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Abstract

A neural network approach to the classic
inverted pendulum task is presented. This task is the
task of keeping a rigid pole, hinged to a cart and free
to fall in a plane, in a roughly vertical orientation by
moving the cart horizontally in the plane while keep-
ing the cart within some maximum distance of its
starting position. This task constitutes a difficult con-
trol problem if the parameters of the cart-pole system
are not known precisely or are variable. It also forms
the basis of an even more complex control-learning
problem if the controller must learn the proper actions
for successfully balancing the pole given only the cur-
rent state of the system and a failure signal when the
pole angle from the vertical becomes too great or the
cart exceeds one of the boundaries placed on its posi-
tion.

The approach presented is demonstrated to
be effective for the real-time control of a small, self-
contained mini-robot, specially outfitted for the task.
Origins and details of the learning scheme, specifics
of the mini-robot hardware, and results of actual
learning trials are presented.

1 Introduction

Pole-balancing is the task of keeping a rigid pole,
hinged to a cart and free to fall in a plane, in a roughly ver-
tical orientation by moving the cart horizontally in the
plane while keeping the cart within some maximum dis-
tance of its starting position (see Figure 1). Variously
known as the inverted pendulum problem, pole-balancing,
stick-balancing, or broom-balancing, this task is a classic
object of study in both system dynamics (where the equa-
tions of its motion are of interest)[4], [16] and control the-
ory (where control systems capable of balancing the pole
are of interest)[20]. The dynamics are by now well under-
stood, but they provide a difficult task nonetheless, as the
system is inherently unstable. Further, if the system
parameters are not known precisely, or may vary, then the
task of constructing a suitable controller is, accordingly,
more difficult.

The pole-balancing task is quickly becoming a clas-
sic object of study in the theory of control-learning, as
well. Systems that can learn to balance poles were first
developed over thirty years ago [6], [23] and many more
have been developed since (e.g. [1], [3], [5], [7], [8], [9],
[11], [15], and [19]). All of these systems have fallen
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short of fully solving the inverted pendulum problem (see
Subsection 5.3  “Discussion”) due to the difficult nature of
the problem. In the most difficult version of the problem
(which we refer to in this paper as the full or entire prob-
lem), the learning system is provided with nothing but a
vector encoding the current state of the cart-pole system
and a single failure signal which indicates that any one of
the four error conditions (pole fell left, pole fell right, cart
went too far left, or cart went too far right) has occurred.
Because a great many actions will have been specified by
the controller when failure is finally signalled, determining
which actions were “correct” and which were the cause of
failure is an extremely difficult credit and blame assign-
ment problem.

Perhaps due to the difficulty of this problem, or per-
haps due to a failure to understand the shortcomings of
simulation, most researchers have used their control-learn-
ing systems only on simulations of cart-pole systems.
What is likely the first control system to learn to balance a
pole in an actual physical system without the aid of an out-
side teacher was only recently developed (see [12]). Yet
even this system does not solve the complete problem on
its own; fully half the problem is solved for it before it
even begins the training process (see Subsection 5.3  “Dis-
cussion”). We present, then, what we believe to be the first
control system which learns to solve the entire pole-bal-
ancing problem for a real, physical cart-pole system.

2 Problem Definition

The pole balancing problem, as it pertains to con-
trol-learning theory, is really a class of problems of the
general form described above. For simulation results, a
standard (as presented in [2]) is generally, but not always
(e.g [9]), followed. For actual cart-pole systems, the
parameters are naturally quite variable. For our cart-pole
system, many of the system parameters are known only
very roughly and others are unknown. It is not necessary
for us to known the particulars of our cart-pole system, as
it is the task of the learning system to decide the correct
control actions and the learning system is designed to
work on the class of problems, not on any particular
instantiation of it.

Approximations of the cart-pole system parameters
are as follows (see Figure 1): The mass of the cart is
roughly 1 kilogram, the pole has a roughly uniform mass
of 50 grams and a length of approximately 1 meter, giving
a center of mass approximately 0.5 meters from the pivot.
The cart is restricted to stay within approximately 4.0
meters of its initial position and the pole within roughly
12° of vertical. Violating either of these conditions causes
a failure signal to be generated and the trial to end.

The standard of allowing the cart only “bang-bang”

control (allowing only for a preset force to be applied in
either direction on the cart, rather than a variable force
application) was approximated by the application of a sin-
gle torque pulse in either direction by the motor on any
time step. The magnitude of this torque pulse is not
known.

The coefficient of friction in the “hinge” between
the cart and the pole (actually a variable resistor, see Sec-
tion 4 “The Robot”) was not estimated, nor was the fric-
tion in the axles nor that produced by the motor itself, nor
was the coefficient of sliding friction between the tires and
the floor. Finally, changes due to a reduction in battery
power during the run were not estimated.

To reduce the computational load on the mini-
robot’s processor (see Section 4.2  “Mini-Computer
Board”), the state vector was restricted to approximations
of the cart position and pole angle. (Standard versions of
the pole-balancing problem provide the controller with
cart velocity and pole angular velocity as well.)

3 SONNET

The learning system follows the Self-Organizing
Neural Network with Eligibility Traces (SONNET) para-
digm first described in [11]. The SONNET paradigm
delineates a general class of control-learning systems
which are appropriate for problems in which correct con-
trol actions are not known, but a feedback mechanism that
allows for an overall evaluation of system performance
(success and/or failure signals) is available and for which
system performance is temporally based on network
responses.

The SONNET paradigm combines the self-organiz-
ing behavior of Kohonen’s Self-Organizing Topological
Feature Maps (Kohonen Maps, see [14]) with the concept
of an eligibility trace (see Section 3.2  “The Eligibility
Trace”) to create a class of novel and powerful control-
learning systems. A SONNET system (known as PBMax
after its intended task and particulars of its computations)
was applied to a standard simulation of the pole-balancing
problem [11]. Here, a (new) SONNET-style network is
applied to an instantiation of the inverted pendulum prob-
lem using a real cart-pole system for the first time.

3.1 Self-Organizing Maps

Kohonen has proposed as set of connectionist sys-
tems based the recognition that in biological neural net-
works (i.e. brains) there are regions (especially in the
cerebral cortex) for which topology preserving relations
exist between patterns of input from sensory organs and
the physical arrangement of the neurons themselves [14,



pp.119-122]. These areas provide efficient representations
for interrelated data. Kohonen Maps, then, are a class of
conceptually similar artificial maps that use several simple
techniques (such as lateral inhibition) in concert to achieve
the same general effects as those found in biological sys-
tems. Kohonen Maps have been used extensively as pat-
tern classifiers.

3.2 The Eligibility Trace

Biological neurons are highly complex and their
functions are only very roughly approximated by the artifi-
cial neurons in today’s connectionist systems. One func-
tion found in biological neural networks, as noted in [13],
is what we refer to here as the ‘eligibility trace’. This func-
tion is the result of neurons becoming more amenable to
change immediately after they fire. This plasticity reduces
with time, but provides an opportunity for learning based
on feedback following the neuron’s activity.

Building on this idea, we can construct an artificial
neural network capable of learning based on temporal
feedback. The network receives input, gives responses
and, when feedback signals arrive, is updated based on the
neurons’ eligibilities for change. Notably, this feedback
can come from some other system (such as a cart-pole sys-
tem) that the network is causally connected to.

3.3 The PBMin Learning System

A particular learning system, the Pole Balancer for
the Mini-robot (PBMin) was constructed under the SON-
NET paradigm. Unlike previous SONNET systems,
PBMin is restricted to using integer values, due to restric-
tions imposed by the mini-robot’s onboard processor. This
fact should be kept in mind when viewing the equations
given below.

3.3.1 Welcome to the neighborhood

One concept borrowed for SONNET from Kohonen
Maps is that of ‘neighboring.’ This concept relates to the
topological arrangement of the neurons which does not
change as the network learns. In PBMin, the topology is
rectangular; the nearest neighbors of any neuron are those
neurons which have identification numbers differing by
one in either or both digits from those of the neuron in
question. For example, the nearest neighbors of neuron
(3,3) are (2,2), (2,3), (2,4), (3,2), (3,4), (4,2), (4,3), and
(4,4). In Figure 2, all nearest neighbors are directly con-
nected by line segments.

Figure 2

A ‘neighborhood’, then, is a set of neurons within
some “distance” (defined according to network’s topol-
ogy) of the neuron in question. A neighborhood may have
any width from zero (the neighborhood is restricted to the
neuron itself) to the width of the network itself (such that
the entire network is within the neighborhood).

More formally, for a rectangular network, if U is the
set of units u in the network, (i, j) the numerical identifier
of each neuron, and ω the width of the neighborhood, then
the neighborhood N of neuron n is defined as

. (1)

In PBMin, a constant neighborhood width of one
was used; the neighborhood for any given neuron was
therefor reduced to the set of nearest neighbors plus the
neuron itself. Figure 2, therefor, shows the entire connec-
tivity of the network. The rectangular topology was cho-
sen to match the two-dimensional input (state) vector (see
Section 2 “Problem Definition”).

3.3.2 Cooperation and competition

Each neuron has one “weight” (an integer) associ-
ated with it for each dimension of the input space. Because
PBMin receives a two-dimensional input vector, each neu-
ron correspondingly has two input weights. These weights
are initially set so that the neurons are laid out in a rectan-
gular matrix which matches the shape of the network’s
topology and uniformly covers approximately the central
15% of the input space. Each time a new input X is given
to the network, its values are compared with the values of
the weights of all of the neurons. To reduce computation
time, the similarity measure used in this comparison was
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simply the sum of the differences between the entries in
the input vector and the corresponding weights. (More
commonly, the Euclidean distance would be used.) The
neuron s which has weights most closely matching the
input vector (according to the similarity measure) is called
the “selected” neuron.

Formally, the selected neuron s is defined as

(2)

where wn is the pair of weights for neuron n. If more than
one neuron satisfies equation (2), then one of these neuron
is selected by some arbitrary method. The weights of the
selected neuron are updated to match the input vector
more closely according to the equation

, (3)

where x is the entry in the input vector to which the given
weight corresponds, and α is a scaling factor which, for
PBMin, was kept at 0.002.

The neurons in the neighborhood of the selected
neuron also have their weights updated according to equa-
tion (3). In this way, all the neurons in the network com-
pete for selection and each neuron, when selected,
cooperates with the others in its neighborhood to arrive at
new input weight values.

3.3.3 Self-organized output

These concepts from Kohonen Maps are extended
for control by adding one or more output values (weights)
for each neuron. These output weights may be updated in a
manner similar to that used for the input weights. For
example, if an output response is given by the selected
neuron, and this value differs from the correct out
response, the output weight of the selected neuron might
be updated according to the equation

, (4)

where v is the output weight, r is the correct response, and
β is a scaling factor. This idea has, in fact, been used to
create networks which can learn to self-organize output as
well as input (e.g. [10], [17], and [18]). The limiting factor
to these approaches is that they require a teacher be avail-
able to give the network a “correct” answer. These super-
vised learning schemes are appropriate to some problem
domains, but other domains require that the learning sys-
tem solve the problem independently.
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3.3.4 Eligibility for adaptation

The use of an eligibility trace makes a teacher
unnecessary in domains in which system performance is
temporally dependant on network responses. For PBMin,
the eligibility for adaptation e, for each neuron n, was cal-
culated according to the equation

, (5)

where δ is the rate of eligibility decay, ι is the initial eligi-
bility for change for a neuron which has just fired, and σ is
a function of the neuron’s output o. Only the selected neu-
ron gives an output response, so σ is defined to be zero for
all neurons besides the one selected. For non-selected neu-
rons, then, equation (5) reduces to a simple decay in the
level of eligibility. All neurons have their eligibility level
initially set to zero.

Conceptually, PBMin has a single output weight for
each neuron which may take on both positive and negative
values; a positive value indicates a push (torque pulse) in
one direction and a negative value a push in the other
direction. PBMin also has two separate eligibility traces;
one for reward and the other for punishment. The function
σ is such that an eligibility for reward will increase the
magnitude of a neuron’s output value without changing its
sign. An eligibility for punishment, on the other hand,
might result in either a reduction in magnitude without a
change in sign, or might cause a change in sign and a
change (either reduction or increase) in magnitude. Which
of these results is the case depends on the neuron’s initial
value and its eligibility for punishment. Both reward and
punishment signals are generated only upon failure, so
output values stay constant within a trial, but change
between trials. The central difference between the eligibil-
ity for reward and that for punishment is the decay rate.
For reward the decay rate δr is 0.99 and for punishment
the decay rate δp is 0.90.

Building on the eligibility function, the output
weights of the neurons are updated according to

(6)

where ρ is the feedback response from the controlled sys-
tem S, and ξ is the number of neurons in the neighborhood
in question. In this way neurons cooperate to ensure that
nearby units have similar output values. Note, however,
that there is no competition to be the neuron selected for
change. All neurons are updated on failure (when there is
feedback from the controlled system).
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4 The Robot

The robot, like the learning system, is named
PBMin. PBMin is an inexpensive, small, self-contained
robot. It has its own onboard mini-computer and operates
independently once the pole-balancing program is loaded.

4.1 Chassis

The chassis is made from a modified radio con-
trolled car (see Figure 3). Most of the original electronic
components, except for the motors, are removed. A 7.2
volt battery is attached to the back end of the chassis. The
plastic that originally covered the radio controlled car is
removed. The mini-computer board, the motor board, and
the pole angle sensor are stacked in the middle of the car.
PBMin’s position sensor is mounted on the front of the
chasis.

4.2 Mini-Computer Board

The mini-computer board contains the MicroCon-
troller Unit (MCU) and memory (see Figure 4). The mini-
computer board is 2 1/4 inches wide and 4 inches long.

The MCU is a 8 megahertz 68HC11A1FN micro-
controller made by Motorola. PBMin makes use of two of
the MCU’s internal devices -- they are: (1) the analog to
digital converters, which are used to get the angle of the
pole and obtain PBMin’s position and (2) the serial port,
which is used to receive the pole balancing program from
the main computer.

The memory on the mini-computer board is divided
into Random Access Memory (RAM) and Erasable Pro-

Figure 3

grammable Read Only Memory (EPROM). The mini-
computer board has 32 kilobytes of RAM, which is used to
store and run the pole balancing program, and 16 kilobytes
of EPROM, which is used to start up the MCU.

4.3 Motor Board

The motor board is the same size as the mini-com-
puter board and is stacked immediately below it on the
chassis. The motor board supplies power to PBMin’s drive
motor allowing the robot to go forwards or backwards, or
stop.

4.4 Pole Angle Sensor

The pole angle sensor is a variable resistor attached
to a pole (see Figure 5(a)). The pole that PBMin uses is a
common yard stick. As the pole tips it turns the shaft of the
variable resister. The variable resistor converts the angle
of the pole into a voltage, which is read by the mini-com-
puter board.

4.5 Cart Position Sensor

The position sensor is made up of two infrared
transmitter and receiver pairs (IR modules, see Figure
5(b)). A transmitter sends out infrared light, which
bounces off the paper disk, to its receiver. This paper disk
has white and black regions on it (see Figure 5(c)) and is
attached to PBMin’s left front wheel. When PBMin moves
forwards and backwards, the wheel and disk rotate, and
the receiver senses different amounts of infrared light (see
Figure 5(d) and (e)).

When an IR module senses a white region, it sends
a signal to the mini-computer board. The mini-computer
board looks at the two signals it receives from the two IR
modules and interprets which way the wheel has turned
and by how much.
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5 Results and Discussion

Experimental results have shown the PBMin learn-
ing system to be an effective real-time controller for pole-
balancing and, by extension, that the SONNET paradigm
(previously only used for the control of simulated systems)
can be used for the construction of real-world controllers.
The performance of the PBMin system is seen to approach
optimal control for this robot on this task.

5.1 Experimental Set-up

The robot was run in a large, open, carpeted room.
The size of the room dictated the size of the “track.” The
robot allowed the robot to go 4 meters in either direction
of start.

The robot was programmed with three different
programs: (1) the PBMin learning system described above
(see Subsection 3.3  “The PBMin Learning System”), (2) a
preprogrammed solution that we believe produces optimal
control given only the cart position and pole angle, and (3)
a program that used a file of random numbers for com-
pletely random control of the cart-pole system. For each
program, the robot performed runs of 50 trials and sent
back results.

5.2 Results

As a baseline for comparison, the robot was con-
trolled by random numbers. Three runs of fifty trials were
performed. The average time for these trials was 1.6 sec-
onds.

To get a measure of the potential balancing ability

of the robot, the network was given the optimal solution.
One run of fifty trials was performed. The average trial
time of this run was 12.8 seconds.

The PBMin learning system was run with different
sets of random initial output weights. Five runs of the first
set of weights were performed and an average trial time of
3.3 seconds was obtained. One run each of three additional
sets of weights were performed and an average trial time
of 3.3 seconds was obtained. The fact that the average trial
time stayed constant regardless of the values of the ran-
dom initial weights demonstrates that the ability to of the
system to learn is not dependent on the initial weight val-
ues.

5.3 Discussion

Because of the difficulty of this problem, many
authors (e.g.[7], [8], [22], and [23]) have constructed sys-
tems which learn by watching the actions of a who person
controls the cart-pole system and a few (e.g. [7] and [9])
have made systems which learn by observing the cart-pole
system as it is controlled by another computer program.
There systems are completely incapable of solving the
pole-balancing problem without this outside aid. Others
(e.g. [5]) have been forced to give their systems “hints” in
order for them to solve the problem.

Most systems which are said to solve the pole-bal-
ancing problem without teachers or hints really do no such
thing. In these authors’ systems (e.g. [3], [15], [19], and
[21]) the input space is partitioned by the researcher, rather
than by the learning system. This head start makes a sig-
nificant difference. In one of the few instances where the
entire pole-balancing problem is approached [1], a single
layer neural network that can learn to balance a pole quite
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well when the input space partitioning is precomputed by
the author, fails to learn much beyond the level of random
control when applied to the entire problem and a two layer
network takes, on the average, nearly 100 times as long to
learn when the input space partitioning was not provided
for it. (The only other case that we are aware of where
learning pole-balancing is attempted without a pre-parti-
tioning of the input space is in the first SONNET paper
[11].)

PBMin is applied to the entire pole-balancing prob-
lem; it needs to dynamically partition the input space
while learning the output space. To reduce the computa-
tional load on the processor, however, it was necessary to
restrict the input vector to two dimensions. This means
that our system could not take cart velocity or pole angular
velocity into account. These elements of the state vector
must be taken into account if long-term stability is to be
achieved.

In the only previous paper in which researchers
attempt to apply a control-learning scheme to a real cart-
pole system [12], the input space is partitioned by the
researches, rather than by the learning system. Because of
this, and because of differences between their cart-pole
system and the one presented here, direct comparisons
between results obtained with the two systems may be
misleading. For instance, one might note that their system
never exceeded a run length of 10 seconds within the first
50 trials whereas ours never failed to achieve this mile-
stone. However, in fairness to their system, it should be

mentioned that such quick learning was probably never a
goal for those researchers as their system was provided
with an external power source, whereas ours had a very
limited battery capacity. Or, one might note that, in some
versions, their system achieved levels of success (as mea-
sured by time until failure) that ours never did. This suc-
cess, however, came only after at least 150 trials whereas
our runs were stopped at 50 trials due to limitations
imposed by the battery.

Perhaps the best comparison for our learning sys-
tem is with the performance of other learning systems on
the same hardware. Unfortunately, other learning schemes
are simply too computationally expensive to be imple-
mented on our mini-robot in real-time. We can compare
our results, however, with two ends of the automatic con-
trol spectrum. These are complete random control and
what we believe to be optimal control given only the pole
angle and cart position. The averages of each of these
strategies are plotted along with the results of a single run
of the learning scheme in Figure 6. As can be seen, the
controller’s learned behavior approached the average per-
formance of the “optimal” controller.

It should be noted that the optimal controller varied
widely in its performance. From a minimum of 90 time
steps until failure to a maximum of 847, the performance
of the optimal controller highlights the effects of initial
conditions and noise on the results obtained by any control
scheme for this cart-pole system.
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