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Abstract

We address the problem of building environment maps from ultrasonic range

data obtained from multiple viewpoints. We present a novel environment mod-

elling technique called the `response grid' that allows us to build occupancy maps

in highly specular environments. We present three di�erent approaches that

utilise this technique: a Bayesian probabilisitic approach, a Dempster-Shafer evi-

dential reasoning approach and a winner-take-all heuristic approach. All three ap-

proaches can be implemented in real-time with modest computational resources,

and as such are suitable for use in mobile robot navigation tasks. We present and

compare the experimental results obtained by these three methods in a highly

specular indoor environment.

1 Introduction

Building environment maps from sensory data is an important aspect of mobile

robot navigation, particularly for those applications in which robots must func-

tion in unstructured environments. Ultrasonic range sensors are, super�cially, an

attractive sensor modality to use in building such maps, due mainly to their low

cost, high speed and simple output. Unfortunately, these sensors have a num-

ber of properties that make map building a non-trivial process. In particular,

standard sensors have very poor angular resolution and can generate misleading

range values in specular environments. The �rst of these problems can be largely

overcome by combining range measurements from multiple viewpoints. Elfes [1]

and Moravec [2] describe an approach in which range measurements from multi-

ple viewpoints are combined in a two-dimensional `occupancy grid'. Each cell in
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the grid is assigned a value indicating the probability that the cell is occupied.

Unfortunately, the occupancy grid approach does not work well in specular envi-

ronments. Specular re
ection may occur whenever an ultrasonic pulse encounters

a smooth extended surface [3]. In such cases the pulse may not be re
ected back

to the ultrasonic sensor; in e�ect, the surface may appear to be invisible. In or-

dinary o�ce environments which contain smooth walls and glass doors specular

re
ection is common. In this paper, we improve on earlier grid-based approaches

by introducing the concept of a `response grid'. The intent of the response grid

framework is to produce an approach which has the advantages of the occupancy

grid framework, but also performs well in specular environments.

The response grid framework attempts to model the behaviour of ultrasonic

range sensors in a more physically realistic fashion. A number of other authors

have considered the physical behaviour of such sensors in some detail [4, 5, 6]; in

this paper, however, we are only conerned with physical behaviour in-so-far as it

allows us to generate two dimensional occupancy maps in specular environments.

The basic notion that the response grid encapsulates is that a cell may generate

a response (ie appears to be occupied) when viewed in one direction, but will not

generate a response when viewed from another. For example, a smooth planar

surface will only generate a response when the angle of incidence between the

surface normal an the beam emitted by the sensor is close to zero. At larger angles

of incidence the surface will generate no response. In the original occupancy map

framework, this would present a contradiction, since this approach assumes that

an occupied cell should generate responses in every direction.

In this paper, we present three di�erent methods for generating occupancy

maps from ultrasonic range data within the re
ection grid framework. The dif-

ference between the three methods lies in the di�erent techniques they use to

combine data obtained from multiple viewpoints. We present and compare a

Bayesian probabilistic reasoning approach, a Dempster-Shafer evidential reason-

ing approach and a heursitic winner-take-all approach. The Bayesian approach

can be viewed, to some extent, as a generalisation of the approach described by

Elfes [1] and by Moravec [2]. This earlier work appears as a special case in our

approach. The second approach utilises the Dempster-Shafer theory of evidential

reasoning to combine evidence. We will see that these �rst two methods pro-

duce very similar results. To our knowledge, Dempster-Shafer techniques have

not previously been applied to ultrasonic map building; they have, however, been

applied to the somewhat similar task of building occupancy maps from stereo

image pairs [7]. The �nal method we present is based on a simple winner-take-all

heuristic for combining evidence. In contrast with the other two methods, this

method makes no assumptions about the statistical independence (or otherwise)

of repeated measurements. On the other hand, it is not as robust in the pres-

ence of errors. In Section 5 we compare the experiemental results obtained by

all three methods and consider their relative advantages. Note, however, that

all three methods can be implemented in real-time with modest computational
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resources, which makes them well suited to mobile robot navigation tasks.

In the following sections, we describe some of the properties of ultrasonic

range sensors and develop the response grid framework in detail. The theory and

implementation of the three mapping methods is described, together with some

experimental results obtained in a highly specular environment.

2 Framework

2.1 Properties of ultrasonic range �nders

In order to motivate the discussion to follow, it is important to understand some

of the physical properties of ultrasonic range sensors (detailed discussions of the

physical properties of such devices can be found in [4]). Standard ultrasonic range

sensors, such as the widely used Polaroid device, emit a series of short ultrasonic

pulses in a beam which is about 20� wide. The pulses propagate through the

air, re
ect o� solid objects and arrive back at the sensor. By timing the interval

between the emitted pulse and the returned echo, these devices can measure

ranges up to about 10 meters with an accuracy of the order of a few centimeters

[3]. The di�culty with using these devices is two-fold. Firstly, the broad beam

results in very poor angular resolution; the location of the object generating

the re
ection is known accurately in only one dimension (that along the beam

axis). This limitation can be overcome by taking measurements from multiple

viewpoints and combining the data. Secondly, when interacting with an extended

surface the ultrasonic pulse will tend to undergo specular re
ection. This means

that for certain surface orientations there will be no return pulse received by

the sensor: the surface is e�ectively invisible. Alternatively, the pulse re
ected

from a surface may then re
ect o� another surface before returning to the sensor.

This `multiple re
ection' e�ect produces totally misleading range measurements.

Although the environment model described in the next section copes well with

`invisible' surfaces, it has no e�ective way of dealing with multiple re
ections.

2.2 The Response Grid

We model the environment as a set of cells arranged in a regular two-dimensional

grid. A given cell in the grid may either be entirely empty, or else it may contain

one or more surfaces which re
ect ultrasonic pulses. A pulse entering a cell will

do one of three things:

� If the cell is entirely empty, the pulse will pass through the cell una�ected.

� If the cell contains one or more re
ective surfaces, the pulse may be re
ected

back to the ultrasonic detector.
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� If the cell contains one or more re
ective surfaces, the pulse may be re
ected

away from the ultrasonic detector.

The behaviour of a pulse re
ecting o� a surface contained in the cell will de-

pend upon the orientation of the surface and the direction of the incoming pulse.

If a pulse which is propagating in some given direction is re
ected back to the

detector, the cell is said to have a response in that direction. In this paper,

we determine the occupancy of each cell by assuming that any cell that gener-

ates a response in one or more directions must contain at least one surface and

is therefore occupied. Note that this leaves open the possibility of a cell being

occupied, but not having a response in any direction. This situation can arise

either when the cell contains a material that entirely absorbs incident pulses,

or else contains a surface that re
ects the pulses in such a way that they can

never return to the detector. The former of these cases arises rarely in real world

situations and can be ignored, but the latter case requires more careful consid-

eration. The model that is proposed here is two dimensional, being intended for

use with mobile robots whose ultrasonic sensors are generally constrained to mo-

tion in a plane. To an ultrasonic sensor so constrained, certain three-dimensional

shapes are e�ectively invisible. Thus any algorithm using ultrasonic sensor data

to determine occupancy must fail under certain environmental conditions. Fortu-

nately, such conditions are rare in many environments, particularly human-made

environments such as o�ces and factories.

A second problem arises when a surface re
ects pulses in such a way that they

travel to another surface and are then re
ected back to the detector. Without

some way of knowing that this `multiple echo' e�ect has occurred, the detected

response will be attributed to the wrong cell. Consequently, a cell which is in

fact empty may appear to be occupied. This e�ect is quite common; it is clearly

visible in the experimental results presented in Section 5.

The model described above can be expressed mathematically as follows. The

occupancy of a cell at location (x; y) is measured by the state variable Occ which

can have one of two values:

Occ(x; y) = [occupied; unoccupied]: (1)

The response of a cell in some direction � is measured by the state variable Res:

Res(x; y; �) = [response; no response]: (2)

The direction � is allowed to take discrete values between 1 and n. The two state

variables are bound together by a logical implication. In order to express this

clearly, we de�ne a set of propositions:

O : Occ(x; y) = occupied

R� : Res(x; y; �) = response: (3)
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That is, the proposition O states that the cell at (x; y) is occupied and the

proposition R� states that the cell at (x; y) generates a response in direction �.

We can therefore write the implication:

O( R1 _R2 � � � _ Rn�1 _ Rn: (4)

In this paper we present three methods for using ultrasonic range data to deter-

mine the response properties of each cell, and thence to determine occupancy.

3 Mathematical Background

3.1 Method 1: Bayesian

The objective of the Bayesian method is to determine, for each cell, the probability

that the cell is occupied. That is, for a cell at (x; y) we wish to determine the

probability that the proposition O is true. Rather than attempting to calculate

this probability directly from range data, we compute it indirectly. Since O is

related to the cell responses by the logical implication expressed in Equation 4,

the probability that the cell is occupied must be given by:

p(O) = p(R1 _ R2 � � � _ Rn�1 _ Rn): (5)

To expand the right hand side of this equation, we make use of the observation

that for two independent propositions A and B, the probability of either A or B

being true is given by [8]

p(A _ B) = p(A) + p(B)� p(A)p(B): (6)

Applying this to the above equation, one obtains after a little algebra:

p(O) = 1� ��(1� p(R�)): (7)

This expression can be used to compute the probability that a cell is occupied once

we have determined the cell response probabilities. Note that this involves the

determination of n separate probabilities, since fR1 � � �Rng is a set of independent

propositions.

Consider now just one proposition R� corresponding to the response in direc-

tion �. We can apply Bayes' rule to determine the probability that R� is true,

given a range measurement r:

p(R� j r) =
p(r j R�)p(R�)

p(r)
: (8)

In this expression p(R�) is the prior probability of obtaining a response. In

Bayesian approaches it is very common to set the prior probability to 0:5 to
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indicate no opinion. However, in our case this leads to undesirable results. Con-

sider a single cell for which we have no measurements; applying Equation 7 to

determine the probability that the cell is occupied would yield p(O) = 1�0:5n. So

for n = 8 we would have p(O) = 0:996. That is, on the basis of no measurements

whatsoever we would conclude with near certainty that the cell is occupied. A

better way to set the prior probabilities in this case is to demand that p(O) = 0:5

in the absence of any measurements. This implies that we should set the prior

probability to:

p(R�) = 1� (0:5)
1

n : (9)

The other important term in Equation 8 is the sensor model p(r j R�). The

sensor model indicates the probability of obtaining the measurement r, given that

the proposition R� is true. Let s be the distance between the cell and the sensor;

the sensor model we use is:

p(r j R�) =

8><
>:

0:05 if s < r

0:5 if s > r

�=r if s = r

: (10)

Qualitatively this can be expressed as follows:

� If the cell is closer to the sensor than the recorded range, then cell probably

does not generate responses in this direction: p(r j R�) = 0:05.

� If the cell is farther from the sensor than the recorded range, then we know

nothing about this cell: p(r j R�) = 0:5.

� If the cell is the same distance from the sensor as the recorded range, then

the cell may generate a response in this direction: p(r j R�) = �=r.

The �rst two parts of this model are self-explanatory, but the third requires

some explanation. When the sensor records a range r we know that something

at this range has generated a response. Due to the �nite angular resolution of

the detector, however, there may be a number of cells that may have generated

this response. In general, the number of such cells will be proportional to the

measured range, so the probability that any individual cell generated the response

is inversely proportional to the measured range. In e�ect, we give more weight to

short range measurements than to long range measurements. This rule is both

physically plausible and intuitively appealing. The � that appears in the above

rule is a normalisation constant: summing over the probabilities assigned to each

cell at range r should yield a total probability of 1. The value of � is determined

by the spatial dimensions of the cells making up the map and by the angular

resolution of the ultrasonic sensor.

The model we use ignores statistical errors associated with the range value

itself; that is, our model is ideal. We justify this simpli�cation by noting that
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for common types of ultrasonic sensors such errors are of the order of one or

two centimetres. In practical applications, such as mobile robotics, these errors

are insigni�cant compared to errors arising from other sources, such as robot

(mis)localisation.

Equations 7, 8 and 10 provide us with the mathematical tools required to

construct a Bayesian occupancy map. We will postpone discussion of practical

implementations of such a map until Section 4, where the implementation of all

three methods presented in this paper is considered.

3.2 Method 2: Dempster-Shafer

The Dempster-Shafer Theory of Evidence [9] can be applied to our problem in

a straight-forward fashion. The objective is to determine the support for the

proposition O. From the logical implication expressed in Equation 4, we can

write the following:

Sup(O) = Sup(R1 _R2 � � � _Rn�1 _Rn): (11)

To expand the right hand side of this equation, we use the Dempster-Shafer

analogue of Equation 7 . Given two independent propositions A and B, the

support for the combined proposition A _ B is given by [10]:

Sup(A _B) = Sup(A) + Sup(B)� Sup(A)Sup(B): (12)

Applying this to the expression above, one obtains:

Sup(O) = 1� ��(1� Sup(R�)); (13)

which allows us to calculate to support for the proposition that a cell is occupied,

once we have determined the support for each of the propositions fR1 � � �Rng.

Consider now just one possible response direction. In order to determine the

support for the proposition that the cell responds in this direction, the Dempster-

Shafer approach requires that we construct a relevant frame of discernment, which

is a set which contains all the propositions of interest. In our case, the frame of

discernment contains just two propositions: that the cell responds, or that it does

not:

� = fR�;:R�g: (14)

In general, support for these propositions cannot be determined directly from

the available evidence. Instead, support is computed indirectly via the mass

distribution. The mass distribution allows us to allocate a `weight' to any element

in the frame of discernment, or to any proper subset of the frame of discernment.

Thus in our application, the mass distribution can assign weight to any element

in the set:

2� = fR�;:R�; R� _ :R�g: (15)
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The weight assigned to an element in this set indicates the amount of evidence

that supports that element directly. Support for propositions in the frame of

discernment can be calculated according to the rule:

Sup(A) =
X
A�B

m(B): (16)

Thus the support for the proposition R� is trivially equal to m(R�). The mass

distribution is somewhat similar to a probability distribution in that it must be

non-negative and must sum to one. Consider the following mass distribution:

m(R�) = 0

m(:R�) = 0

m(R� _ :R�) = 1: (17)

For brevity we write this as (0; 0; 1). This distribution corresponds to complete

ignorance, since it will yield no support for either R� or its negation. Contrast

this with the distribution (1; 0; 0), which indicates complete support for R� and

no support for its negation; and with (0:5; 0:5; 0), which indicates a contradiction -

there is equal support forR� and its negation. One of the attractive features of the

Dempster-Shafer approach is the way in which the ignorance and contradiction

are clearly distinguished; this is not true of the Bayesian approach.

In our problem, every new measurement arriving from the ultrasonic sensor

is treated as a new piece of evidence for which we must generate a mass dis-

tribution. These separate distributions must then be combined to generate a

collective opinion. If m(� j r1) and m(� j r1) represent mass distributions arising

from independent measurements, the combined mass distribution m(� j r1; r2) is

given by Dempster's rule [9]:

m(C j r1; r2) =
1

1� �

X
A\B=C

m(A j r1)m(B j r2); (18)

where � is de�ned as

� =
X

A\B=;

m(A j r1)m(B j r2); (19)

and A, B and C are elements of the set fR�;:R�; R� _ :R�g. Inspecting the

above equation, one can see that when a contradiction exists (for example when

there is support for both a proposition and its negation), � will be non-zero. As

a result � is usually interpreted as indicating the degree of contradiction between

the two mass distributions. Dempster's rule can be thought of as Dempster-Shafer

equivalent of Bayes' rule.

The rule we use for generating mass distributions from range measurements is

analogous to the sensor model used in the Bayesian case. Let m(� j r) be the mass
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distribution resulting from the measurement r; let s be the distance between the

cell and the sensor; the sensor model we use is:

m(� j r) =

8><
>:

(0; 0:95; 0:05) if s < r

(0; 0; 1) if s > r

(�=r; 0; 1� �=r) if s = r

: (20)

Qualitatively, this can be expressed as follows:

� If the cell is closer to the sensor than the recorded range, then the cell has

not generated a response in this direction: m(� j r) = (0; 0:95; 0:05).

� If the cell is farther from the sensor than the recorded range, then we know

nothing about the response of this cell: m(� j r) = (0; 0; 1).

� If the cell is the same distance from the sensor as the recorded range, then

the cell may respond in this direction: m(� j r) = (�=r; 0; 1� �=r).

The reasoning used to arrive at this model is identical to that used in the Bayesian

case. We note only that the initial, or prior, mass distribution we use corresponds

to complete ignorance { (0; 0; 1). The implementation of this method is considered

in Section 4.

3.3 Method 3: Winner-take-all

In this section we present a simple alternative method for bulding occupancy

maps. This method arises from the observation that both the Bayesian and

Dempster-Shafer methods assume that range measurements are independent. It is

not clear that this is the case when building maps from ultrasonic range data. The

winner-take-all method described here makes no such assumptions and thereby

allows the e�ect of that assumption to be determined.

Consider �rst the determination of cell occupancy. Let Bel(O) represent the

strength of belief that the cell is occupied and let Bel(R�) be the belief that

the cell responds in direction � (this should not be confused with the Dempster-

Shafer concept of support, which is somethimes also refered to as belief). The

belief that the cell is occupied is computed according to the following rule:

Bel(O) = max�Bel(R�); (21)

that is, we take the belief to be the maximum of all the cell response beliefs.

Using this rule, a strong belief that the cell responds in one direction is both

necessary and su�cient to obtain a strong belief that the cell is occupied; it is

not su�cient for there to be a small amount of belief in many directions.

Looking at the sensor models used in the Bayesian and Dempster-Shafer meth-

ods, we can see that evidence really comes in two forms { evidence suggesting that
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the cell reponds and evidence suggesting that it does not. Let Ev(R�) represent

the strength of the evidence suggesting that a cell does respond, and Ev(:R�)

the evidence that it does not. We use the following rule to convert evidence to

belief:

Bel(R�) =

(
Ev(R�) if Ev(R�) > Ev(:R�)

0 otherwise
: (22)

This is a winner-take-all rule: we discard all the evidence supporting R� if there is

more evidence supporting its negation. We also require some rule for combining

evidence. The rule we use is as follows. Given two pieces of evidence Ev(� j r1)

and Ev(� j r2), the combined evidence Ev(� j r1; r2) is given by:

Ev(� j r1; r2) = max [Ev(� j r1);Ev(� j r2)] : (23)

In order words, when presented with two pieces of evidence, we simply take the

best one and discard the other. All that remains now is to determine how to

compute Ev(R�) and Ev(:R�) from a range reading. As we have argued in

previous sections, the best evidence to the measurement in which the distance

between the cell and the sensor is least. In fact, the strength of evidence is

inversely proportional to the distance between the cell and the sensor. This leads

to the following result: for a cell at a distance s from the sensor, a range reading

r generates evidence for R�:

Ev(R� j r) =

(
1=s if s = r

0 otherwise
; (24)

and for :R�:

Ev(:R�) =

(
0 if s = r

1=s otherwise
: (25)

Although this method appears super�cially complicated, it is very simple to im-

plement. Nor is the method entirely ad-hoc: it resembles, in many ways, a

Fuzzy-Logic approach to the problem.

4 Implementation

The implementation of all three methods described in the preceeding sections is

remarkably similar. The map is represented by a two-dimensional array, with each

cell corresponding to a region of the environment. Each cell has associated with it

a value which represents the cell's occupancy, and an array of values representing

the cell's responses. The meaning of these values will depend upon the method

being used. When a measurement is taken, the �rst step is to determine which of

the cells in the array should be updated to re
ect this measurement. If we imagine

that the pulse emitted by the ultrasonic sensor propagates outward through a

conical region of space, then only the cells corresponding to this region of space
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should be updated. For the Polaroid sensors used in our experiments, this will

be all cells within about �10� of the center line of the sensor. Furthermore, for

each of the candidate cells, only one of the responses needs to be updated { that

corresponding to the direction of the emitted pulse. Once this determination

has been made, the appropriate cell response can be updated and the overall

cell occupancy recomputed. The details of the update process depend upon the

method used.

4.1 Bayesian

Consider �rst the Bayesian method. The cell occupancy is represented by the

probability p(O) and the cell responses an array of probabilities p(R�). These

probabilities are initialised according to the rules discussed in Section 3.1:

p(R�)  1� 0:5
1

n

p(O)  0:5: (26)

Let r be a particular range measurement produced by a pulse emitted in direction

�. A single response probability is updated as follows:

p(R�)  
p(r j R�)p(R�)

p(r j R�)p(R�) + (1� p(r j R�))(1� p(R�))
(27)

This is simply Bayes' law (equation 8) recast in an incremental form, with the

current response probability used as the prior probability. The sensor model,

equation 10, is used to determine p(r j R�). The new cell occupancy p(O) can be

recomputed using equation 7.

4.2 Dempster-Shafer

In the Dempster-Shafer implementation, cell occupancy is represented by the

support Sup(O) and cell responses by an array of mass distributions m(�). These

are intialised to `don't know' values:

m(R�)  0

m(:R�)  0

m(R� _ :R�)  1

Sup(O)  0: (28)

Let r be a particular range measurement produced by a pulse emitted in direction

�. The following update scheme is used:

m(R�)  
m(R� j r)m(R�) +m(R� _ :R� j r)m(R�) +m(R� j r)m(R� _ :R�)

m(R� j r)m(:R�) +m(:R� j r)m(R�)
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m(:R�)  
m(:R� j r)m(:R�) +m(R� _ :R� j r)m(:R�) +m(:R� j r)m(R� _ :R�)

m(R� j r)m(:R�) +m(:R� j r)m(R�)

m(R� _ :R�)  
m(R� _ :R� j r)m(R� _ :R�)

m(R� j r)m(:R�) +m(:R� j r)m(R�)
(29)

These three expressions represent an expanded version of Dempster's rule, equa-

tion 18. The sensor model, equation 20, is used to determine m(� j r). The new

cell occupancy Sup(O) can be recomputed using equation 12.

4.3 Winner-take-all

In the winner-take-all implementation, cell occupancy is represented by the be-

lief Bel(O) and cell responses by an array of evidence values Ev(�). These are

initialised as follows:

Ev(R�)  0

Ev(:R�)  0

Bel(O)  0: (30)

Let r be a particular range measurement produced by a pulse emitted in direction

�. The appropriate reponse evidence value is updated as follows:

Ev(R�)  max [Ev(R� j r);Ev(R�)]

Ev(:R�)  max [Ev(R� j r);Ev(R�)] : (31)

The sensor model, equations 24 and 25, is used to determine Ev(� j r). The new

occupancy belief value Bel(O) is computed by applying, in order, equations 22

and 21.

5 Experimental results

The results presented in this section where obtained using a small mobile robot

with a single Texas Instraments/Polaroid ultrasonic range-�nder attached to a

pivoting head. The sensor has an unobstructed view and can rotate through

360� in 7:5� increments. Consequently, 48 range readings are generated by each

`sweep' of the pivoting sensor head. Figure 1 shows the environment in which the

experiments where conducted; this is a relatively complex environment containing

a number of boxes, a hatstand and a chair. The robot is allowed to travel in a

more-or-less straight line between the obstacles, taking range readings as it goes.

The results shown in this section include readings from about 30 complete sweeps

of the sensor head, i.e. about 1440 individual readings. The robot's location is

determined by simple odometry. The robot has an on-board 386 processor which

12



Figure 1: Test environment

is fast enought to generate maps in real time (i.e. it can incorporate new range

measurements at the rate at which they are acquired).

Figure 2 shows the maps produced for varying values of n (i.e. varying num-

bers of response directions). Each pixel in these maps represents a region 4 cen-

timetres square. Cells which are probably occupied (or for which we have strong

support or belief) appear darker than cells which are probably unoccupied. The

dotted line shows the path of the robot.

Consider �rst the n = 8 result for the three methods. The Bayesian and

Dempster-Shafer maps are quite similar (not-withstanding the fact that in the

Bayesian map, `unknown' cells appear as gray, whereas in the Dempster-Shafer

map they appear white). These maps clearly show the various boxes, the hat-

stand and the chair in the test environment. The winner-take-all map also shows

these features, but in addition at has a number of ghostly shapes at the top

and bottom of the map. These shapes are the result of multiple re
ections {

some of the surfaces in the environment act like mirrors under certain circum-

stances. The winner-take-all map is also generally `noisier' than the other maps.

The Bayesian and Dempster-Shafer methods do appear to produce better results

than the winner-take-all method, presumeably because they combine evidence

in such a way that all measurements can make a contribution. The indepen-

dence assumption made in both these methods does not seem to adversely a�ect

the results. We note, however, that the winner-take-all method does have one

advantage over the other two methods: it is signi�cantly faster. Whereas the

other two methods use relatively slow multiplication to combine evidence, the

winner-take-all method uses faster max operations throughout.

Comparing the Bayesian result to the Dempster-Shafer result for n = 8 we
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Bayesian Dempster-Shafer Winner-take-all

Ideal

n = 1

n = 4

n = 8

n = 16

Figure 2: Occupancy maps
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can see that there is not a great deal of di�erence. As far as the implementation

is concerned, the Bayesian method is slightly faster (it has fewer multiplications)

and is more e�cient in its use of memory (it requires that we store n + 1 values

per cell, as opposed to 2n + 1 for the Dempster-Shafer method). Note that in

the Bayesian map, cell values are always in the range [0:5; 1] (the lower bound

comes from our choice of prior probabilities { it could be set to an arbitrarily low,

non-zero value). The Bayesian method we have developed cannot tell us which

cells are probably empty, it can only tell us the cells that are probably occupied.

This holds true of the other two methods also; it is a feature not of any particular

method, but rather of the environment model we have chosen and the nature of

ultrasonic range sensors.

Comparing the n = 16 result with the n = 1 case, it can be seen that there is a

sharp decrease in the quality of the maps as n becomes small. Note particularly

the n = 1 case, where we are e�ectively ignoring the response behaviour and

attempting to compute cell occupancy directly (the Bayesian n = 1 case corre-

sponds to the method described by Elfes [1]). The reason for this fall o� is simple

{ the evidence obtained from multiple measurements is contradictory when n is

small. Consider a smooth surface for example. A pulse whose angle of incidence

on this surface is greater than about 40� will not be re
ected back to the sensor.

Consequently, this measurement will suggest that there is no response from the

cell corresponding to the surface. Imagine that a second pulse is emitted, this

time at an angle of incidence less than 40�. This time a response is recorded.

If n is large, these two measurements are consistent { the cell responds in one

direction, but not in another. On the other hand, if n is small, then a contradic-

tion presents itself { two pulses where emitted in more-or-less the same direction

(they correspond to the same direction `bin'), but one generated a response and

the other did not. In the extreme case, n = 1, the entire approach collapses.

This is a feature not of any particular method { it is consistent across all three

methods { but of the environment model we have proposed.

On the other hand, close comparison of the n = 16 and n = 8 maps reveals

that the n = 8 map is somewhat less noisy. Once again, this is a feature of the

environment model and not of any particular method. For large values of n, the

chances that two measurements will fall into the same response direction `bin'

becomes very small. Consequently, there is no combination of evidence occuring

at this level. For our particular experimental con�guration, the optimal value of

n seems to be about 8.

6 Conclusion

The remarkable thing about the three methods presented in this paper is the sim-

ilarity of the results they produce. The best results are produced by the Bayesian

and Dempster-Shafer methods, with the Bayesian method appearing somewhat
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faster and slightly more e�cient in its use of memory. The experimental results

clearly demonstrate the advantage of the response grid framework in highly spec-

ular environments. Note, however, that there are some limitations to the work

presented here. Most importantly, the occupancy maps we generate allow use

to assert, with a high degree of con�dence, that a cell is occupied. They do not

allow use to assert that a cell is unoccupied. This is a property of the response

grid framework, which in turn derives from the properties of ultrasonic ranges

sensors. When such a sensor detects some object we can safely assume that there

is in fact an object present (ignoring the case of multiple re
ections). On the

other hand, when a sensor fails to detect an object, we cannot assume that there

is no object present. Unfortunately, in many robot navigation tasks, detecting

`free space' is more important than detecting obstacles. This leads us to suggest

a natural extension to the response grid framework presented. Each cell could

have associated with it a value indicating how `well measured' that cell is. This

value might be one if the cell has been measured from every possible direction

and zero if it has not been measured at all. We would then be justi�ed in con-

cluding that a cell that does not appear to be occupied and is well measured is, in

fact, unoccupied. We are currently exploring this extension, together with some

dynamic extensions which will make the response grid approach suitable for use

in changing environments.
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