A Robot Map-Creation Algorithm

Jon Howell

May 29, 1999

Abstract

This paper describes an algorithm by which a
robot can construct a map on the fly, and local-
ize itself to its self-constructed map. This work
was performed as my term project in Artificial
Intelligence class, CS 104.

1 The model

A robot should be able to navigate around a
space with some persistent memory of the fea-
tures of that space. In my system, the robot be-
gins by taking a sonar sounding, which produces
a polar distance map of the robot’s immediate
neighborhood. The robot is assumed to be at
the origin (0,0), and these initial soundings are
taken to be the robot’s initial map.

Then the robot proceeds to move in some di-
rection (goal planning is outside the scope of
this project), stops, and takes another sound-
ing. This sounding is fit to the existing map, on
the assumption that the features in the robot’s
neighborhood have not changed much. The best
fit returns a most likely location of the robot
relative to the origin; the soundings are then
shifted by the robot’s now-known position, and
contributed to the map. This cycle repeats in-
definitely as the robot explores; at each stop, the
soundings pointing “behind” the robot’s path
help it localize itself, and the soundings pointing
ahead contribute new information to the map.

In this paper, I assume the robot has reliable
orientation information, such as from a compass.
It may have a few degrees of error, but that er-
ror does not accumulate as would error from a
relative sensing system, such as odometry.

The algorithm presented here is based on

Brown and Donald’s idea of a “feasible pose”
[BD9G].

2 Experimental setup

The data used in this experiment were col-
lected from the RWI B14 robot named bonnie
that resides in the Dartmouth Robotics Lab.
The environment consists of the assorted desks,
chairs, robots, and cardboard boxes that were
strewn about the lab on Thursday, May 27, 1999.
The robot has sixteen sonar transducers evenly
spaced 22.5° apart. By rotating the robot’s body
to each of {0°,6°,11°,17°} and taking soundings
from every sensor, I simulated a ring of sixty-four
sensors at 5.6° spacing.

A sonar sensor measures the time-of-flight of a
burst of sound. Sonar can see a “cone” of about
22° arc, so it blurs the boundaries of the ob-
jects it sees. The return value is a single number
representing the first echo above some threshold
amplitude, so the blur is a box convolution. If
sonar hits a surface at a wide angle from the
surface normal, the signal may not return, or it
may bounce off a second surface and produce a
“ghost” image.

The algorithm is meant to be an online algo-
rithm, but I built and tested it in an offline fash-
ion. I manually placed the robot at twenty-eight
different locations in the lab, and took soundings
of the sonar surface around the robot at each lo-
cation. In each case, I positioned the robot over
the intersection of the steel floor tiles, so I knew
its position to within about a centimeter, and
its orientation to within a few degrees (see Fig-
ure 1).

I calibrated the sonar by placing a box at
known distances from 1 m to 4 m from the robot,

"
A E ¢
— ! it 7 b—a £
¥ n
= #] - & ¥ T
" -C.': L ol :'l-"! ILH- o :

1
i

Figure 1: A hand-drawn map of the environ-
ment. Circles at intersections of the two-foot
tiles show the locations where soundings were
taken.

and reading the sonar value. The returned values
and the known values had a very close to linear
relationship, which is not surprising: sound trav-
els at a constant speed, and time is one quantity
we can “sense” with high precision (see Figure 2).
All of the sonar soundings were mapped through
the measured linear function to produce a dis-
tance value in millimeters. I also produced a
histogram of the entire collection of 7,616 sonar
readings, shown in Figure 3. Low values (less
than 200) are reflections from the cables hanging
off the robot; high values are always 16384, a sen-
tinel meaning “no echo received.” These thresh-
olds were used to remove useless values from the
input data.

The first experiment, described in §3, com-
pares the robot’s determination of its position
with the position I recorded.

In the second experiment, described in §4, only
soundings from successive positions of the robot
are considered in the algorithm. The computed
position of the robot is used to locate the robot
in the map and contribute the new soundings to
the map. The positions are sorted by distance
from the origin, simulating the robot growing
its map slowly by “pushing the envelope” of the
well-mapped area. Therefore, this second exper-
iment approximates online behavior in the sense

4500

4000 - 4

3500 - b

3000 b

2500 T

2000 b

1500 [b

1000 [b

500 b

0 580 10‘00 15‘00 20‘00 25‘00 30‘00 35‘00 4000
Figure 2: The relationship between returned
sonar values and actual measured distance is

very close to linear.

that the algorithm has access to no data that it
wouldn’t have had otherwise. Actually perform-
ing the algorithm online did not make sense for
two reasons: First, I did not want to spend time
figuring out how to ship data between the robots
and the workstation running MatLab. Second, it
was much easier to tweak the algorithm and re-
run it on stored data than to wait many minutes
for the robot to take new soundings of the same
environment.

3 Experiment 1

The first experiment was designed to determine
how well the robot could find itself in an exist-
ing map given only a set of sonar readings and
a known orientation. The experiment consisted
of 28 trials. In each one, the sonar readings
from one of the 28 positions was removed into a
test set. The remaining readings, together with
the known location of the robot when each was
taken, became the “known map” (see Figure 4).
Some fraction (frequently 3/16) of all sonar read-
ings was discarded to make the algorithm run
more quickly.

The test set of sonar readings consists of angles
and distances from the robot’s center, but the
robot’s location relative to the map is unknown.

500

450 q
400 q
350 —
300 4
250 4
200 i
150 A
100 4

50 q

whio .

6000

0

L L L L L
0 2000 4000 8000 10000 12000 14000 16000 18000

Figure 3: A histogram of 7168 sonar readings
taken around the room, showing low and high
garbage values.

So, I compare each test sonar value with every
map vector. The map vectors represent the po-
sition and the very approximate normal of some
observed surface in the environment. Therefore,
those pairs of (test vector, map vector) that did
not agree to within some threshold (I chose 30°)
were discarded. The idea is that a map vec-
tor represents the “front” of some object in the
room; it is unlikely that a test vector could “see”
that surface from behind or from a shallow angle.

4

The remaining pairs “vote” for the “most fea-
sible” (likely) pose of the robot. The position of
the map vector is added to the negative of the
test vector to locate where the robot would have
to have been for the test vector to represent a
reflection off of the same surface responsible for
the map vector. Each vote contributes a small
value to a raster image. The location with the
most votes is taken to be the most likely location
of the robot. See Figure 5.

This transformation is analogous to the Hough
transform, which “finds” lines (or other geome-
try) by letting each point in an image vote for
the feasible lines, those that can pass through
that point. Essentially, my algorithm is a Hough
transform for the star shape made by the points
of the test vector.

The surface of votes is very spiky, due to the

6000

4000

2000 -

~2000 -

4000 -

-6000/- e 4

-8000
—4000

Figure 4: The known map: all 6414 valid sonar
readings. Each vector points back at the posi-
tion of the robot when that reading was taken;
the vector’s distance from the robot’s position is

equal to the distance value sensed by sonar.

sporadic nature of sonar samples of the environ-
ment. In fact, the map vectors can only be con-
sidered a guess at the location of the reflecting
surface, because of the signal blur mentioned ear-
lier. Therefore, I convolve the vote raster with
a two-dimensional Gaussian surface to smooth
it out. Figure 6 shows the smoothed vote sur-
face superimposed with the known map (short
vectors) and the star-shaped test vectors, trans-
lated to the location of the maximum value on
the vote surface.

To quantify the reliability of this algorithm, I
ran it for all 28 test vectors, and repeated each
run with 1/16, 2/16, and 3/16 of the map data.
The results are displayed in Table 1.

A “wild error” is an error more than half a
meter away from the known location where the
sample was originally taken. Generally, these oc-
curred when the sample was taken in a sparsely-
populated corner of the map (the lower right cor-
ridor), and an approximate match in a heavily-
populated section was able to outvote the cor-
rect position. These gross errors could be eas-
ily detected by using auxiliary sensing such as
odometry. I propose a solution to this problem
in Section 6.2.

fraction of raster wild errors tame errors
sonar samples resolution mean o

1/16 10.7% 91 mm 48 mm

2/16 47 mm 3.6% 54 mm 28 mm

3/16 7.1% 47 mm 20 mm

1/16 10.7% 86 mm 49 mm

2/16 24 mm 3.6% 46 mm 25 mm

3/16 3.6% 34 mm 19 mm

Table 1: Rate of erroneously localized test samples as more sonar samples are made available.

4000 i
3000 B
2000 = B

1000 i .. e B

-1000] T
-2000 T
-3000 T
-4000 T

-5000

40001 . ‘L NS i

N R
3000 ST S\ R e
2000

1000

-1000

~2000 - N I
-3000 A ‘ , A

-4000 - .

-5000 wene q
Conon IR

I I I I I I I I
—-4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000 6000

Figure 5: A collection of votes.
received more votes.

Darker spots

The remaining errors (“tame errors”) have
a mean of 50 to 90 millimeters, depending on
how much sonar data was used in the map.
Increasing the resolution of the raster gave a
small improvement in the accuracy of the algo-
rithm. Doubling the resolution quadruples the
size of the raster, which slows the convolution
and maximum-finding phases of the algorithm;
however, with the parameters presented here,
the vote-collecting phase dominates the total run
time.

4 Experiment 2

The previous experiment introduced the vot-
ing algorithm for localization, and demonstrated

I I I I I I L Ny
—-4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000 6000

Figure 6: A successful localization.

that it is practical. However, it assumed the exis-
tence of a rich map already available. An on-line
algorithm would need to be able to construct a
map from successive localization—-map marking
cycles. To simulate this, I ran the following ex-
periment. I started by taking the sonar readings
from (0,0) as an initial map. The remaining lo-
cations were sorted by increasing distance from
the origin. For each location in turn, the corre-
sponding sonar data were taken as the test vec-
tors, used to localize the robot, and the output of
the algorithm used to translate the test vectors
and add them to the map. This simulated the
robot moving to locations on the outskirts of its
explored territory, using inward-looking vectors
to localize itself, and contributing the outward
vectors to its map.

Figure 7 shows snapshots of the map at various
stages of growth. (An animated version showing
all of the steps is available on the web; the ref-
erence is given below.)

5 Conclusions

From the experiments, I learned that a voting
algorithm can reliably find a match in an exist-
ing map for a sensed sonar contour. The short-
comings of the algorithm are its speed and the
“wild” errors. I discuss proposed solutions to
both problems in Section 6.

6 Future work

I was surprised by the effectiveness of this simple
algorithm. When I have the opportunity, I would
like to extend it further by extending it to handle
orientation localization, modifying it to exhibit
real-time performance, and then trying it online
on a self-navigating robot.

6.1 Localizing orientation

The algorithm assumes that the orientation of
the robot is known. This is reasonable because
electronic compasses are inexpensive and readily
available. However, compasses can often be con-
fused by the metal structure of buildings. One
straightforward way to detect orientation infor-
mation is to run the same algorithm repeatedly
with the test vectors rotated to a selection of
angles, and take the maximum over all of the
voting surfaces. This might be performed in two
steps, once at low resolution, and once at high
resolution once the approximate angle is known.
Or, if the robot has an estimate of its orienta-
tion (using odometry), it may only need to be
run at high resolution but over a limited choice
of angles.

6.2 Limiting the problem size

The algorithm slows linearly in the number of
vectors in the map. To combat this, I propose

three solutions: restricting the map to the neigh-
borhood of the robot, thinning the map, and ag-
ing old map data away.

Neighborhood reduction. If the robot has
not traveled far from a previously localized po-
sition, there is no need to consider map vectors
that cannot be reached by any of the test vectors.
This neighborhood can be reduced even further if
the robot’s odometry provides even gross infor-
mation about the robot’s new position relative
to its previous localization. The latter step will
also reduce the opportunities for wild errors.

Density reduction. The thinning operation
described earlier the paper can be used to re-
duce the amount of data being inspected. One
might set a limit on the number of map vectors
to be inspected (the number needed to reason-
ably represent the surfaces in a neighborhood as
described previously), and then select that many
vectors at random from the neighborhood to par-
ticipate in the voting.

Temporal reduction. The previous sugges-
tion involves discarding map data at random:;
however, more recently-acquired data is more
likely to be valid than older data. Therefore,
recent map data should have a higher likelihood
of participating in the voting process. This has
the advantage that stale information (such as the
image of a chair that has since been moved) will
gradually fade from the map, while current in-
formation will be reinforced by repeated obser-
vations.

6.3 Going online

I would like to try the online experiment actu-
ally online. In addition to the orientation local-
ization and the performance improvements de-
scribed above, this extension would involve cre-
ating a basic motion planner for the robot. Given
the collection of sonar samples, it would make
sense to plan based on a probabilistic rasterized
occupancy grid. To encourage exploration, the
robot would be drawn toward unpopulated por-
tions of the map.

5000 5000
e
4000} / 1 4000 ’ / . 1
N\ I < < b k,xw / ! K =
3000 4y ~ 3000 y A
1IRE N2 = \\w\w\m g
.
2000 & /// , 2000 “?‘ / 4 . _ A
~ \ N =
SR s 3 & _.@ﬁa -
1000 NG — 1000 §> = —
= — - 3:/ b o
= . - I -
= = - - = e -
= % m L % B il o
1000 . kS ;\\ ~ i ~1000}- - N ' A \‘§ = i
W =
//7//4/// - o, 4 A
-20001 ’ — -20001 4 —
1t [\
4 /
N\ N\
-3000- / B -3000{- 7 B
AR VARLE !
—4000 q —4000 q
L L L L L L L L L L 41 L L L L L L L
-3000 -2000 -1000 [1000 2000 3000 4000 5000 6000 7000 -3000 -2000 -1000 [1000 2000 3000 4000 5000 6000 7000
5000 5000
r'd e
4000} , /. < . 1 40001 ’ 'I A 4 1
A \ iy Lt /75 RN 4 7 "yt /jﬂ 7%/5/ N
3000 N S Wﬁxw }7}(5‘4/ // oo 3000[- N SN LxW k@:{t} \< // oA
RS / - S
W N = Y \\mf/*}\ 79 - =
2000 = ~ g s R 2000} L, 4, = e
LT RW e o - i N 3%}&\‘ 4 z T
NN — NS e
1000} 3= =8 1000] ES-r e @ =
=
§ e -= ¥ =
- == =
ot %' - = 1 ok 8 Q§ = |
= / S % A =X
Z *’% W = =~ ﬂ% " %W T~
1000 PR wa"% ?m@ ~= 1 1000 A r}\\ = 1
“ My RS -~ l]; N
2000 i # . e — 2000 > —
7 \ P \
N\ ~ N\ ~
~3000(~ 7 7 1 ~3000(2 ’ 1
P 1
A/ AL
-4000{ g -4000{ |
.

I I I I I I I
-3000 -2000 -1000 0 1000 2000 3000 4000 5000 6000 7000

Figure 7: An online mapping sequence.

-30

00

I I I I I I I I
-2000 -1000 0 1000 2000 3000 4000 5000 6000 7000

Long vectors are test vectors that have been localized

against the short (map) vectors; in the next round of the algorithm, the localized test vectors join

the rest of the map.

Availability

This paper is available on the web at
http://www.cs.dartmouth.edu/~ jonh/robots/. It
is accompanied by color graphics and anima-
tions which are much easier to see than the
monochrome images in the printed version of the

paper.

Acknowledgements

Thanks to Brian Brewington, who taught me
MatLab, the right tool for this job. Thanks to
Jeff Oldham, who suggested aging the map vec-
tors.

References

[BD96] Russell G. Brown and Bruce R. Donald.

Mobile robot self-localization without
explicit landmarks. Algorithmica,
November 1996. To appear.

