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Abstract

In this paper we present a probabilistic ap-
proach for mobile robot localisation using an in-
complete topological world model. The method
uses multi{hypothesis Kalman �lter based pose
tracking combined with a probabilistic formula-
tion of hypothesis correctness to on{line gener-
ate and track Gaussian pose hypotheses. Apart
from a lower computational complexity, this
has the advantage over traditional grid based
methods that incomplete and topological world
model information can be utilised. Further-
more, the method generates movement com-
mands for the platform in order to optimise the
information gathering for the pose estimation
process.

1 Introduction

The problem of global localisation|or \the kidnapped
robot problem"|is that of, from little or no a priori
pose1 information, estimating the correct pose of a robot
with respect to some global reference frame. This is
fundamentally di�erent from the pose tracking problem
which is that of keeping the robot's pose estimate correct
when the robot moves but knows where it was at some
previous point in time. With pose estimation we will
understand the general problem of determining where
the robot is.
Pose estimation is essential to mobile robot naviga-

tion and as a consequence a substantial amount of work
has been performed in this area [Borenstein et al., 1995].
However, the large majority of this work has been con-
centrated on the pose tracking problem whereas global
localisation has received relatively little attention. This
is probably due to the fact that many robot systems get
their initial pose supplied directly or indirectly by the
user, which means that global positioning can in princi-
ple be omitted which is seldom the case for pose tracking.
However, we think it is crucial for robots, which must be

1We will distinguish between the robot position which is
a 2{tuple, (x; y), and the robot pose, which includes the ori-
entation thus being a 3{tuple, (x;y; �).

truly autonomous and operate over extended periods of
time, that they possess the ability to autonomously lo-
cate themselves. This is relevant not only at startup,
but also during operation for recovery in case the pose
tracking process is lost or cannot unambiguously deter-
mine the robot's pose.

The general approach to global localisation (when not
using GPS or similar \arti�cial" beacons) is to compare
information|or features in the widest sense|extracted
from sensor readings with an a priori given map associ-
ated with the global reference frame. Each comparison
carries some evidence about where the robot can be, and
the challenge is then to, as e�ciently as possible, rule
out all but the correct pose. The e�ciency thus depends
on two factors, namely the amount of evidence acquired
with each feature/map comparison and the e�ciency of
the evidence fusion (relative to the e�ort of performing
these operations). It is evident that this again strongly
depends on the chosen framework and the representation
of maps, \pose space", and pose hypotheses.

Our system is based on a topological world model
[Kuipers and Byun, 1991], extended with landmarks and
information about from where these landmarks can be
seen (for more details see Figure 4 and [Kristensen et al.,
1998]). The world model is taught interactively by hav-
ing the user lead the robot around in the surroundings
while it on{line extracts information using its sensors
and feature extractors. While this approach is fast, user
friendly, and generates world models that are perfectly
matched to the robot's perception capabilities it cannot
be guaranteed that the model is complete in the sense
that all possible landmarks of some kind have been seen
or that the world cannot look di�erently at some later
point in time when the robot is navigating autonomously
in its surroundings. Except for mobile robot systems
navigating in extremely controlled environments this is a
general problem which means that the framework should
be able to handle incomplete and partly incorrect world
models. We have therefore chosen to use a probabilistic
framework since this means that we can explicitly repre-
sent and treat model errors. In our system, however, we
use a Kalman �ltering technique to do the pose track-
ing of our robot. As this is a standard and well proven
approach used in many mobile robot systems we would



like to keep this and have a seamless integration with the
global localisation scheme. We have therefore developed
a hybrid localisation method using Kalman �ltering to
track a number of Gaussian pose hypotheses and proba-
bility theory to do evidence fusion. Furthermore, in or-
der to optimise the amount of new evidence gathered by
the perception components, the pose hypotheses and the
world model information is used to generate movement
commands for the robot, thus making the localisation
process active.

In the remainder of this paper we will explain how
we have done this and compare our approach with other
existing methods which are outlined in Section 2. In Sec-
tion 3 the generation and tracking of pose hypotheses is
described which in Section 4 is followed by a description
of how we probabilistically estimate the correctness of
each hypothesis. In Section 5 it is explained how move-
ment commands for the robot are generated in order
for it to gather new information. The experiments con-
ducted with the implemented system are outlined in Sec-
tion 6 and �nally in Section 7 the results are discussed,
conclusions are drawn, and topics of further work are
outlined.

2 Related Work

Most of the pose estimation literature is, as mentioned
in the Introduction, concerned with the pose tracking
problem. Often this is not stated explicitly but assumed
implicitly in the sense that either the pose estimation
problem is simply de�ned as being the pose tracking
problem or the methods applied assume a good initial
estimate of the robot pose.

An early example of addressing the global localisation
problem is [Kuipers and Byun, 1991] where, in the con-
text of topological map building, the rehearsal procedure
is introduced, which basically consists in testing a global
pose hypothesis by examining if the robot can move in
the topological graph as predicted.

In [Stopp and K�uttner, 1997] the global localisation
problem is addressed as a case of the general object
recognition problem. The basic observation is that the
localisation problem is solved if the robot can recognise
some place (a room, a hallway etc.), represented as a
2D object, and determine the relative pose to it. This
is done e�ciently using geometric hashing [Lamdan and
Wolfson, 1988]. A similar approach is taken in [Crow-
ley et al., 1998] where PCA analysis is used to generate
pose hypotheses which are|quite like in the work pre-
sented in this paper|tracked with Kalman �lters un-
til a unique \match" is determined. Common to both
these approaches is that they require a relatively com-
plete model of the environment but in return they are
robust towards a certain degree of sensor noise and model
uncertainty. Unfortunately it is di�cult to evaluate ex-
actly what happens in the presence of noise/uncertainty.

However, recently approaches explicitly dealing with
sensing, model, and movement uncertainty have ap-
peared [Koenig and Simmons, 1998; Simmons and

Koenig, 1995; Kaelbling et al., 1996; Thrun et al., 1998;
Fox et al., 1999b]. Common to these approaches is that
they use a probabilistic formulation to represent and up-
date the pose of the robot which has the advantage of
enabling them to handle uncertainty in a natural and
convenient manner. These approaches, also known as
Markovian methods, use a spatially discretised repre-
sentation of the environment where each cell holds the
probability that the robot occupies the area represented
by the cell, and use a two{step procedure to update
this representation, namely the move step where the fact
that the robot moves is accounted for by shifting prob-
ability mass between cells according to the robot move-
ment, and the sense step where Bayesian updating is
used to incorporate new evidence stemming from a fea-
ture/map comparison. In general, the sense step con-
centrates probability mass in some areas and the move
step disperses it. This \blurring" is due to the fact that
the probability mass is not only shifted but also smeared
in order to account for robot movement inaccuracies. In
order for the global relocalisation to \converge" is it im-
portant that the evidence achieved in the sense step more
than compensates for the additional pose uncertainty in-
troduced by the move step. This fact stresses the im-
portance of having a sensible movement/sensing strat-
egy, i.e., to do active sensing, since moving randomly in
general does not bear the promise of gaining evidence
e�ciently enough.

The approaches described in [Koenig and Simmons,
1998; Simmons and Koenig, 1995; Kaelbling et al., 1996]

and in [Thrun et al., 1998; Fox et al., 1999b], respec-
tively, mainly di�er in the chosen discrete pose represen-
tation. The former approaches use a coarse, topological
representation (cell size approx. 1 meter) whereas the
latter ones use a �ne{grained grid (cell size approx. 0.1
meter) representation similar to the well{known occu-
pancy grids for representing obstacles and free{space.
The advantage of the grid representation, except of
course for having a higher resolution and thereby be-
ing able to represent pose hypotheses more accurately,
is that they facilitate the use of low level (\raw") sensor
data for updating the cell probabilities whereas topolog-
ical models require the extraction of abstract features
such as T{junctions, walls and other landmarks. The
disadvantage of the grid representation is their large
number of cells which makes the updating computation-
ally expensive (in [Fox et al., 1999a] a solution to this
using Monte Carlo methods is proposed) and the cal-
culation of optimal sensing/movement strategies infea-
sible. This, on the other hand, is the advantage of the
topological representations which are very nicely suited
for the generation of optimal sensing/movement policies
using the framework of Partially Observable Markov De-
cision Processes (POMDPs) and Bayesian Decision The-
ory [Kristensen, 1996].

For all the above mentioned works, the representation
of pose state space and the a priori given world mod-
els are tightly matched meaning that [Koenig and Sim-
mons, 1998; Simmons and Koenig, 1995], and [Kaelbling



et al., 1996] use topological world models and [Thrun
et al., 1998] and [Fox et al., 1999b] use occupancy grid
type world models. This is a perfectly sensible approach
since it eliminates the need for mappings between es-
timated pose and the world model and facilitates easy
feature/map comparisons. Following this reasoning we
should have chosen a discrete, topological representation
of pose space. We were, however, interested in a seamless
integration with our existing system which uses a con-

tinuous representation of pose in the form of a Kalman
�lter doing the pose tracking.

The typical argument against using a continuous pose
representation is that this way only a restricted set of
distribution types, typically unimodal ones, can be rep-
resented [Koenig and Simmons, 1998; Kaelbling et al.,
1996; Fox et al., 1999a]. Unimodal distributions are par-
ticularly unsuited for global localisation since they can-
not represent the case where the pose is ambiguous, i.e.,
the case where the robot might as well be at one place
as at another. This criticism, however, largely fails the
point since it ignores that fact that multiple unimodal
distributions can be used to represent the overall prob-
ability distribution. In our approach, we have chosen to
use a set of Gaussians to represent the probability dis-
tribution, where each Gaussian represents one pose hy-
pothesis. This has the obvious advantage that we can use
our standard Kalman based pose tracking to indepen-
dently update each hypothesis in a simple scheme com-
monly known as Multiple Hypothesis Tracking (MHT)
or Multiple Target Tracking [Bar-Shalom and Li, 1993;
1995] which is well{understood and computationally ef-
�cient. A further advantage of using a set of Gaussians
is that it enables us to explicitly reason about each hy-
pothesis whereas with discrete representations, in prin-
ciple all cells (and their probabilities) have to be taken
into account before acting which is normally too time
consuming, especially with the grids, and is thus often
circumvented by performing a thresholding on the prob-
abilities. As a matter of fact, in [Fox et al., 1999b] the
grid representation is thresholded in order to come up
with exactly a set of Gaussians. The reason for choosing
Gaussians is, except for purely practical considerations,
that, when using Kalman �ltering for pose tracking, the
pose estimate is a weighted sum of single measurements
and thus the Central Limit Theorem means|given the
usual and reasonable constraints of �nite but non-zero
measurement variance|that the true distribution in the
limit (i.e., as the number of measurements goes towards
in�nity) will be normal, i.e., a Gaussian.

The drawback of using MHT is that the hypotheses
per se do not carry any information about their cor-
rectness (apart from the fact that hypotheses with small
variances may tend to be the correct ones) since they
all have \probability mass" 1. It is therefore necessary
to explicitly estimate the probability of each hypothesis
being correct and for this we have chosen to use a proba-
bilistic approach since it seems to be the most adequate
framework due to the explicit and elegant handling of
sensing and model uncertainties. How this is formulated

Figure 1: The idea behind the multiple pose hypothesis
generation and tracking illustrated in a simple environ-
ment with only one room with four doors.

when using MHT and a topological model is described
after the next section where the basic algorithm for hy-
pothesis creation and updating is presented.

3 Pose Hypothesis Generation and

Tracking

The idea behind the multiple pose hypotheses genera-
tion and tracking technique presented in this paper is
best illustrated with a �gure. Figure 1 shows a situation
where the true position of the robot is given by the solid
square in the middle of the room in the �gure. An ob-
servation of a door is made slightly to the right in front
of the robot. Given that the mapped environment only
consists of a single room with four doors, there are eight
possible poses for the robot from which it can see a door
in front, slightly to the right. These eight poses give rise
to eight hypotheses regarding the pose of the robot. The
idea is that by making more observations of features in
the environment and matching these to the hypotheses,
the hypothesis corresponding to the true position of the
robot will gain most evidence, making it distinguishable
from the other, false, hypotheses.
It is obvious that the amount of information that can

be extracted from a certain observation will depend on,
e.g. the type of feature that is observed and the perfor-
mance of the algorithm that extracts the features. The
latter factor will be taken care of in Section 4 where
the probability of a hypothesis being true is discussed.
The �rst factor will lead us to introduce the concept of
creative and supportive features.

3.1 Features

The features are extracted from sensor data by what we
have chosen to call recognizers. Each recognizer is spe-
cialised in detecting a certain feature type. The recog-
nizers will only report the occurrence of a new feature in
the sensor data once. This is possible by storing the lo-
cation of each detected feature and comparing the newly
extracted features with the stored ones [Kristensen et al.,
1998].
Some features (e.g. doors) carry enough information

to completely specify the pose of the robot, others (e.g.
lines) will in the general case only determine the pose
to be somewhere along some curve. We have chosen



to divide the features into two sets of features, namely
creative (C) and supportive (S). A creative feature car-
ries enough pose evidence to initiate a new hypothesis,
whereas the supportive ones can only support already
existing hypotheses. It is obvious that C � S, i.e. a
creative feature can of course also give support to an
already existing hypothesis.

3.2 Pose Hypotheses

Let the true pose of the robot be given by x = (x; y; �)T .
The pose is modelled to evolve according to

x(k + 1) = x(k) + u(k) + v(k) (1)

where u(k) is the odometric information. We assume
the noise, v(k), associated with the odometric model, to
be a zero-mean, white and Gaussian noise process with
covariance matrix Q(k).
Each hypothesis, Hi, is an estimate of the true posi-

tion, based on some assumptions regarding the associ-
ation of extracted features to the features in the world
model. The hypotheses are updated using a Kalman �l-
ter.
A hypothesis is represented by a pose, x̂i = (x̂; ŷ; �̂)Ti ,

with an associated covariance matrix, �i, and informa-
tion about the probability of the hypothesis being the
correct one, P (Hi).
The pose estimates and their covariance matrices are

driven by the odometric information according to the
\time-update formula":

x̂i(k + 1jk) = x̂i(kjk) + Tiu(k)

�i(k + 1jk) = �i(kjk) + TiQ(k)T
T
i : (2)

where Ti is the rotation matrix from the odometric frame
of reference to that of hypothesis Hi. x̂i(k+ 1jk) should
be interpreted as the predicted pose, given by hypothesis
Hi at time k + 1, using measurements up to and until
time k.

3.3 Data Association and Pose Hypotheses

Update

Each detected feature creates a set of possible poses for
the robot (compare with �gure 1). Let us call these pos-
sible poses, pose candidates, Cj. The representation for
these pose candidates consists of a pose zj , a covariance
matrix Rj, and information about what feature created
it. The reason for introducing the pose candidates, that
are similar to the pose hypotheses, is to be able to make
all extracted features provide homogeneous information.
Let us also extend the concept of creative and support-
ive to include the pose candidates, i.e. a creative feature
gives a creative pose candidate.
The pose candidates can be seen as measurements of

the pose, generated by

zj(k) = h(detected feature) +wj(k) (3)

where h contains the map of the environment and the
characteristics of the recognizers and wj is measurement
noise. These pose candidates will be used to update the
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Figure 2: Creating a pose candidate from a door feature.

True robot pose Pose candidate a=1/2*(L-l)+q

Uncertainty ellipse
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Figure 3: Creating a pose candidate from a line feature.

pose information of the pose hypotheses and also po-
tentially initiate new hypotheses. Figures 2 and 3 give
a 
avour for how pose candidates are created from ex-
tracted features, illustrated with a door and a line fea-
ture. We make a Gaussian approximation regarding
the uncertainty associated with the pose candidates, en-
abling the covariance matrix representation, Rj.
It is crucial that the data association problem be

solved, i.e to determine what pose candidates correspond
to what pose hypotheses. For each pair (zj(k+1); x̂i(k+
1jk)) of pose candidate and pose hypothesis, the inno-
vation and its corresponding covariance can be de�ned
as:

�i;j(k + 1) = zj(k + 1)� x̂i(k + 1jk)

Si;j(k + 1) = �i(k + 1jk) +Rj(k + 1): (4)

To be able to determine if a pose candidate matches
a pose hypothesis, a validation gate is used. A pose
candidate, Cj, is successfully matched against a pose
hypothesis, Hi, if the following criteria is ful�lled

�i;j(k + 1)Si;j(k + 1)�1�i;j(k + 1)T � 
 (5)

where 
 is the gate threshold.
Assuming that we have found a match between pose

candidate Cj and pose hypothesis Hi, the pose candi-
date can be seen as a measurement of the robot's pose.
Let xi denote the position of the robot, given that x̂i is
the correct hypothesis. Then zj(k) is modelled as being
generated by

zj(k) = xi(k) +wj(k): (6)



The pose hypothesis is updated using the \measurement-
update formula"

Wi;j(k + 1) = �i(k + 1jk)Si;j(k + 1)�1

x̂i(k + 1jk + 1) = x̂i(k + 1jk) +Wi;j(k + 1)�i;j

�i(k + 1jk) = �i(kjk)�

Wi;j(k + 1)Si;j(k + 1)Wi;j(k + 1)T : (7)

Each unmatched, creative, pose candidate, Cj, will
initiate a new pose hypothesis, Hi, according to:

x̂i(kjk) = x̂j(k)

�i(kjk) = Rj(k): (8)

3.4 Track Splitting

Each time a pose candidate is used to update a pose hy-
pothesis, there is a risk of making an association error, a
risk that grows with the degree of uncertainty in hypoth-
esis and candidate. In order not to loose the true pose
hypothesis by updating it falsely, each hypothesis is split
in two identical copies before the update is done. The
updating, according to equation 7, is performed only on
the original hypothesis. This procedure is in the litera-
ture of target tracking called track splitting. In order to
keep the number of hypotheses low, we merge split hy-
potheses if they have not moved signi�cantly away from
each other (in a Mahalanobis distance sense).

4 Hypothesis Probability Estimation

In this section we will develop a formulation of the prob-
ability of a given hypothesis being correct.
If P (Hi) describes the probability of the i'th hypoth-

esis being correct, the new probability after the receipt
of some sensor report (in our case about a newly de-
tected feature), r, can|using Bayes' well{known inver-
sion formula|generally be written as:

P (Hijr) =
P (rjHi)P (Hi)

P (r)
(9)

where P (r) can be calculated as:

P (r) =

NX
i=1

P (rjHi)P (Hi) (10)

where N is the number of hypotheses. It is seen that
P (r) is e�ectively a scale factor which ensures that the
P (Hijr)'s sum to 1. This implicitly assumes that one

of the hypotheses is correct which is true only under a
closed world assumption2. In our case, however, this is
not generally true, since it cannot be ensured that at
any point in time a correct, modelled feature was seen
and thus a correct pose hypothesis was generated. To
overcome this problem we \close the world" by de�n-
ing a hypothesis, H0, which is the hypothesis encoun-
tering for all of the poses not being accounted for by

2For the Markovian methods this corresponds to the as-
sumption that the robot is always inside the area represented
by the grid or the topological map.

hypothesis 1, : : : , N . The introduction of H0 also has
the advantage of generalising the framework since we as
initialisation, when no hypotheses have yet been gener-
ated, can account for all the probability mass by setting
P (H0) = 1:0. Therefore, instead of calculating P (r) we
simply normalise so that:

NX
i=1

P (Hijr) = 1:0� P (H0) (11)

The term P (rjHi) expresses the probability of receiv-
ing the report, r, given that the robot is at the position
described byHi. This is normally estimated using a map
of the environment and can be re-written as:

P (rjHi) = P (rjfj)P (fjjHi) +

P (rj:fj)P (:fjjHi) (12)

where P (rjfj) is the probability that a report of type r
is generated given that a feature of type fj is seen by a
sensor and P (fjjHi) is the probability that a feature of
type fj can be seen given that the robot is at the posi-
tion described by Hi. In other words, P (rjfj) is a model
of the reliability of the recogniser extracting feature fj
from sensor data and P (fjjHi) is a \map" of the envi-
ronment. Thus the �rst term in equation 12 expresses
the probability that a feature is actually detected given
that it exists in the world. The second term correspond-
ingly expresses the probability that a feature is detected
although there is no such feature present, i.e., the prob-
ability of a false positive, or \phantom" feature. Again,
however, equation 12 normally assumes a closed world in
the sense that it is often assumed that P (fjjHi) is fully

speci�ed by the map of the world3. To make explicit
what in an incomplete model is known about P (fjjHi)
and what is not, we expand P (fj jHi) as follows:

P (fjjHi) = P (fjmjHi) + P (fj:mjHi) (13)

where P (fjmjHi) expresses the probability that a mod-
elled feature of type j can be seen from the position
described by Hi and P (fj:mjHi) the probability that a
non{modelled feature of type j can be seen. Substituting
this into equation 12 we get:

P (rjHi) = P (rjfj)[P (fjmjHi) + P (fj:mjHi)] +

P (rj:fj)P (:fjjHi) (14)

From this expression it is seen how accounting for un-
modelled features adds an \in{
ux" of probability{mass
to P (rjHi). This has the e�ect that when a feature is
seen where none was predicted according to some hy-
pothesis and the map, this hypothesis will not be com-
pletely ruled out since the feature could simply be un-
modelled (or a phantom). The advantage of using ex-
pression 13 is that it enables the updating to account
for the fact that not all feature types may be equally
thoroughly (completely) modelled.
Note that we do not explicitly treat the case where

modelled features for some reason do no longer exist in

3Sometimes P (rjHi) is directly referred to as \the map".



the world (either because they were removed or because
they are occluded). This is because the approach is data
driven, i.e., something only happens when a feature has

been seen, and thus non{existing but modelled features
only in
uence the framework by causing some extra hy-
potheses to be generated.
For the calculation of P (fjjHi) we exploit the fact that

we have a �nite number of well{de�ned hypotheses. If
a match between Hi and a from fj generated candidate,
Cl, has been established, we make the assumption that
P (fj:mjHi) = 0 and use the fact that the likelihood of

Cl being a observation of fj givenHi is given as [Larsson

et al., 1994]:

L(fj jHi) =
1

(2�)
3

2 j�ij
1

2

exp�
1

2
(x̂i�zl)�

�1

i
(x̂i�zl)

T

(15)

To get an estimate of P (fjjHi) we simply normalise this
to lie between 0 and 1, i.e.:

P (fjjHi) = exp�
1

2
(x̂i�zl)�

�1

i
(x̂i�zl)

T

(16)

When aHi has not been matched to any Cl generated by
fj we use P (fjjHi) = P (fj:mjHi) which in our system
is an a priory given constant depending on the type of
feature.
We can now formulate an expression for P (H0), i.e.,

the probability that none of the hypotheses 1, : : : , N are
correct. Since a correct hypothesis is generated as soon
as a modelled, creative feature is detected, the probabil-
ity that no correct hypothesis exists is the probability
that only non{modelled and phantom features have so
far been detected, thus:

P (H0) =

8>><
>>:

QM

k=1

PN

i=1[P (rjfk)P (fk:mjHi)

+P (rj:fk)P (:fkjHi)]P (Hi) if M > 0

1:0 if M = 0

(17)

where M is the number of creative features detected.
If we denote the probability after receiving n features
P
n(H0) (previously also referred to as P (H0jr)) we can

express the decrease in P (H0) upon the receipt of the n+
1'th creative feature as �Pn(H0) = P

n(H0)�P
n+1(H0)

which is exactly the amount of probability mass, the on
the basis of the n + 1'th feature generated hypotheses
carry. When P (H0) has decreased below some limit, 
,
no new hypotheses are spawned.
Furthermore, in order to keep the number of hypothe-

ses low, we delete hypotheses for which P (Hi) < �.
In an ideal case, this may eventually lead to the situa-
tion where only one hypothesis exists thus automatically
changing the approach from localisation to pure position
tracking.
Finally some remarks on independence. The fact is

that all of the above formulas require that the observa-
tions are independent. This is in general only true when
the robot position is known, which is in the nature of

the matter not the case in this application. Actually,
the whole method lives from the fact that there is a cer-
tain dependency between measurements, namely the one
hopefully given by the map. Due to the construction of
the recognisers, however, which independently track ex-
tracted features and thus only report them as \new fea-
tures" once, we do not get repeated observations of the
same features just because the robot for example stands
still for a while. This, and the fact that other research
has shown that Bayesian updating seems to be quite ro-
bust against a violation of the independency assumption,
leads us to believe that we can use the formulas derived
above in spite of dependent observations.

4.1 Overall Algorithm

The overall algorithm for the update of the hypotheses,
including the probabilistic update of the P (Hi)'s, can be
formulated as:

Wait for feature
Generate pose candidates
Predict new pose for all hypotheses (eq. 2)
loop over all candidates, Cj; j = 1; : : : ;M
loop over all hypotheses, Hi; i = 1; : : : ; N
if (Cj matches Hi) (eq. 5)
Split hypothesis Hi: HN+1 := Hi; N := N + 1
Update hypothesis Hi (eq. 7)
calculate the nominator of eq. 9

else if (Cj 2 C and P (H0) � 
)

init new hypo. (eq. 8) with P 0(Hi) =
�Pn(H0)

L
Normalise P (Hi)'s (eq. 11)
Delete Hi's for which P (Hi) < �

where L is the number of new hypotheses generated from
a detected creative feature.

5 Generation of Movement Commands

As previously established is it important that the robot
has an active exploration strategy since it is doubtful
that it by mere coincidence may be able to resolve ambi-
guities and gather information e�ciently enough to com-
pensate for odometry drift.
We have implemented a simple strategy based on the

following heuristics:

� Moving on the edges of the topological graph makes
it likely that the robot will move on a path that is
free from obstacles.

� Avoid going to the same position twice as it is un-
likely to provide any new information.

� Try to go to a place where a maximum of new fea-
tures can be seen.

At startup, when no hypotheses exist, we use a simple
exploration strategy to move the robot. When at least
one pose hypothesis has been generated, we choose the
one with the highest P (Hi) (in case of a draw we simply
select the one that happens to be �rst in the list) and
search the topological graph from the current location of



this hypothesis to �nd the one of the neighbouring nodes
not previously visited and containing the largest number
of features. This node is then selected as the next node
to go to.

It is clear that this greedy strategy is not optimal and
one of the next steps will be to improve this with ei-
ther POMDP style planning or along the lines described
in [Fox et al., 1999b] where the actions are selected so
as to minimise the expected entropy after moving and
sensing. An alternative strategy, however, is to exploit
the fact that we have a well{de�ned set of hypotheses
and then just select the action that the best discrimi-
nates the two most likely hypotheses. While being much
simpler and computationally e�cient, new research indi-
cates that this may lead to equally good results [Larsen
et al., 1998].

6 Experimental Results

The framework developed in this work has been tested on
a mobile robot (see Figure 4) using a Sick laser scanner as
sensor. The features used were doors and line segments,
being creative and supportive features, respectively.
The topological world model used contained 29 doors,

139 line segments (generally corresponding to walls), and
33 nodes covering an area of 1500 m2. The model was
taught in simulation, i.e., by leading the robot around in
a simulated world based on a coarse CAD model of our
o�ce environment. This kind of model generation has
the advantage that we can teach large models without
having problems with odometry error and correspond-
ing model inconsistencies (algorithms for dealing with
these problems in the real world are under development).
However, using CAD data also means that the model is
inherently uncertain and incomplete since the real build-
ing does not correspond exactly to the blueprints and
since all the inventory is not modelled. In Figure 4 a
part of the model including pose hypotheses is shown.

The work presented in this paper is work in progress
and we therefore do not yet have results statistically
describing the performance of the global relocalisation.
What all our experiments show, though, is that the MHT
as well as the Bayesian probability estimation works very
reliably, quickly determining the true pose of the robot.
Typical data for a global localisation attempt is shown
in Table 1.
When the global localisation fails, it is always due to

the movement strategies not being su�ciently intelligent.
There are two failure modes: one where the robot starts
far away from a creative feature (i.e., a door) and the
initial exploration strategy fails to take the robot to a
position where a creative feature can be seen. The sec-
ond failure mode is due to situations where the strongest
hypothesis is a false one on which the movement strat-
egy bases its decisions where to move the robot. This
occasionally causes the robot to get stuck before see-
ing enough features to make the true hypothesis the
strongest one. This situation basically corresponds to
the case where one of Kuipers and Buyn's rehearsals fails

and should thus have an e�ect on the P (H) of the cor-
responding hypothesis. We have not yet developed this
feedback loop which is a topic of further work.

7 Discussion, Conclusion, and Further

Work

In this paper we have presented a hybrid approach to
global localisation for a mobile robot based on Bayesian
probability theory and multiple hypothesis tracking us-
ing Kalman �ltering of Gaussian pose hypotheses.

The reason for choosing a continuous pose represen-
tation in the form of Gaussians versus the common dis-
cretised representations used by other probabilistic ap-
proaches were multiple:

� Standard Kalman �ltering, already present in our
and many other robot systems, can be used to track
and update the pose hypotheses.

� There is no trade{o� between representation accu-
racy and size, i.e., we maintain high accuracy with
a very low demand for memory.

� Having a few (typically < 100) hypotheses it is pos-
sible to on{line generate a sensible (active) move-
ment/sensing strategy.

� It is in general computationally e�cient.

The drawbacks of using MHT is that it is necessary
to solve the data association problem, i.e., to explicitly
match measurements and hypotheses and that it is not
possible to represent an arbitrary probability distribu-
tion of robot pose. We believe the latter problem to be of
purely theoretical importance and the former was solved
using standard techniques fromMHT such as track split-
ting and matching using the Mahalanobis distance.

An important issue that has to be addressed when
using MHT for global localisation, though, is that of as-
sessing the likeliness of each hypothesis being the correct
one. For this it was chosen to use Bayesian probability
theory since this o�ers an elegant framework for evidence
fusion and an explicit treatment of model and sensing
uncertainty.

The drawback of using hybrid approaches is normally
that two or more techniques have to be implemented and
applied in parallel. However, the Kalman representation
of pose hypotheses as Gaussians directly gives a solu-
tion to one of the traditionally hard problems in the
Markov/Bayesian approaches, namely to estimate the
probability of a measurement given some pose hypoth-
esis. So apart from using the frameworks we �nd to be
the most suitable for hypothesis update and assessment,
respectively, we have in addition gained a synergistic ef-
fect between them clearly easing the formulation and
implementation of the latter, which, as a further bene�t
resulting from the fact that only a few pose hypotheses
need to be treated, can be implemented very easily with-
out the optimisation \tricks" otherwise necessary for the
grid based approaches.



Figure 4: Left: The mobile platform used for the experiments. The robot consists of a re{�tted LabMate base
equipped with a 7{DOF Amtec manipulator and a Sick lidar plus a set of colour CCD cameras mounted on a
pan/tilt unit. The robot has two on{board P200 single board computers and radio Ethernet providing a facility for
sending status information to a stationary workstation. Right: The world model used for the localisation. The thick
lines and the circles they are connecting is the basic topological graph. The thin lines are the walls, the black bars
are the doors, and the small circular robot icons are the hypotheses. The larger, quadratic robot icon in the upper
left corner (by node 3) shows where the robot really was. The two squares to the right represent 3D docking objects
which are used for other purposes.

snapshot time [s] robot pose Mdoor Mline Nhyp P (H1st) P (H2nd)

1 4.5 (0.00,0.00,90.0) 2 5 114 0.105 0.052
2 10.5 (0.00,0.58,90.2) 3 7 114 0.110 0.054
3 16.5 (0.02,1.22,75.1) 3 9 82 0.167 0.058
4 22.2 (0.01,1.20,31.4) 4 10 52 0.252 0.084
5 28.5 (0.02,1.20,329.8) 4 12 46 0.415 0.093
6 28.5 (0.02,1.20,282.6) 6 12 38 0.352 0.121
7 39.3 (0.02,0.71,270.4) 6 13 31 0.447 0.100
8 46.9 (0.14,-1.73,272.5) 11 20 11 0.919 0.031

Table 1: Typical data for a localisation attempt. The development is illustrated with \snapshots" which show the
system state at various time instances. The robot pose is the odometry relative to the starting point, i.e., it illustrates
the robot's movement, not the pose of the currently best estimate. P (H1st) and P (H2nd) are the probabilities of the
currently best and second best hypothesis, respectively.



The global localisation approach was implemented and
tested on a real mobile robot and was found to work ac-
cording to the expectations. When the global localisa-
tion failed it was due to the simple exploration strategy
not being able to take the robot to a point where a cre-
ative feature could be seen or that the robot got stuck
while pursuing a wrong hypothesis. Since the correct
pose hypothesis normally becomes the strongest one af-
ter observing just a few features, this is generally only
the case just after the �rst creative feature has been seen.
The MHT and the Bayesian evidence fusion has been
found to work 
awlessly, only using very limited compu-
tational resources.

Further work will therefore go in the direction of im-
proving the active sensing and the exploration strate-
gies and modelling the e�ect of a failed robot motion
on P (Hi). Moreover, we will seek to enlarge the set of
features, especially the creative ones. Here, f.ex. geo-
metric hashing [Stopp and K�uttner, 1997] seems to be a
promising method for e�ciently extracting pose candi-
dates from lower level features such as (incomplete) line
segments. Also line segments that are believed to be
completely seen and having same length as some model
lines may be used as creative features.

The feature based approach used in this work was
partly motivated by the fact that our navigation sys-
tem is based on a topological model extended with land-
mark information. We, however, do not think that the
approaches presented in this paper are restricted to sys-
tems using such high level models. Using a grid based
world model it should be possible to extract pose candi-
dates from laser scans or even sonar readings, although
it is obvious that the formulation of model uncertainty
has to be modi�ed.

References

[Bar-Shalom and Li, 1993] Yaakov Bar-Shalom and
Xiao-Rong Li. Estimation and Tracking: Principles,

Techniques, and Software. Artech House, Norwood,
MA, 1993.

[Bar-Shalom and Li, 1995] Yaakov Bar-Shalom and
Xiao-Rong Li. Multitarget-Multisensor Tracking:

Principles and Techniques. YBS, 1995.

[Borenstein et al., 1995] J. Borenstein, B. Everett, and
L. Feng. Navigating Mobile Robots: Sensors and Tech-

niques. A. K. Peters, Ltd., Wellesley, MA, 1995.

[Crowley et al., 1998] J. L. Crowley, F. Wallner, and
B. Schiele. Position estimation using principal compo-
nents of range data. In Proceedings of the 1998 IEEE

International Conference on Robotics and Automa-

tion, pages 3121{3128, Leuven, Belgium, May 1998.
IEEE.

[Fox et al., 1999a] D. Fox, W. Burgard, F. Dellaert, and
S. Thrun. Monte carlo localization|e�cient posi-
tion estimation for mobile robots. In Submitted to

AAAI'99, 1999.

[Fox et al., 1999b] D. Fox, W. Burgard, and S. Thrun.
Active markov localization for mobile robots. Robots

and Autonomous Systems, 25(3-4):195{207, 1999.

[Kaelbling et al., 1996] L. P. Kaelbling, M. L. Littman,
and A. R. Cassandra. Partially observable markov de-
cision processes for arti�cial intelligence. In L. Dorst,
M. van Lambalgen, and F. Voorbraak, editors, Rea-
soning with Uncertainty in Robotics, Lecture Notes
in Arti�cial Intelligence 1093, pages 146{162, Berlin,
1996. Springer. Proceedings of the International
Workshop RUR'95, Amsterdam, The Netherlands,
December, 1995.

[Koenig and Simmons, 1998] Sven Koenig and Reid G.
Simmons. Xavier: A robot navigation architecture
based on partially observable markov decision pro-
cess models. In David Kortenkamp, R. Peter Bonasso,
and Robin Murphy, editors, Arti�cial Intelligence and
Mobile Robots, pages 91{122. AAAI Press/The MIT
Press, 1998.

[Kristensen et al., 1998] S. Kristensen, V. Hansen,
K. Kondak, and S. Horstmann. A modular archi-
tecture for a 
exible autonomous service robot. In
Proceedings of the Sixth International Symposium on

Intelligent Robotic Systems 98, pages 93{100, Edin-
burgh, UK, July 1998.

[Kristensen, 1996] Steen Kristensen. Sensor planning
with bayesian decision theory. In L. Dorst, M. van
Lambalgen, and F. Voorbraak, editors, Reasoning with
Uncertainty in Robotics, Lecture Notes in Arti�cial In-
telligence 1093, pages 353{367, Berlin, 1996. Springer.
Proceedings of the International Workshop RUR'95,
Amsterdam, The Netherlands, December, 1995.

[Kuipers and Byun, 1991] Benjamin J. Kuipers and
Yung-Tai Byun. A robot exploration and mapping
strategy based on a semantic hierarchy of spatial
representations. Robotics and Autonomous Systems,
8:47{63, 1991.

[Lamdan and Wolfson, 1988] Y. Lamdan and H. Wolf-
son. Geometric hashing: A general and e�cient
model-based recognition scheme. In Proc. of the

1988 IEEE Int. Conf. on Robotics and Automation

(ICRA'88), pages 1407{1413, Philadelphia, PA, April
1988. IEEE.

[Larsen et al., 1998] T. D. Larsen, N. A. Andersen, and
O. Ravn. Sensor management for identity fusion on
a mobile robot. In Proceedings of the Fifth Interna-

tional Conference on Control, Automation, Robotics

and Vision (ICARCV'98), 1998.

[Larsson et al., 1994] U. Larsson, J. Forsberg, and
�A. Wernersson. On robot navigation using identical
landmarks: Integrating measurements from a time{
of{
ight laser. In Proceedings of the 1994 IEEE Inter-

national Conference on Multisensor Fusion and Inte-

gration for Intelligent Systems, pages 17{26, Las Ve-
gas, Nevada, October 1994. IEEE.



[Simmons and Koenig, 1995] Reid Simmons and Sven
Koenig. Probabilistic robot navigation in partially
observable environments. In Proc. of the 14th IJCAI,
pages 1080{1087, Montreal, Canada, August 1995.

[Stopp and K�uttner, 1997] A. Stopp and L. K�uttner. A
uni�ed approach for fast recognition, learning and in-
terpretation of the environment by an autonomous
mobile robot. In Proceedings of the International

Symposium on Intelligent Systems and Semiotics - A

Learning Perspective, Gaithersburg, Maryland, 1997.

[Thrun et al., 1998] S. Thrun, A. B�ucken, W. Burgard,
D. Fox, T. Fr�ohlinghaus, D. Hennig, T. Hofmann,
M. Krell, and T. Schmidt. Map learning and high{
speed navigation in RHINO. In David Kortenkamp,
R. Peter Bonasso, and Robin Murphy, editors, Ar-

ti�cial Intelligence and Mobile Robots, pages 21{52.
AAAI Press/The MIT Press, 1998.


