), each time step.
That is:

p(Ljs1 : : : sn) =
p(s1 : : : snjL) p(L)P

L02P

p(s1 : : : snjL0) p(L0)

Assuming that the readings (s1; : : : ; sn) are statistically
independent, the total probability of a set of measure-
ments can be computed as:

p(s1 : : : snjL) =
nY
i=1

p(sijL)

and we can write the update formula as:

p(Ljs1 : : : sn) =
p(s1jL) : : : p(snjL) p(L)P

L02P

p(s1jL0) : : : p(snjL0) p(L0)

The independence assumption above is probably justi-
�ed for a mobile robot equipped with a ring of 24 sonars
as the one used by Burgard and colleagues. For such a
robot, we can assume that the measurements provided
by the front sonars are statistically independent of the
ones from the backward-pointing sonars. However, this
assumption is incorrect for the Pioneer 1 robot. Indeed,



we re-implemented the position tracking approach by
Burgard and colleagues [Burgard et al., 1997b] and found
that the robot was likely to lose track of its position in
situations similar to the one in Figure 2(b), when the
sonar readings were sparse and noisy.

2.3 Feature-based localisation techniques

In our application, we do not want to rely on active
control to overcome the problems caused by the limited
sensing abilities of the robot. Neither we want to use
target tracking methods, which rely on complex, prior
information about the environment such as the surface
re
ectance and geometry of the objects. Instead, we fo-
cus on landmark-based localisation techniques that cor-
relate simply-shaped objects such as walls, corners, and
edges in the sonar data against a given map of the en-
vironment. In this section, we brie
y review previous
research in this area.
Drumheller [Drumheller, 1987] proposed a feature-

based localisation algorithm for mobile robots equipped
with a sonar range-�nder. He introduced the idea of
sonar segments, which are straight-line segments ex-
tracted from the measurements obtained in a 360-degree
sweep of the sonar range-�nder. Moreover, he used a
sonar barrier test, which eliminates implausible robot
positions by exploiting the physical constraint that sonar
beams do not penetrate solid objects. However, the al-
gorithm is not able to exploit readings from di�erent po-
sitions. Crowley [Crowley, 1989] and others proposed to
use this redundant information to identify erroneous dis-
tance readings. In Crowley's approach, a sonar segment
is not formed unless three consecutive distance readings
align with a certain tolerance.
To our knowledge, previously to our work no feature-

based localisation algorithm that avoids the problem
that a single wall is perceived only as set of non-
contiguous segments has been reported in the literature.

3 Detecting walls and corners with the

Hough transform

The Hough Transform (HT) is well known in com-
puter vision as a shape detection method [Ballard, 1981;
Leavers, 1992]. In general, its purpose is to detect para-
metric curves in sets of primitive feature points. It has
the advantage of being relatively una�ected by gaps in
curves and by noise. So it would appear that the Hough
transform has the right features to be used for the de-
tection of straight line-segments in sonar data.

3.1 The Hough transform

We consider the straight-line Hough transform. This
maps straight lines in the input data to points in the
HT space. Each point in the HT space has a strength
measure associated with it. The strength of a point in
the HT space is proportional to the length and width of
the corresponding line in the input space.
A straight line in the two-dimensional x-y coordinate

plane (input space) can be described by the equation

y
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Figure 3: Parameters of a line and quantisation of the
Hough space.

� = x cos � + y sin � where � is the shortest distance be-
tween the origin and the line, and � is the angle between
the line normal and the positive x-axis (see Figure 3).
We assume the origin of the x-y coordinate system to
be in the centre of the input space. We can limit the
line angle � to 0 � � < �, if we allow negative values
of �. In the �-� parameter plane (HT space), the line
is mapped to a single point. Given a particular point
in the input space, there are in�nitely many lines pass-
ing through this point. The parameters of all lines go-
ing through a point, (xi; yi), in the input space consti-
tute a sinusoidal curve in the (�; �) HT space, given by
xi cos � + yi sin � = �.

The implementation of the Hough transform is based
on parameter discretisation. If the values of � and �
are discrete, we can form an accumulator array, A(�; �),
whose elements are initially zero. The parameter �
is quantised in values �k with k = 1; : : :; n such that
�k � �k�1 = ��. The Hough transform of a feature
point, (xi; yi) is performed by computing � from the
equation above for all n values of �k. The values of � are
then quantised in m discrete values �k with k = 1; : : :;m
such that �k � �k�1 = ��, and the corresponding cells
A(�k; �k) are incremented. This procedure is repeated
for all feature points. Collinear feature points now show
up as peaks in the accumulator array A(�; �).

The Hough transform as described above can be ap-
plied to sonar sensing by using the two-dimensional dis-
tance readings as feature points. Recently, Yun and col-
leagues [Yun et al., 1998] found that one can use such
a straightforward implementation to recognise wall-like
features from noisy sonar data. However, the accuracy
of detected features depends very much on the quanti-
sation parameters �� and ��. Yun and colleagues used
a robot equipped with a ring of 16 sonars. In our ex-
perience, a similar approach does not work reliably on a
robot with very few sensors.



3.2 Compensating the error caused by
parameter quantisation

In contrast to Yun and colleagues [Yun et al., 1998], we
believe that the errors due to the parameter quantisation
need to be considered and corrected. The quantisation
resolutions, �� and ��, determine the mapping of input
points to accumulator cells. This can be illustrated as
follows. By quantising the values of �, the input space is
divided completely into bar-shaped windows for constant
values of � (see Figure 3). The smaller ��, which is the
width of the windows, the fewer points are included in a
line estimation. The quantisation resolutions specify the
spread of the points which are allowed in forming a line.
If the Hough transform is to be applied to sonar data,
we cannot make the quantisation resolution arbitrarily
small, since the input data is very noisy. Clearly, there is
a trade-o� between the accuracy in the position estimate
and the reliability of the detection process.
The e�ect of the parameter quantisation on the Hough

transform has been thoroughly studied in computer vi-
sion [Veen and Groen, 1981]. Straight-line features are
identi�ed by searching for local maxima in the accumu-
lator array. The shape of the peaks is in
uenced by
several factors, which include (1) the quantisation of the
input space, (2) the �-� parameterisation, and (3) the
width of the line segments. Hence, those factors need to
be considered in a method that locates the peaks in the
HT space.
The input space is formed by the two-dimensional dis-

tance readings stored in the sonar bu�ers. As the sonar
bu�ers keep track of previous readings, the distribution
of the input points depends not only on the position
of the sensors but also on the movements of the robot.
There are situations in which the sonar readings form
dense clusters. We need to ensure that the feature points
are sampled at a suitable mutual distance on the line
segment. Multiple readings obtained from the same sen-
sor and same position would bias the detection process.
Therefore, we quantise the input space by superimpos-
ing a squared grid on the x-y coordinate plane. If there
is more than one sonar reading per grid �eld, only the
�rst one is used as feature point for the Hough trans-
form. The size of the cells, h, in this grid, is chosen so
that h � ��.
In general, a straight-line segment will not have a di-

rection exactly identical to one of the values �k. That
is, the line segment will cross several parallel windows
with a direction �k. Hence, the peak in the HT space
will be extended over several accumulator cells in the �-
direction corresponding to those windows. To minimise
the spread of the peak in �-direction, �� is chosen so
that

�� u l sin

�
1

2
��

�
for a given �� and a maximum length l of the line seg-
ments [Veen and Groen, 1981].
Up to this point, we have assumed that feature points

lie exactly on line segments. However, this does not hold

Figure 4: Problems in the detection of walls and corners
using the Hough transform: (a) multiple local maxima,
(b) erroneous lines through dense clusters, (c) corner in-
ference, and (d) line artifacts through re
ection.

for sonar sensing because of the noise inherent in the
sensors. We model the imprecision of the sonar mea-
surements using the line width b. That is, we assume
that the feature points lie exactly on a thick line rather
than assuming that the line segment is in�nitesimally
thin.
A solution to the problems mentioned above is to �lter

the uncompensated accumulator values using a function
of the values in a neighbourhood of each point. In the
work described in this paper, we have used the error cor-
rection method proposed by van Veen and Groen [Veen
and Groen, 1981]. All points of a line segment are taken
into account in the peak searching step by summing the
values in n� cells in the �-direction for each �k value
(moving average �ltering) and looking for a maximum
of this sum. Given the assumptions mentioned above,
the maximum number of cells, n�, of the peak in the
�-direction is:

n� =

$p
l2 + b2 sin

�
1
2
�� + arctan b

l

�
��

%
+ 2

in which bzc means the largest integer smaller than z.

3.3 Other sources of errors

In this section, we discuss problems that remain when
the Hough transform is used to detect straight-line seg-
ments in sonar readings. In contrast to the e�ects of
parameter quantisation discussed before, these problems
are speci�c to the domain of sonar sensing.
Because of the noise inherent in the sonar data, sharp

peaks rarely occur, rather all peaks are distorted and dif-
fused. Therefore, we encounter situations in which there
is uncertainty in the detection process. Instead of a sin-
gle line segment, the Hough transform can identify a set
of lines, each line having slightly di�erent parameters.



An example is given in Figure 4(a). Although the er-
ror compensation method mentioned above can ease the
problem by smoothing the accumulator array, multiple
local maxima can still occur.

The Hough transform has the tendency to identify line
segments with a maximum number of points, since the
accumulator count is just the number of points in the
line. Therefore, two dense clusters of feature points can
give rise to a single erroneous line. As shown in Fig-
ure 4(b), a line is detected between any two clusters if
these clusters combined contain more points than any
other line in the neighbourhood.

Also, the line parameters obtained in the Hough trans-
form can be biased. For example, corners tend to inter-
fere with the parameter estimation. As shown in Fig-
ure 4(c), the points belonging to the perpendicular seg-
ment alter the slope of the estimated line by pulling it to
one side. This problem is particularly severe if we aim
to detect small but straight line-segments.

As discussed in Section 2, sonar sensing is subject
to re
ections and specularities. Feature points due to
multiple re
ections can give rise to line segments for
which there is no corresponding world segment (see Fig-
ure 4(d)). There is no straightforward way to detect
these false peaks since the Hough transform ignores the
relative position of lines. Peaks can be due to line seg-
ments in the input space that do not touch each other
and that do not even lie near to each other.

Considering these detection errors, in particular the
occurrence of line artifacts due to re
ection, we conclude
that a localisation method based solely on the detection
of single features such as wall-like segments cannot pro-
vide the reliability required. We overcome this problem
by taking constraints about the position of the world
segments into account. As described in the next section,
this can done directly in the Hough space.

4 Matching in the Hough space

In the following, we assume that a map of the robot's
environment is available and that this world map can
be represented as a list of straight-line segments, W =
fw0; w1; : : : ; wng. For each world segment wi, the start
and end point is known. So, we can compute the corre-
sponding set, R, of angle-radius parameters (�; �) of all
world segments. The idea is to match the sonar read-
ings and the world map directly in the Hough space. As
pointed out by Krishnapuram and Casasent [Krishna-
puram and Casasent, 1987], similar objects have similar
Hough transforms and di�erent objects have di�erent
Hough transforms. So we can use R, the polar coordi-
nates of the world map, as reference pattern and by try-
ing several rotated and translated versions (templates)
of this pattern, we can �nd the position where the ref-
erence pattern matches best the Hough transform of the
current sonar readings. The templates can be computed
from the reference pattern R as follows.

4.1 Rotation and translation in the Hough
space

Let (�; �) be a point in the HT space corresponding to a
line segment in the input space. If all the points in the
input space are rotated by an angle d�, it can be shown
that the line segment would now map to a di�erent point
(�0; �0) in the Hough space given by

�0 = � and �0 = � + d� if 0 � � + d� � �

�0= �� and �0 = � + d� � � if � + d� > �

�0= �� and �0 = � + d� + � if � + d� < �

It can also be shown that if all the points in the input
space are translated by (dx; dy), the point (�; �) will now
map to the point (�0; �0) given by

�0 = �+ t cos(� � �) and �0 = �

where t =
q
d2x + d2y and � = arctan

dy
dx
. These transfor-

mations are adapted from [Krishnapuram and Casasent,
1987].

4.2 Template matching

To apply template matching, we need to specify (1) the
search space, (2) a set of reference patterns, and (3) a
correlation measure.
Let A be the accumulator array for performing the

Hough transform on a set of sonar sensor readings ob-
tained using the estimate (px; py; p�) of the robot's pose.
The HT space is quantised using the resolutions �� and
��. The last step of the Hough transform is an error
compensation with n�. A point (�k; �k) in the HT space
corresponds to the accumulator cell Aij with the index
functions i = b�k=��c and j = b(�k � �min)=��c.
For eÆciency reasons, the matching should be per-

formed directly in the Hough space by selecting the
appropriate cells in A. Since the Hough transform is
concerned with lines, not line segments, this straightfor-
ward approach fails in environments where parallel world
segments are close to each other, or the angle between
neighbouring world segments is small. In these cases, we
have to take into account the individual points that con-
tributed to a particular element of A. So we divide the
line segments in W into con
icting and non-con
icting
world segments. A line segment a is said to con
ict with
a line segment b if j�a � �bj < d� and j�a � �bj < d�. We
have used d� = 10 deg and d� = 300 mm. In addition,
we do not consider world segments shorter than 500 mm.
The Hough transform, A, of the sonar readings is

matched with several rotated and translated versions of
R. This search is performed for rotations d� quantised
in �� intervals and for translations dx and dy quantised
in �� intervals to the degree required for the given sit-
uation. For each template, there is a corresponding dis-
placement (dx; dy; d�). For each r 2 R, we compute a
correlation value, c, given by

c(r) =

8<
:
Ar(i

0; j0) if r are the coordinates of a

con
icting world segment

A(i0; j0) otherwise:



with (i0; j0) being the image of r = (i; j) under the
displacement transformation (dx; dy; d�). Ar(i; j) is the
number of points that contributed to A(i; j) and that lie
between the begin and end points of the segment that
corresponds to r. Consequently, the correlation value for
a template (dx; dy; d�) is

cR =
X
r2R

c(r)

4.3 Position probabilities

After determining the template (dx; dy; d�) that yields
the maximum correlation value, we want to compute a
new estimate of the robot's pose. If it is based solely on
the current best match, such an estimate is still subject
to ambiguity. For example, in situations where the sonar
readings are sparse, it might not be possible to identify
any world segment with con�dence. It is also possible
that the detected world segments have the same orien-
tation. To remove these ambiguities, we decided to use
the correlation values obtained by template matching to
compute position probabilities. That is, we use a posi-
tion probability grid on top of a feature-based localisa-
tion approach.
The crucial component in the update equation of the

Markov localisation method discussed in Section 2.2 is
p(sjL), the likelihood of observing the sensor reading s
at the position L, which can be computed from the world
map and a model of the sonar sensors [Burgard et al.,
1997b]. Instead of the individual sonar readings, we pro-
pose to use the likelihood that a particular correlation
count is observed at the location. We obtain the follow-
ing update formula:

p(Ljc) = p(cjL) p(L)P
L02P

p(cjL0) p(L0)

We assume that p(cjL) is proportional to the value of c.
The values p(Ljc) are stored in a position probability

grid P . At the beginning, the probability grid is ini-
tialised using the a priori probability that the location
that corresponds to the particular grid cell refers to the
start position of the robot. An update is performed by
multiplying the value in each grid �eld by the correla-
tion count, c, obtained at the corresponding position, L.
Then, we normalise P .

5 The algorithm

The position of the robot is only updated if there is suf-
�cient evidence. We require that at least one sonar seg-
ment is detected per update step. If the pose cannot be
corrected for a long time due to a lack of consistent sonar
readings, we consider the odometry errors. In each time
step where no position update is available, the position
probability grid is updated using an error model of the
odometry sensors. The method can be summarised as
follows:

(0) Initialisation.

� Initialise the probability grid P for the given
start position p = (x; y; �).

(1) Pre-processing of sensor data.

� Get current estimate of the robot pose, p.

� Get current sonar sensor readings and map
them into the global coordinate system used
for localisation.

� Keep track of sensor readings in the front and
side sonar bu�ers.

(2) Detection of sonar segments.

� Compute accumulator array A using the read-
ings in the sonar bu�ers and perform error com-
pensation on A.

� Obtain a set of sonar segments the accumulator
count (number of feature points) of which is
greater than Amin.

� If any such segments were found go to (4). Oth-
erwise, continue with (3).

(3) Probability grid update.

� Update the position probabilities in P using an
error model of the odometry sensors.

� Go to (1).

(4) Template matching in Hough space.

� Perform template matching in A at neighbour-
ing positions of p.

� Update the position probabilities in P using
the correlation values obtained during template
matching.

� Determine the displacement (dx; dy; d�) that
corresponds to the maximum value in P .

� Update the estimate of the robot pose, p, at
time step t, such that p(t) = p(t�1)+(dx; dy; d�).

� Match the detected sonar segments to segments
in the world map. (This step is optional.)

� Go to (1).

6 Experiments

The experimental evaluation of localisation methods is
diÆcult. The performance usually depends on the en-
vironment, the behaviour of the robot and the hard-
ware [Gutmann et al., 1998]. We have tested our posi-
tion tracking system in two laboratory environments. As
shown in Figure 5, both environments consist of straight
wall segments. In particular, the second environment is
diÆcult to navigate using sonar sensors due to the ex-
istence of many corners and edges. Position tracking
experiments were performed using the Pioneer 1 mobile
robot in two scenarios: (1) a navigation task in which
the robot had to reach goal positions randomly chosen
within the environment, and (2) a can collection task in
which the robot had to pick up soda cans from the 
oor
and take them to a collection point.
The position tracking method described in this paper

has only very few parameters that depend on the ap-
plication. These are (1) the maximum length l of the



(a) Size 3.5m � 4.6m. (b) Size 5.2m � 4.4m.

Figure 5: Laboratory environments used for the localisation experiments.

world segments, (2) the desired angular resolution, ��,
and (3) the minimum number of sonar readings, Amin,
required for a straight-line segment to be detected. We
have chosen l = 700 mm, �� = 8 deg, and Amin = 22.
Clearly, the choice of l depends on the environment the
robot operates in. But this setting is not critical as it
in
uences mainly the e�ectiveness of the error compen-
sation in the Hough transform. The choice of Amin de-
pends on the number of sonar sensors and the size of
the sonar bu�ers. If Amin is too small then many false
line segments will be detected. If Amin is too large then
short world segments will not be detected. We had no
diÆculties in �nding an appropriate setting for Amin.
The remaining parameters can be computed from l and
��. We have used �� = 50 mm, h = ��, and n� = 5.
In the experiments, we found that the proposed

method is able to keep track of the robot's position re-
liably. In the two scenarios, no catastrophic localisation
failure was experienced at any time. The system be-
haved robustly even in situations when the quality of
information received from the sensors was degraded over
long periods of time.
Figure 6 shows two situations from one of the position

tracking experiments. The left-hand side panels show
the sonar sensor readings and the detected sonar seg-
ments with respect to the current estimate of the robot's
pose, p. The right-hand side of the �gure shows a rep-
resentation of the position probability grid, P . P is a
function of three variables: the position in the x-y plane
and the robot's orientation, �. We represent the four
dimensions using directed line segments. For each cell
in P there is one directed line segment. The base of the
line segment represents the position (x; y), its direction
represents �, and its length corresponds to the value of
the grid cell. The probability grid is centred at p. In our
case, P consists of 30 cells in x direction, 30 cells in y di-
rection and 22 cells in � direction. The resolution of the
grid in x-y direction is ��, the resolution in � direction
is ��. Many of the probability values are negligible. In
Figure 6(a), the robot is situated in a corridor. Because

the walls of the corridor are in y direction, the robot's
pose in this direction is uncertain. In Figure 6(b), P has
several local maxima. That is, several positions are con-
sidered as current pose at the same time.
We have tested our position tracking system also in

simulations using the Pioneer 1 simulator developed
by Konolige [Konolige, 1997]. The performance was very
similar to the results obtained on the robot platform. As
the sonar sensor model implemented in the simulator is
suÆciently realistic, we take this as further evidence that
our method is robust.
We do not know whether the proposed approach will

work in highly cluttered environments. However, the ex-
perimental evidence suggests that it may be applied to
typical oÆce environments in which the walls are clut-
tered by various small objects. The method will still be
able to detect wall-like features present in the environ-
ment. Likewise, the presence of people will not cause
severe problems, provided that the robot's sensors are
not obstructed for long periods of time. The proposed
method could be also applied to large environments by
using a dynamic window approach, in which only a small
area of the world map is considered during localisation.
In terms of computation, the approach proposed in

this paper is more eÆcient than the re-implemented
Markov localisation method [Burgard et al., 1997b].
This is mainly due to the fact that the Hough trans-
form and the subsequent matching in the Hough space
is less computationally expensive than determining the
likelihoods p(sjL). In our approach, we can easily com-
pute a full update on the basis of 80 sonar readings in
less than one second on a 200 MHz Pentium PC.

7 Conclusions

We have presented a novel position tracking approach
that works reliably also when the information available
from the sensors is sparse and noisy. We have demon-
strated that the method can be used with a simple
mobile robot equipped with seven sonar sensors. The



(a) Uncertainty in y direction.

(b) Several local maxima.

Figure 6: Typical situations in a position tracking experiment.



method is robust and computationally eÆcient. The
main contribution of this paper is to understand why
this approach to localisation is more robust than other
techniques. From our point of view, the main reasons are
as follows. This approach is less dependent on individual
sonar sensor readings than a traditional Markov localisa-
tion approach. Rather than using the product of the like-
lihoods, p(sjL), we use the correlation count (a combined
feature) for the computation of position probabilities. In
addition, we use the detection of wall-like segments in
the sonar data to detect situations in which the the cur-
rent sensor information is insuÆcient for localisation. In
those situation, the sensor information is not used to up-
date the position probabilities. Our method integrates
a feature-based detection method with a dense-sensor
matching technique by using the Hough transform for
feature detection and a grid-based approach to update a
distribution of position probabilities.
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