Graduate School
University of South Florida
Tampa, Florida

CERTIFICATE OF APPROVAL

Master’s Thesis

This is to certify that the Master’s Thesis of

NIKFAR A. KHALEELI

with a major in Computer Science has been approved by
the Examining Committee on April 4, 1997
as satisfactory for the thesis requirement
for the Master of Science in Computer Science degree

Examining Committee :

Major Professor: Sridhar Mahadevan, Ph.D.

Member: Lawrence O. Hall, Ph.D.

Member: Dmitry B. Goldgof, Ph.D.

A ROBUST ROBOT NAVIGATION ARCHITECTURE USING
PARTIALLY OBSERVABLE SEMI-MARKOV DECISION PROCESSES

by

NIKFAR A. KHALEELI

A thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Computer Science

Department of Computer Science and Engineering
University of South Florida

April 1997

Major Professor: Sridhar Mahadevan, Ph.D.

DEDICATION

This thesis is dedicated to my parents, Afsur and Farkhondeh, for teaching me to go

wherever dreaming goes.

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Dr. Mahadevan for fueling my
interest in robotics, and for the ideas, suggestions, enthusiasm, and encouragement
that he provided, when there seemed to be no light at the end of the tunnel.

Not only do I appreciate both Dr. Hall for getting me started off in the program,
and Dr. Goldgof for teaching a really enjoyable Digital Image Processing course, but
I would also like to thank them for being on my committee.

I would like to thank Billy Raulerson for coding the graphical interface.

Finally, I would like to thank my family and friends (you know who you are)

for their love and support, without which this would not have been possible.

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES
LIST OF SYMBOLS AND ACRONYMS

ABSTRACT

CHAPTER 1. INTRODUCTION
1.1. Robot Navigation
1.2. The POSMDP Approach
1.3. Thesis Overview

1.4. Chapter Outline
CHAPTER 2. THEORETICAL FOUNDATIONS

2.1. Markov Decision Processes

2.1.1. Policies and the Value Function

2.1.2. Dynamic Programming

2. Semi-Markov Decision Processes

.3. Partially Observable Markov Decision Processes
2.3.1. State Estimation
2.3.2. Planning

2.4. Occupancy Grids

2.5. Artificial Neural Networks

2.6. Related Work

CHAPTER 3. A ROBOT NAVIGATION ARCHITECTURE
3.1. The POSMDP Planning Layer

1. Abstract Actions

2. Abstract Observations

3. Probabilistic Planning in the POSMDP

4. Temporal Models of Robot Actions

3.1.
3.1.
3.1.
3.1.
2. The Reactive Behavior Layer
3. Feature Detectors with ANNs
CHAPTER 4. RESULTS
4.1. Feature Detection
4.2. Navigation Results
4.2.1. Odometric Uncertainty
4.2.2. Temporal Modeling
4.2.3. Learning Transition Times

111
v
vi

vii

— =] U= =

12
14
15
17
20
21
23
25
28
30

33

37
38
40
42
46
48

53

57
o8
62
64

CHAPTER 5. CONCLUSION
5.1. Contributions
5.2. Future Work

LIST OF REFERENCES

1

71
71
72

74

Table 1.
Table 2.
Table 3.
Table 4.

LIST OF TABLES

Transition Probabilities for Abstract Actions
Conditional Observational Probabilities
Idealized Transition Times for Abstract Actions

Summary of Sample Runs on PAVLOV

11

38
39
43
57

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

Figure 22.

LIST OF FIGURES

The Mobile Robot PAVLOV.

The Overall Architecture.

The Topological Map.

The Value Iteration Algorithm.
Controller for a POMDP.

A Simple POMDP Environment.
Sonar Sensor Interpretation.

A Markov Node.

The Markov Map.

Flow Diagram for the Planning Layer.
The Modified Value Iteration Algorithm.

Temporal Model of Robot Actions.

Example of an SMDP Model of the Forward Action.

The Viterbi Algorithm.

Flow Diagram for the Reactive Behavior Layer.
The Artificial Neural Network.

Learning Curve for ANN.

Example Occupancy Grids.

Odometric Trace in the Electrical Engineering Department.

Odometric Trace Demonstrating Localization.

Odometric Trace around Engineering Computing.

Odometric Trace in the Computer Science Department.

v

17
21
22
26
34
35
36
41
42
44
45
47
50
54
56
99
60
62
63

Figure 23.
Figure 24.
Figure 25.
Figure 26.

Odometric Trace before Learning Transition Times.
Odometric Trace after Learning Transition Times.

A POSMDP Sequence.

A Viterbi Sequence.

65
66
68
69

MDP
POMDP
SMDP
POSMDP
ANN

LIST OF SYMBOLS AND ACRONYMS

Markov Decision Process

Partially Observable Markov Decision Process
Semi-Markov Decision Process

Partially Observable Semi-Markov Decision Processes

Artificial Neural Network

vi

A ROBUST ROBOT NAVIGATION ARCHITECTURE USING
PARTIALLY OBSERVABLE SEMI-MARKOV DECISION PROCESSES

NIKFAR A. KHALEELI

An Abstract

Of a thesis submitted in partial fulfillment
of the requirements for the degree of
Master of Science in Computer Science

Department of Computer Science and Engineering
University of South Florida

April 1997

Major Professor: Sridhar Mahadevan, Ph.D.

vii

In order to perform delivery tasks in an office environment, an autonomous
robot must be able to robustly navigate corridors for long periods of time, without
getting lost. This thesis presents a robust and autonomous robot navigation system
in an unstructured office environment based on partially observable semi-Markov
decision processes (POSMDPs).

Two common traditional approaches to robot navigation are geometric-based
and topological-based. Geometric-based navigation is able to take advantage of infor-
mation about robot motion, but is vulnerable to map inaccuracies and dead-reckoning
errors. By utilizing information about the sensed environment features, topological-
based navigation is independent of geometric accuracy but suffers from problems of
unreliable sensors occasionally not detecting landmarks and perceptual aliasing.

Using a partially observable Markov decision process model for navigation com-
bines the advantages of the two approaches by modeling navigation uncertainty, such
as sensor and odometric errors and approximate environment knowledge. However,
this approach assumes that actions take uniform, discrete amounts of time. A more
suitable and natural approach should incorporate time. One such approach is to use
an event-based MDP model called a semi-Markov decision process model.

In an office environment robot sensors such as ultrasonic range sensors are prone
to specular reflections. Occupancy grids use readings taken from several sensors over
multiple points of views to create a spatial model of the environment, but are unable
to compensate for these specularities. An artificial neural network is used to sense
high level features, since it can be trained to robustly interpret occupancy data. Not
only does this ensure better sensor reliability, it also allows the net to be retrained
for different office environments.

We present a navigation architecture based on POSMDPs that provides a
uniform framework with an established theoretical foundation for state estimation,
path planning and robot control during navigation. Reliable sensor interpretation is

Vil

achieved through an artificial neural network. Implemented on PAVLOV, an actual
indoor mobile robot, our experiments show that this approach leads to robust corri-
dor navigation. PAVLOV was tested on the third floor of the Engineering building
at the University of South Florida on runs totaling several kilometers over a period

of many weeks.

Abstract Approved:

Major Professor: Sridhar Mahadevan, Ph.D.
Assistant Professor,
Department of Computer Science and Engineering

Date Approved:

X

CHAPTER 1

INTRODUCTION

To successfully perform routine delivery tasks in an office environment, it is
important that autonomous robots navigate corridors robustly in order to reliably
reach their goals. However, planning and following a path requires that the robot
answer the question: “Where am 17”7 In doing so, the robot must be able to recover
robust and useful spatial descriptions of its surroundings, using sensory information.
This chapter briefly reviews a number of methods for mobile robot positioning. It

then provides an introduction to the navigation system implemented on the robot

PAVLOV.

1.1. Robot Navigation

In order to get anywhere or to plan a route to a goal location, a mobile robot
must be able to estimate its position. Two common methods of position estimation
are relative and absolute position measurements. Odometry and inertial navigation
are techniques for relative position measurements. Methods for absolute position
estimation are active beacons, artificial and natural landmark recognition and map-
based positioning. Navigation systems are usually comprised of a combination of the
two methods.

Odometry uses encoders to measure wheel rotation and steering orientation. It

is self contained and is always capable of providing the robot with an estimation of

2
its position. The main disadvantage is that the position error grows without bound
unless an independent reference is used to periodically reduce the error [1].

Inertial navigation uses gyroscopes and accelerometers to measure rate of ro-
tation and acceleration. Measurements are integrated to yield position. Inertial nav-
igation systems are also self-contained. Unfortunately, in addition to high equipment
cost, inertial sensor data drifts with time because of the need to integrate rate data
to yield position. Any small constant error increases with bound after integration.
Therefore, inertial sensors are unsuitable for accurate positioning over an extended
period of time [2].

Active beacons involve computation of the absolute position of the robot by
measuring the direction of incidence of three or more actively transmitted beacons,
located at known sites in the environment. The Navstar Global Positioning System
(GPS) [3] uses a constellation of 24 satellites orbiting the earth every 12 hours at
a height of about 10,900 nautical miles. The absolute three-dimensional location of
any GPS receiver can be determined through trilateration techniques based on time
of flight for uniquely coded spread-spectrum radio signals transmitted by the satel-
lites. Introduced into the automotive racing world, Precision Technology’ Precision
Location [4] tracking and telemetry system utilizes a number of antennae situated at
fixed locations around a racetrack. Comparison of the signals received by the various
antennae to a common reference signal of identical frequency generated at the base
station allows determination of relative changes in vehicle position with respect to
each antennae.

A natural landmark positioning system generally has a sensor for detecting
landmarks and contrasting them against their background, a method for matching
observed features with a map of known landmarks, and a method of computing lo-
cation and localization errors from matches [2]. Developed in Canada, ARK or the

Autonomous Robot for a Known Environment [5] is a navigation system that uses

3
natural landmarks such as alphanumeric signs, semi-permanent structures, or door-
ways. The only criteria to be fulfilled is that landmarks be distinguishable from the
background by color or contrast. The navigation module consists of a custom-made
pan-and-tilt table, a CCD camera and an eye-safe IR spot laser rangefinder. Land-
marks are learned by generating a three dimensional grey-level surface from an image
obtained from the CCD camera. A range scan of the same field of view is performed
by the laser rangefinder, providing depth information for each pixel in the grey-level
surface. During operation, when the robot is approximately at the training position,
the system searches for landmarks that are expected to be visible from the momentary
position. The projected appearance of the landmark is computed and used to yield
the robot’s relative distance and heading with respect to it. Odometric positioning
can be updated to within a few centimeters by finding a pair of natural landmarks of
known position.

It is also possible to place distinctive artificial landmarks at known locations.
These landmarks can be designed for optimal detectability, even under adverse en-
vironmental conditions. The advantage of this approach is that position errors are
bounded, but detection of external landmarks and real-time position fixing may not
always be possible. The Mobile Detection Assessment and Response System [6, 7] uses
passive reflectors in conjunction with a pair of fixed-orientation polarized sensors on
board the robot. Short vertical strips of retroreflective tape are placed on various
immobile objects on either side of a virtual path segment. The exact x-y locations
of the tape markers are encoded into the virtual path planner. Longitudinal position
is updated to the known marker coordinates, while lateral position is inferred from
sonar data. The polarized sensors respond only to the presence of a retroreflector,
while ignoring specular surrounding surfaces. Caterpillar Industrial’s Self Guided Ve-
hicle [8, 9] for materials handling relies on a scanning laser triangulation scheme to

provide positional updates to the vehicles on-board odometry system, through the

4
usage of bar-code targets at known locations. Line navigation is another type of
landmark navigation used in industry. Pyroelectric sensors can be used to detect
thermals paths created by heating the floor with a quartz halogen bulb [10, 11, 12],
while a robot equipped with an odor sensing system is able to follow a previously
placed odor trail [13, 14, 15].

Map-based positioning is a technique in which the robot uses its sensors to cre-
ate a map of its local environment. This local map is then compared to a global map.
If a match is found, then the robot can compute its actual position and orientation
in the environment. The global map can be provided to the robot as a priori knowl-
edge, or it can build its own environment map, through exploration [16, 17, 18]. In
map-based positioning, there are two common approaches: geometric and topological
maps [2].

Geometric maps represent objects according to their absolute geometric re-
lationships. Geometric-map based navigation systems rely on metric maps of the
environment, and are able to take advantage of information about the motion of the
robot (actions reports), such as translation and rotation, derived from wheel encoder.
One of the simplest ways to represent geometric map data is through certainty grids
[19]. In this approach sensor readings are placed into the grid by using probability
profiles that describe the certainty about the existence of objects at individual grid
cells. This approach has a number of advantages. It is easy to build, represent and
maintain. It allows for easy integration of data from different sensors [20]. Recog-
nition of places, based on geometry, is non-ambiguous and view point independent.
Unfortunately, disadvantages do exist. It is space consuming and requires accurate

determination of the robot’s posel

. Although odometry is very accurate over short
distances, errors accumulate over time and decrease the dead-reckoning abilities of

the robot.

1 Pose refers to the position and orientation

5

Topological maps are based on the recording of the geometric relationships
between the observed features, rather than their absolute position with respect to
an arbitrary coordinate frame of reference. This representation takes the forms of
graphs, where nodes represent recognizable locations (landmarks) and edges indicate
connections between landmarks and how the robot should navigate between them.
Information about the sensed features of the environment (sensor reports) enable the
robot to identify its current location. Topological maps can be built and maintained
without estimating the robot position. Such an approach allows integration of large
maps, without suffering from accumulated odometric error, since all connections be-
tween nodes are relative, rather than absolute. Such maps permit efficient planning,
since resolution depends on the complexity of the environment. Unfortunately, this
approach is prone to problems of unreliable sensors occasionally not detecting land-
marks, and perceptual aliasing, where the sensors are not able to distinguish between

different landmarks with similar features.

1.2. The POSMDP Approach

In an office type environment, it would make sense to exploit the underlying
structure. Therefore, a logical choice for an indoor navigation system would be to
utilize a map-based approach. There are a number of advantages in using map-based
navigation system. It utilizes the naturally occurring structure of typical indoor
environments to derive position information without modifying the environment. The
environment map can be updated and used in tasks such as global path planning
or obstacle avoidance. This approach allows a robot to learn a new environment,
and to improve positioning accuracy through exploration. However, both map-based

approaches have disadvantages.

6

The robot must also be able to traverse corridors for long periods of time
without getting lost. In any navigation task, there can be a number of sources for
uncertainty, which can contribute to the robot getting lost. Motion commands are not
always carried out perfectly due to wheel slippage and mechanical tolerances, resulting
in dead reckoning error. Unreliable sensors can produce false positives (features that
are not present) or false negatives. While interpreting sensor data, the robot might
not be able to clearly distinguish between a wall and an opening. Lengths of corridors
might not be known exactly. The environment can change as people and obstacles
move in the environment. Both geometric and topological approaches represent only
a single pose that is believed to be the current pose of the robot. If this proves to be
incorrect, the robot is lost and has to relocalize itself.

A navigation system using a partially observable Markov decision process model
[21, 22] is able to explicitly account for various forms of uncertainty. Partially ob-
servable Markov decision processes integrate topological and approximate metric in-
formation, utilizing both action and sensor reports in determining the robot pose.
A partially observable Markov decision process represents all possible states of the
robot. Instead of maintaining a single estimate of its current pose, the robot uses a
partially observable Markov decision process to maintain a probability distribution
over all possible states. The robot always has some belief about its true pose, and is
never completely lost. Bayes rule is used to update the pose distribution after each
action and sensor report.

In the Markov model, actions (decisions) occur in discrete time [23]. Navigation
in a dynamic environment results in varying amounts of time to complete actions.
For example, if the robot has to avoid a number of obstacles in traversing a distance
of one meter, it will take a longer time than if it had a clear path. This thesis shows
how a partially observable semi-Markov decision process (POSMDP) can provide a

more natural model by extending the standard POMDP approach to account for

7

continuous time. Decisions are allowed only at discrete points in time. In between
decisions the state can change, unlike in an MDP, where state changes are solely due

to decisions.

1.3. Thesis Overview

Figure 1. The Mobile Robot PAVLOV.

The overall structure of the POSMDP-based autonomous layered navigation
system, implemented on the robot PAVLOV (Figure 1), is displayed in Figure 2.
The navigation system consists of three separate layers: an observational layer, a

reactive behavior layer, and a planning layer. Ultrasonic sensors value are used to

8
construct local occupancy grids, which are used by an artificial neural network to
produce observations. The reactive behavior based layer receives actions commands
from the planning layer and translates these into motor commands. Responsibility for
obstacle avoidance and alignment fall to this layer. The planning layer is responsible
for generating a path and estimating the robot pose. It uses sensor and action reports
to update the partially observable Markov decision process, which is then used in

estimating the pose of the robot.

Sensor Reports

%

4) ()
Neural Net EIOSMDP
' Feature i anning
Detectors ayer
o J L)
Action Action
Local Occupancy Reports Commands
Grids 4)
Behavior-based Motor
Raw Sensor | —
Values Layer Commands

(& J

Figure 2. The Overall Architecture.

The planning layer is supplied with approximate metric information between
nodes via a topological map, which is a graph of nodes and edges that contain infor-
mation about the connectivity of the environment. Figure 3 represents the map made

available to the planning layer. Given this map, one might question the necessity of

° 13
11 @ €
&
550 m N
10 S 16.25m ® 12
4.25m
Faculty Office @ 14
E E
3 Computer g
© Science q N
Department %
15 9 8 7
6.75m 9.50 m
oo L L
E Main
0 Office
™
§ Engineering E
3 Computing 3
o™ (92}
Robot Lab
17 16 1 2
22.75m 14.25m 550m
o L
s00m| g 23®M 1850m 6
18 IS i . i IS
o Electrical Engineering o
N N
: D t t :
< epartmen <
4 1850 m 5

Figure 3. The Topological Map. A topological map of the third floor of the engineering
building, showing landmarks. The landmarks (topological nodes) correspond to
recognizable locations, such as corridor intersections and entry ways. FEdges,
containing approximate metric information, represent the distance between the

landmarks. The topological map has 17 nodes and 19 edges

10
any complex navigation system. The robot could simply follow the metric informa-
tion provided. When it believes itself to be close to a node, it could start anticipating
the appropriate landmark (an intersection, a doorway, etc.).

Experiments with PAVLOV have shown that this is not feasible because of
odometric errors, sensor unreliability and perceptual aliasing. Odometry is accurate
for short distances, but the errors accumulate. Turns at intersections cause the in-
ternal angular representation to drift. As the robot avoids obstacles, more errors are
introduced. These errors become very noticeable over large distance. Instructing the
robot to travel 20 meters East, after traversing the Computer Science Department,
could not only result in it attempting to travel into a wall but there is no guaran-
tee that it will accurately traverse the specified distance. It is also not possible to
completely rely on sensors. Not only are sensors and interpretation of sensor data
prone to errors, but numerous places in the environment could look the same. This
is known as perceptual aliasing. For example, since both node 7 and 12 are three
way intersections, the robot has no way of differentiating between them if it were to
completely rely on sensors. Using partially observable Markov decision processes in
navigation unites both map-based approaches and explicitly accounts for the sources
of uncertainty.

This thesis extends the partially observable Markov decision process approach
to incorporate time. A modification of the value iteration algorithm [24] to account
for varying action times results in better path planning. Experiments on PAVLOV
show that it is possible to learn to avoid crowded corridors. Results from using a
partially observable Markov decision process approach show that PAVLOV always
has some belief about its true pose, and is able to relocalize itself, in the event that it
gets lost. In addition, we demonstrate that an artificial neural network can be easily
trained to sense high level features. Results from PAVLOV show that the artificial

neural network functions robustly in highly specular environments.

11
1.4. Chapter Outline

Chapter 2 provides background information on Markov decision processes, dy-
namic programming, occupancy grids and artificial neural networks. This chapter
also reviews different approaches in navigation systems that maximize the advantage
of geometric-based and topological-based navigation systems.

Chapter 3 describes the implementation of the layered navigation system, com-
prised of the planning layer, the reactive behavioral layer and a learned observational
model.

Chapter / presents the results of a number of experiments performed on PAVLOV
to test the robustness of the navigation system and the results from the learned ob-
servational model.

Chapter 5 summarizes the results and contributions of this thesis and discusses

areas of future research.

12

CHAPTER 2

THEORETICAL FOUNDATIONS

Decisions can have immediate and long-term consequences. Decisions made in
isolation do not account for the relationship between the present and the future and
can adversely affect overall performance. Markov decision processes are a model for
sequential decision making under uncertainty which takes current and future deci-
sion outcomes into account. This chapter discusses Markov decision processes, and
methods to extend this to continuous time and situations of incomplete knowledge.
Occupancy grids, artificial neural networks and related navigation architectures are

also reviewed.

2.1. Markov Decision Processes

A sequential decision problem is one where the agent perceives the environment
to be in one of a set of states that it can inhabit, a set of actions it can take in any
environment state, and a reward for being in any state. Given a state, the policy
tells the agent what action to perform. Solving a Markov decision problem [24, 23]
requires calculating an optimal policy in an observable, stochastic environment with
a transition model that satisfies the Markovian property.

A dynamical system specified in terms of a transition model and a reward
function is called a Markov decision process. A transition model is one which gives,
for each state s and action a, the resulting distribution of states if « was executed in

s. A Markov decision process is a mathematical model of a discrete-time sequential

13
decision problem [24]. Formally a Markov decision process is defined by the four tuple
(S, A, P,R), where

e S is the finite set of environment states

o A is the set of actions

e P is the set of action dependent transition probabilities
e R is the reward function

P, the state transition model of the environment, is a function mapping ele-
ments of § X A into discrete probability distributions over S§. P(s'|s,a) represents
the probability that the environment will make a transition from state s to state s’
under action a.

R:S8x A — R is the expected reward for taking each action in each state.
R(s,a) represents the immediate reward for taking action a in state s.

In the evolution of a Markov decision process, for every sequence of observed
states,xzg, 1, ..., 4_1, ¥, y, and the corresponding actions, ag, a1, ..., a;_1, a, the

probability of being in the current state y is given by

P(X1 = y|Xo = x0, a0, X1 = 21,01,..., Xt = 24,0, = a)

= P(Xt-l—l = y|Xt = Jf,(lt = Cl)
where t = 0,1,..., is the decision epoch.
This is known as the Markovian Property [24], and essentially says that the

current state and action provide all of the information available for predicting the

next state. Knowledge of the current state is all that is required in making a decision.

14

2.1.1. Policies and the Value Function

At discrete times in the process evolution, known as decision epochs, the state
of the process is observed. An action is then taken by the controlling agent. When
the choice of actions at each step is based solely on the current process state, the
policy is stationary. The agent must have some function 7 (s) that is used in choosing
actions. The policy, 7, defined as 7 : § — A, is a complete mapping from states to
actions. Given a state, it tells the agent what action to perform. A policy can be
calculated from a transition model and a utility function.

In order to identify an optimal policy, we must be able to distinguish between
different policies. The value function for a particular policy is defined as a mapping
V7™ : S — R that determines the expected utility of each state s, if actions are chosen
according to the policy #. The reward function assigns a numeric value to a state,
based on the short term view, while the value function assigns a real-valued number
to a state taking a longer term view. For example, an agent could take an action
with a positive reward. It is not to the agents advantage if the action takes it into a
state with a negative utility value. A better strategy would be to take an action that
promises a larger long term reward. With this in mind, the expected total discounted

reward of policy 7(s) is defined to be

VI(s) = BT 3o 2.1)
t=0

for 0 < < 1. The discount factor 4 measures the present value of one unit of reward
received one epoch in the future. Discounting arises to account for the time value

of rewards and forces the decision maker to value policies according to the expected

15
total reward. The aim is to maximize the value function over all states by identifying

a policy © where V"(s) > V™ (s) for all s and for all ;

Vi(s)= mazV](s), Vs€S (2.2)

™

V™ refers to the optimal value function and V" is the value function under policy .

Therefore,

V*(s) = V,f*(s), Vse S (2.3)
where 7* 1s the discount optimal policy. More that one optimal policy might exist,

but they all define the same value function.

2.1.2. Dynamic Programming

Generally the aim is to maximize the expected reward over a sequence of deci-
sions. In the ideal case, the agent should take actions that maximize future rewards.
In a Markov decision process, the expected future reward is dependent only on the
current state and action. Therefore there must exist a stationary policy which will
guarantee that the maximum expected rewards are received, if taken starting from
the current state [25, 26]. The goal of any method to solve Markov decision processes
is to identify the optimal policy. The optimal policy is one that will maximize the
expected reward starting from any state.

Theoretically it might be possible to enumerate all of the possible policies for a
state space, and then pick the one with the maximum expected value function. This
method can be intractable, since the number of policies is exponential in the size of
the state space. Methods of policy generation take advantage of the fact that the

optimal policy will be locally optimal for each individual state.

16

The traditional approach to solving sequential decision problems is dynamic

programming [23]. It is a model based approach assuming availability of complete

information. Application of dynamic programming techniques requires precise knowl-

edge of P, the transition probabilities and R, the reward function. Unfortunately,
dynamic programming is computationally expensive in large state spaces.

The optimal value of a state is the expected infinite discounted sum of rewards

the agent will receive if it starts in that state and executes the optimal policy. Using

7 as a complete decision policy, it is written

V*(s) = mazFE (E 'ytrt) (2.4)
m t=0
The optimal value function is unique and can be defined as the solution to the

Bellman equations:

V*(s) = mazx (R(s,a) +7> P(S’|CL,3)V*(S')) ,VseS§ (2.5)

a s'eS

Given the optimal value function, the optimal policy can be specified as

a s'eS

©(s) = argmazx (R(S,a) +v > P(5’|a,s)V*(s')) (2.6)

where argmaz,(f(z)) signifies the z that maximizes f(z).

Two methods of calculating optimal policies in discounted Markov decision
processes are value iteration and policy iteration. Both these methods attempt to
modify the utilities of the neighboring states such that they will satisfy the Bellman
equations. Repetition of this local modification process at each state in the state
space for enough iterations will cause the utilities of the individual states to converge

to their correct values.

17

1. Let k& be the time step, initialized to zero

2. Initialize the value function, Vi(s) =0, Vs € §
3. Select € >0

4. Repeat

(a) Increment k

(b) Compute Vi(s) = max (R(S,a) +7 X P(5|a,5’)Vk_1(s’)) ,Vse S

a s'eS

5. Until [Vi(s) — Vica (s)| < € (12

27

Figure 4. The Value Iteration Algorithm.

A value iteration algorithm for a discrete time Markov decision process is shown
in Figure 4. It will find a stationary policy that is e-optimal within a finite number
of iterations. The generated policy might be optimal, but the algorithm provides no
means of determining this. Combination of this algorithm with methods for identify-
ing suboptimal actions [24] can often ensure that the algorithm terminates with an
optimal policy. In practice choosing € small enough ensures that the algorithm stops

with a policy that is very close to optimal.

2.2. Semi-Markov Decision Processes

Markov decision process models assume discrete time. Decisions occur at
equally spaced points in time, after every state transition. For problems such as
navigation, where the time to complete actions can vary, a more natural model would
be one that incorporates time. Semi-Markov decision processes extend the usual
discrete-time Markov decision process model by incorporating a continuous model of
time. Actions are allowed only at discrete points in time. In between actions, the
state can change. This is unlike a Markov decision process, where state changes are

solely due to actions.

18
A semi-Markov decision process is a mathematical model of continuous time

decision problems [24]. Formally a semi-Markov decision process is defined by the

five tuple (S, A, P, R, F), where
e S is the finite set of environment states
o A is the set of actions
e P is the set of action dependent transition probabilities
e R is the reward function

e [is a function giving probability of transition times for each state action pair

As in the Markov decision process, P is a function mapping elements of & x A
into discrete probability distributions over §. P(s'|s, a) denotes the probability that
the environment will make a transition from state s € S to state s’ € § under action
a € A. Tt is important to note that P describes the transitions at decision epochs
only.

F'is a function where F'(t|s, a) is the probability that the next decision epoch
occurs within ¢ time units, after the agent chooses action a in state s at a decision
epoch. Let @@ denote the joint probability that the system will be in state s’ for the
next decision epoch, at or before ¢ time units after choosing action a in state s. The
expected transition time between decision epochs can be calculated from), which

can be computed from F' and P by

QL s'|s,a) = P(s'|s,a)F(l]s,a) (2.7)

In general, the reward function for semi-Markov decision processes is more

complex than in the Markov decision process model. In addition to the fixed reward

19
k(s,a), accrued due to an action taken at a decision epoch, an additional reward may
be accumulated at rate ¢(s, s,a) for the time the natural process remains in state
s" between the decision epochs. The natural process may change state several times
between decision epochs. Therefore, the rate at which the rewards are accumulated
between decision epochs may vary.

A discounted framework is assumed in this thesis. The goal is to compute
an optimal stationary policy that maximizes the discounted sum of rewards. The
continuous time discounting model is defined as follows: a reward of 1 at the current
time will be worth e™#* at a time ¢ units in the future. Given that the robot was
in state s and chose action a, the expected reward between two decision epochs can
be expressed as the sum of the lump-sum cost and the expected discounted rate cost

over the transition time by

r(s,a) = k(s,a)+ E; {/OT e_ﬁtc(Wt,s,a)dt} (2.8)

where 7 is the transition time to the second decision epoch, and W; denotes
the state of the natural process. Here, E? represents the expectation with respect to
the transition time distribution F(t|s,a).

Let 7 : § — A represent a stationary policy from states to actions. The value
of a state s under a stationary policy 7 can be expressed as sum of the expected
immediate reward until the next decision epoch and the expected discounted value of

the resulting new state.

Vi(s) = r(s,a)+ 3 /OOO ePQ(dL, 5'|s, a)VI(s') (2.9)

s'eS

20

where Q7(dt,s'|s,a) is the joint probability distribution. By defining a discounted

transition function

m(s'|s,a) = /OOO e_ﬁtQ(dt, s'|s,a)

the discounted value function can be expressed in a more conventional form by

Vi(s) =r(s,a) + Z m(s']s, a)Vi(s') (2.10)

s'eS
The aim is to compute an optimal discounted policy 7* that maximizes the value
function V™" (s) over all states. The value iteration algorithm can compute such
a policy, given the underlying probabilistic transition model, and the cumulative

distribution function.

2.3. Partially Observable Markov Decision Processes

In many real world situations it is not possible for the agent to have perfect and
complete perception of the state of the environment. Partially observable Markov de-
cision processes are a class of formal models suitable for controlled stochastic dynamic
systems, such as robots and factories, that deal with the problem of calculating an
optimal policy in an environment where complete state information is not available
[27]. Because of the inability to determine the true state, partially observable Markov
decision processes do not assume the Markovian property.

When the state is not completely observable, a model of observations must be
added. This includes a finite set, O, of possible observation and O : S x A — O, a

function mapping elements of A x S into discrete probability distributions over O.

21
O(o|s, a) represents the probability of making observation o € O from state s after
having taken action a.

A simplistic approach would be to take the set of observations as the set of
states, and treat a partially observable Markov decision process as a Markov decision
process. The problem is that the process would not necessarily be Markov since mul-
tiple states in the environment that are indistinguishable from immediate perceptual
input could require different responses from the system. This can result in an optimal

policy having arbitrarily poor performance.

2.3.1. State Estimation

A belief state is a discrete probability distribution over the set of environment
states, S, representing for each state the probability that the agent is currently in
that state. Let B be the set of belief states. The probability assigned to state s when
the agent’s belief state is b is denoted by b(s). The axioms of probability require that
0 <b(s)<1forall s €S and that Y ,csb(s) = 1.

Y

SE

Y
=
Y

Figure 5. Controller for a POMDP.

The problem of acting in a partially observable environment can be decomposed

as shown in Figure 5. The component labeled “SE” is the state estimatlor. It takes

22
as input the last belief state, the most recent action and the most recent observation,
and returns an updated belief state. The second component, labeled =, is the policy.
This updated belief state is used by the policy to select an action.

The state estimator can be constructed from P and O by straightforward ap-
plication of Bayes’ rule. The state estimator output is a belief state, represented
as a vector of probabilities, one for each environment state, that sums to one. The
component corresponding to state s’, written SE(s'|b, a,0), can be determined from

the previous belief state b, the previous action a, and the current observation o by

SE(s'|bya,0) = Pr(s'|a,o,b)
Pr(o|s’,a,b)Pr(s'|a,b)
Pr(ola,b)
O(ola,s') Y ses P(s'|a, s)b(s)

- Pr(ola,b) (2.11)

where Pr(ola,b) is a normalizing factor defined as

Pr(ola,b) =Y O(ola,s") > P(s'|s,a)b(s) (2.12)

s'eS sES

7

Figure 6. A Simple POMDP Environment.

A simple example of a partially observable Markov decision process is shown

in Figure 6 [27]. Of the four states, state 2 is designated as the goal state. An agent

23
is in one state at all times. The two allowable actions, left and right, move it in one
state in either direction. If it attempts to move into a wall, it stays in the same state.
If the goal state is reached, the agent receives a reward of 1, and is then moved, with
equal probability, into state 0, 1, or 3. If the agent can observe the what state it is
in, the problem becomes trivial. It becomes more difficult when it can only observe
whether or not it is currently in the goal state.

When the agent cannot observe its true state, it can represent its belief of where
it is with a probability vector. After leaving the goal, the agent moves to one of the
other states with equal probability. This is represented by a belief state of <%, %, 0, %>
After taking a “right” action and not observing the goal, there are only two states
from which an agent could have moved: 0 and 3. The agent’s new belief vector is
(0, %,O, %) If a “right” action is taken again and the goal is not encountered, the
agent can be sure that it is now in state 3 with belief state (0,0,0,1). This example
has deterministic actions, resulting in the agent’s uncertainty shrinking at each step.
Generally, some actions in some situations will decrease the uncertainty while others

will increase it.

2.3.2. Planning

A variety of algorithms have been developed for explicitly solving partially
observable Markov decision processes [28]. However the problem is so computation-
ally challenging [29] that most techniques are too inefficient to be used on all but the
smallest problems. The Witness algorithm [30, 31] finds exact solutions to discounted
finite-horizon partially observable Markov decision processes using value iteration. Al-
though it has been used in problems with up to 16 states, it is not efficient enough
to be used for larger problems. The hybrid approach of Littman et. al.[32] is ca-

pable of determining high quality policies for partially observable Markov decision

24
processes with nearly 100 states. However this is not a feasible alternative to handle
the thousands of states needed to address realistic problems.

The key to finding optimal policies in the partially observable case is that the

problem can be cast as a completely observable Markov decision process. This “belief

MDP” can be defined as follows:

B is the set of belief states, comprising the state space

A is the set of actions

7 is the state transition function

p is the reward function on belief states

The belief state set is B and the action set is A. For a current belief state b
and action a, there are only |O] possible successor belief states 8'. The new state

transition function 7 can be defined as

7(b'la,b) = > Pr(ola,b) (2.13)
{o€O|SE(V|b,a,0)}
The reward function on the belief states can be constructed from the original

reward function on world states and is given by

p(b.a) = Y b(s) R(s, a) 2.14)

seS
The reward function might seem strange, since the agent is rewarded for believing
that it is in a good state. However, since the state estimator is constructed from a
correct observation and transition model of the world, it is not possible for the agent

to purposely delude itself into believing that it is in a good state when it is not.

25

The partially observable Markov decision process planning problem can be
transformed in a planning problem for a completely observable Markov decision pro-
cess [21, 22]. Since the decision maker can never be sure of the state of the partially
observable Markov decision process, the set of executable actions A must be the same
for every state s. This belief Markov decision process is such that an optimal policy
for it will give rise to optimal behavior for the original partially observable Markov
decision process [33, 34]. This means that there always exists a partially observ-
able Markov decision process policy that maximizes the expected total reward. Since
this policy can be pre-computed, the decision maker just calculates the current state

distribution and then looks up which action to execute.

2.4. Occupancy Grids

Occupancy grids [19] are a spatial representation that describe space as a Carte-
sian grid where each cell has a certain probability of being occupied. Initially, each
of these cell probabilities should be set to the estimated prior probability of cell oc-
cupancy [35]. For example, if one fifth of the space in a given area is occupied, the
prior probability could be set to 0.20. However, in practice, occupancy grids tend to
be insensitive to errors in the prior probability, and an estimate of 0.5 works well.

Sensor inputs are used in updating the occupancy grids by using a sensor model
that describes the probability of cells being occupied given the reading received. In
the case of time-of-flight sonars, a sonar transducer emits a short pulse of sound and
then listens for the echo. The time reading between the sound pulse emission and
echo reception is measured and referred to as a range reading. It corresponds to half
the distance the sound pulse traverses in that time.

The sonar model is divided into two areas: a cone-like freespace hypothesis,

where the posterior probability of occupancy will be lowered, and an arc-like surface

26

Figure 7. Sonar Sensor Interpretation. Cells in the freespace hypothesis have their oc-
cupancy probabilities lowered, while cells in the surface hypothesis have their

occupancy probabilities raised. Occupancy probabilities of other cells remain

unmodified.

27
hypothesis, where it will be raised (Figure 7). The sonar emits a pulse of sound in
a cone that expands as it gets farther from the transducer. When the pulse hits
an obstacle, it is reflected back to the sensor. A range reading of R indicates that
an obstacle has been detected somewhere along the sonar arc at range R, so the
occupancy probability of all cells along this arc should be increased. At the same time,
this indicates that no obstacle was detected at a range closer than R, so all cells within
the sonar cone at range less than R should have their occupancy probabilities reduced.
Cells at ranges beyond R are not affected, since obstacles at range R prevented the
sonar from obtaining any information about them.

Given X, representing information from a sensor reading, the probability that a
cell is occupied is p(o|X), and the probability that the cell is not occupied is p(—o|X).
From Bayes’ theorem [35]:

plolX) _ p(Xlo) p(o) (2.15)

p(=olX) p(X[=0) = p(=0)

where p(X|o) is the probability of receiving information X given that this cell is

occupied, p(X|—0) is the probability of receiving information X given that this cell is

not occupied, p(o) is the prior probability that any given cell is occupied, and p(—o)

is the prior probability that any given cell is unoccupied, where p(o) + p(—o0) = 1.
Let A represent the current grid state, and B represent the information from

a new sensor reading. The cell occupancy probability can be combined [20] using
plolANB) _ plofA) plo|B) _ p(-o)

p(=o[ANB) ~ p(=olA) ~ p(=a|B) * plo) (2.16)

This assumes that A and B represent independent information. This is not necessarily
true, since a particular point can be sensed more than once, either by the same or

different sensors. For example, if sonar cones overlap for two sensor readings, cells in

28
the common region would have their probabilities updated twice. This means that
although the numerical occupancy probabilities are not reliable. However, the overall
occupancy results tend to be accurate.

When the odds ratio involves a probability and its complement, odds and the

probabilities can be interconverted by the following relationship

__p(4)
1—p(A)

s p(a) = Qs (2.17)

Odds(4) " 1+ Odds(A)

Using an odds formulation, B, the new sensor information, can be combined with the

current grid state A by

Odds(o|A) x Odds(o|B)
Odds(o)

Odds(o|AN B) = (2.18)
Utilizing a logarithmic formulation allows each cell update to be computed with a

single addition.

2.5. Artificial Neural Networks

Artificial neural networks are computer models of the mental processes in the
brain [36]. They consist of processing elements, or units, that attempt to model
some properties of neurons. The units that form the input layer act as “sensors”,
receiving their inputs from outside the network. Units not in the input layer receive
their inputs from other units. In some implementations, a signal is sent to the other
units only if the total strength of all the inputs to a unit exceeds a certain threshold.
Implementations not using thresholding compute an output that is the sum of the
weighted inputs. The outer layer units produce the “activity”, the external output

of the system.

29

Various rules can be used to adjust the internal processing. The adjustment of
the weights controls the learning of the artificial neural network. The power of this
representation lies in the interconnections between units. No single unit provides a
clue to the overall picture. The overall pattern of interaction among units determine
the properties of the network.

Artificial neural networks can process information and carry out solutions al-
most simultaneously, because of their parallelism [36]. Knowledge is distributed
throughout the network as a dynamic response to the inputs and the network ar-
chitecture. They provide a general and practical method for learning functions from
labeled examples and tend to be robust to error in the training data.

The network most widely used in addressing problems requiring recognition of
complex patterns and performing nontrivial mapping functions is the backpropagation
network [37, 38]. The backpropagation algorithm learns weights in multi-layer feed-
forward networks, where interconnections are given and fixed. The network learns a
set of input-output example pairs using a two-phase propagate-adapt cycle. Input
patterns are propagated through the net to generate an output. The output pattern
is compared to the desired output in computing the error signal for each output unit.
The error signals are transmitted backward from the output layer to each node in
the intermediate layer contributing directly to the output. Each unit receives only a
portion of the total error, based roughly on the relative contribution it made to the
original output. This process is repeated for all layers. Gradient descent is performed
by simultaneously refining the weights of all network units by attempting to minimize
the squared error between the network outputs and the target value for these outputs,
provided by the training data. This causes the network to converge toward a state
that allows all the training patterns to be encoded.

As the network trains, the units in the intermediate layers are organized such

that different units learn to recognize different features of the total input space. After

30
training, when presented with an arbitrary input pattern that is noisy or incomplete,
the units in the hidden layers of the network will respond with an active output if the
new input contains a pattern that resembles the feature the individual units learned
to recognize during training. If the inputs pattern does not contain the feature that
the units were trained to recognize, their outputs will be inhibited. Backpropagation
networks provide an effective means to examine data patterns that may be incomplete
or noisy, and to recognize subtle patterns from the partial input.

NETtalk [39] is an example of a neural network that used the backpropagation
algorithm to learn to read out loud. The input layer had 7 groups of 29 units. The
hidden layer was comprised of 80 units and attempted to improve the feature detection
needed for the input/output transformation. The output layer had 26 units that
encoded phonemes and stresses and drove the sound synthesizer. NETtalk examined
a window of seven character at a time. Frrors were corrected and backpropagated. At
first the talk was gibberish. After a night, it achieved a 95-percent performance level,
reading with a few mistakes. People are capable of handling the inconsistencies in
spelling and pronunciation of the English language. An inflexible rule-based system
would encounter significant problems, but NETtalk was capable of representing these

complex rules.

2.6. Related Work

Xavier [21] is a robot navigation architecture based on a partially observable
Markov decision process model. It is a multi-layer system that includes the partially
observable Markov decision process-based navigation architecture, a servo-control
layer that controls the motors of the robot, an obstacle avoidance layer that keeps
the robot moving smoothly in a goal direction while avoiding static and dynamic

obstacles, a path planning layer that reasons about uncertainty to choose paths that

31
have high expected utility and a multiple-task planning layer that uses PRODIGY, a
symbolic, non-linear planner, to integrate and schedule delivery requests that arrive
asynchronously. The layers are implemented as a number of distributed, concur-
rent processes operating on several processors, are integrated using the Task Control
Architecture, that provides facilities for interprocess communication, task decompo-
sition and sequencing, execution monitoring and exception handling, and resource
management.

The partially observable Markov decision process planning problem is trans-
formed into a planning problem for a completely observable Markov decision process
model, where the belief state comprises the state of the model. GROW-BW [40, 41],
an extension of the Baum-Welch algorithm, is used to tune the initial sensor and
actuator models to better match the environment of the robot while it learns the
distances. The algorithm learns a probability distribution over the maximal and min-
imal bounds on the length of each corridor segment. Application of the algorithm
to an initial partially observable Markov decision process and a history of actions
and observations, allows for the generation of a partially observable Markov decision
process that better fits the trace by updating the observation and transition proba-
bilities. Application of the Viterbi [42] algorithm enables determination of the most
likely continuous sequence of states encountered by the partially observable Markov
decision process.

The office-navigating robot DERVISH [43] won the Office Delivery event of the
1994 Robot Competition and Exhibition, held as part of the 13th National Conference
on Artificial Intelligence. DERVISH navigates in real office environments via a topo-
logical map. The topological map contains no distance information, only approximate
hallway and doorway widths. DERVISH uses a partially observable Markov decision
process to maintain a sense of position. This state set is updated whenever the robot

discerns a new percept. Planning is based on the assumption that DERVISH is in the

32
most likely state. The resultant path is executed, while continually updating the state
set until either the goal is reached or the current most likely state is no longer on the
path, at which point it replans. Incorrect or missing percepts can cause DERVISH
to temporarily assume the wrong state, but the correct state is retained in the state
set and becomes the most likely state after one or more correctly detected percepts.
Updates are based on a model of observational error. One weakness in DERVISH is
that it does not incorporate metric information.

Planning in Xavier and DERVISH is based on collapsing the partially observ-
able Markov decision process into a completely observable “belief” Markov decision
process. Cassandra et. al.[22] also utilize partially observable Markov decision pro-
cesses 1n constructing a layered navigation system for their mobile robot. In con-
structing the state space, the office environment is discretized into one square meter
segments. The focus of their research is heuristic approximations to the optimal con-
trol strategy which is generated through the most likely state, voting, Qrpp, action
entropy and entropy weighting methods.

Although it does not utilize partially observable Markov decision processes, the
approach used in RHINO[44, 18] also integrates both metric and landmark based ap-
proaches. Occupancy grid based maps are learned using artificial neural networks and
Bayesian integration. Topological maps are then generated from these maps by using
Voronoi diagrams to partition them into coherent regions. This approach take advan-
tage of the accuracy and consistency of a metric-based approach and the efficiency
of a landmark-based approach. Localization is performed via wheel encoders, map
correlation and wall orientation. Maps are autonomously acquired through greedy
exploration that directs the robot to move on a minimum-cost path to the nearest
grid cell, where the cost for traversing a grid cell is determined by its occupancy
value. Path planning is performed on the abstract topological map by using a value

iteration approach.

33

CHAPTER 3

A ROBOT NAVIGATION ARCHITECTURE

This chapter describes the navigation architecture implemented on the robot
PAVLOV. The POSMDP planning layer uses an abstract Bayesian model of the envi-
ronment, and the robot’s actions and observations. The planner receives observations,
maintains a belief state and chooses actions. The reactive behavior level is responsible
for executing the abstract actions from the planner on the robot, while the ANN 1is

responsible for determining observations for the planner from local occupancy grids.

3.1. The POSMDP Planning Layer

The planning layer assumes an office-type environment, made up of corridors
and intersections oriented along two orthogonal axes. It is provided with approximate
metric information about the office environment via a topological map (Figure 3). A
topological map is a graph of nodes and edges that contain information about the
connectivity of the environment. Nodes represent junctions between corridors and
rooms. KEdges, containing approximate length information, represent corridors and
entrances into rooms.

A state map is generated from this map. The continuous state space is dis-
cretized into locations of one square meter, and an orientation in one of four compass
directions. A Markov stale consists of a location and an allowed orientation. Figure 8
shows a Markov node which is a collection of the four Markov states at one location.

The location represented by a Markov node corresponds to an area of one square

34

th ok

0ES)

Figure 8. A Markov Node. This a a group of four Markov states modeling a one square me-

ter location. Each state at a node is oriented along one of four compass directions.

An 1 indicates a turn-left action, while an r signifies a turn-right action.

meter. The connections between states at one location show the states resulting from
deterministic turn actions. If the robot is facing North, a turn-left action will move
it to the West state, while a turn-right action will move in to the South state, both
in the same Markov node.

The map in Figure 9 shows the corresponding discretized environment, repre-
sented by Markov nodes. The state map describes the underlying connectivity of the
states, and helps in defining the ideal observations for each state. For example, if the
robot is facing North in a corridor oriented along the Fast-West axis, it should see,
in an ideal environment, walls in the front and at the back, and openings on either
side.

Figure 10 represents the general architecture of the planner. For all of our
experiments, the distribution was initialized by setting the probability of the chosen
starting location to 1. Goals can then be specified and correspond to any topological
node specified in Figure 3.

The POSMDP model extends the SMDP model through the incorporation

of an observational model. The robot is unable to perceive the true states of the

35

| 13
11 m]
10 M IIIIIIIIIIIITIII M 12
H H 14
H H N
15 9 O 8 .
" HEE EEEEES EEEEEEEEN |
17 16 M 1 0 2
[EEEEEEEEEESESEESEENEEE NESESEENEEEEE 11115
3 WMIIIIIIIIIIIIIIIIIm g
18 O O
4 WTTITIIIITIITIITI T 5

Figure 9. The Markov Map. The Markov map is generated from the topological map
(Figure 3). This is a discretization of the physical space into the Markov state
space. Each square represents a Markov node, a collection of four Markov states.
The topological map is segmented into 288 Markov nodes, corresponding to 1152

Markov states

Initialize Distribution

Y
Specify Goal

A

Y
Determine Optimal Policy

Y
Estimate State

vy

Evaluate Policy

Reached \, Y6 |
Goa?

No

Y
Execute Action

Y

Make Observation
l

Figure 10. Flow Diagram for the Planning Layer.

36

37
environment. It is only able to make observations. The model is partially observable
because the size of § is much larger than that of the observations O. For example,
in this thesis |S| = 1152 and |O] = 64.

If the current state distribution is a4, the state distribution ., after the

execution of an abstract action a, is given by

1

scale

Z P(s|s',a)aprior(s’), Vs €S (3.1)

s'€Sla€A(s’)

apost(s) -

This updated state distribution now serves as «,,;,, when the state distribution

is updated to ays¢, after an abstract observation o

1

scale

O(o|s)aprior(s), Vs €S (3.2)

Upost(8) =

In both updates, scale is a normalization constant that ensures that

D aposi(s) =1
SES
This is necessary since not every action is defined in every state (for example, the

action go-forward is not defined in states where the robot is facing a wall).

3.1.1. Abstract Actions

The robot has four abstract actions: go-forward, turn-left, turn-right and no-
action. Table 1 shows the action transition probabilities used in experiments. These
probabilities were obtained empirically. The actions are defined in terms of possible
outcomes. For example, assume that the robot is situated in the middle of a corridor

oriented along the North-South axis, facing South. A go-forward action has three

38
possible outcomes: there will be no change of state with probability 0.05 (N), it will
advance South by one meter with probability 0.90 (F), or it will advance South by two
meters with probability 0.05 (F-F). A turn-left action from this state also has three
possible outcomes: there will be no change of state with probability 0.05 (N), the
robot will end up in the West facing state at the same location with probability 0.90
(L), or it will end up in the North facing state at the same location with probability
0.05 (L-L). A turn-right state moves in a counter-clockwise direction, with similar
results. If a no-action directive is issued, then the robot will stay in the same state
with probability 1.00. The robot is deemed to have reached the goal node if it receives

a no-action directive.

Table 1. Transition Probabilities for Abstract Actions

State
Action Same ‘ Next ‘ Next-Next
go-forward | 0.05 (N) | 0.90 (F) | 0.05 (F-F)
turn-left | 0.05 (N) | 0.90 (L) | 0.05 (I.-L)
turn-right | 0.05 (N) | 0.90 (R) | 0.05 (R-R)
(N) 0.00 0.00

no-action | 1.00

3.1.2. Abstract Observations

In each state, the robot is able to make an abstract observation. This is facil-
itated through the modeling of four virtual sensors that can perceive features in the
nominal directions front, left, back and right. Each sensor is capable of determining
if a percept is a wall, an opening, a door or if it is undefined. An abstract observation
is a combination of the percepts in each direction, and thus there are 64 possible

abstract observations. Table 2 shows the conditional probabilities for the abstract

39
features, obtained empirically. The observation model specifies, for each state and

action, the probability that a particular observation will be made.

Table 2. Conditional Observational Probabilities

Feature

Percept | wall ‘ opening ‘ door‘ undefined
wall 0.75 0.20 0.15 0.00

opening | 0.20 0.70 0.15 0.00
door 0.00 0.00 0.69 0.00

undefined | 0.05 0.10 0.01 1.00

Denote the set of virtual sensors by I and the set of features that sensor : € 1
can report on by Q(¢). The sensor model is specified by the probabilities v;(f|s) for all
it €1, f€Q),and s € S, encoding the sensor uncertainty. v;(s) is the probability
with which sensor ¢ reports feature f in state s. An observation o is the aggregate
of the reports from each sensor. This is not explicitly represented. We calculate only

the observation probability. Thus, if sensor ¢ reports feature f, then

O(ols) = [T vi(fls) (3.3)

el

Given the state, this assumes sensor reports from different sensors are independent.
Assume that the robot somewhere in North-South corridor, oriented North. In the

ideal case, the sensor report should be:

(front opening) (left wall) (back opening) (right wall)

However, the actual sensor report might read:

(front wall) (left undefined) (back opening) (right wall)

40

The individual sensor probabilities are then:

Vfront(wall|opening) = 0.20
viese(unde fined|wall) = 0.05
Vright(Opening|opening) = 0.70

Vpaek(wall|wall) = 0.75

The aggregate of these probabilities produces the observation probability.

3.1.3. Probabilistic Planning in the POSMDP

It is well known that computing exact optimal policies for POMDPs is in-
tractable [32, 45]. There is ongoing research on computing approximately optimal
policies [46], but most of the previous POMDP-based robot navigation systems as-
sume that the underlying MDP is completely observable. Then, the optimal policy for
the MDP is computed, and a variety of heuristic approximations are used to obtain
the policy for the POMDP. For example, the DERVISH system [43] uses the policy
associated with the most likely state, that is 7(a(s)) = 7*(argmaxses(a(s))). Here,
7 1s the POMDP policy, and 7* is the optimal policy of the underlying MDP. In the
XAVIER system, a voting strategy is used, whereby the action selected is the one
with the highest mass, namely argmax,ea 3 espm(s)=a @(8). A detailed comparison
of these heuristic strategies is given in [22].

For the results reported in this thesis, we used the most likely state strategy
to determine the status of the POSMDP since this strategy was found to work well

in noisy environments [22]. This reduces to finding the world state with the highest

41
probability and executing the action that would be optimal for that state in the
SMDP:

Tmis(b) = 77 (argmaxsb(s)) (3.4)

1. Let k& be the time step, initialized to zero

2. Initialize the value function, Vi(s) =0, Vs € §
3. Select € >0

4. Repeat

(a) Increment k
(b) Compute
Vi(s) = max (R(S,a) + > P(sla,s")Vi1(8) ?e‘ﬁtF(dﬂa,s’)) , Vs e S
0

a s'eS

5. Until sp|Vi(s) — Ve (s)] < ¢ (257)

Figure 11. The Modified Value Iteration Algorithm.

Figure 11 describes the value iteration procedure for discounted SMDPs, which
is used to determine an e-optimal policy. Value iteration [47] is based on the Bellman
optimality equations [24, 26, 48]. It iteratively computes a better approximation of
the optimal value function, based on the sum of the immediate reward received over a
decision epoch and the discounted value of the next state. We use an improved stop-
ping criterion based on the span semi-norm [24], which usually improves performance
by about 25 percent. The span is defined as sp(f(s)) = mazsesf(s) — mingesf(s),
where f(s) = |Vi(s) — Vi_1(s)|. The constant e=# is essentially the discount factor 5

for a discrete-time MDP.

42

3.1.4. Temporal Models of Robot Actions

An important characteristic of the POSMDP model is that actions are modeled
as taking random amounts of time. Different distributional models for actions can
be specified. The generic uniform distribution model used in this thesis is shown in

Figure 12.

Probability
H

Time

Figure 12. Temporal Model of Robot Actions. The temporal model of an action gives the
probability of the next decision epoch occurring in a given interval. The action

takes time uniformly distributed in the range [c, d]

Here, the transition time for an action is modeled as taking a random time
between ¢ and d units of time. This model can be used for different actions by

specifying ¢ and d. For the uniform distribution model, the distribution function

43
F(tla,s) can be written as
0 (0<t<e)
¢

— (c<i1<d) (3.5)
I (t>d)

F(t|s,a) =

|
o

The discounted transition function m(s’|s,a) can by computed by

m(s'|s,a) = /Ooe_ﬁtQ(dt,S’|s,a)
0
= (3’|a,5) h e P (dt, s'|s, a)

(e —)
(-0
(

and is used in value iteration (Figure 11) to determine an e-optimal policy.

=)

Table 3. Idealized Transition Times for Abstract Actions

‘ Action ‘ ¢ (sec) ‘ d (sec) ‘
go-forward (Interior) 5 10
go-forward (Intersection) 10 25
turn-left, turn-right (Everywhere) 5 10
go-forward (Cluttered Corridor) 20 100

The upper and lower bound values used in PAVLOV depend upon what action
is performed, and where it is performed (see Table 3). For example, if the robot
believes itself to be in the middle of a corridor, a go-forward action takes anywhere
from 10 to 20 seconds (depending on the speed of the robot and encountered obsta-
cles). The same action takes twice as long near intersections, since the robot usually
slows down there. Turns take the same time everywhere. Busy corridors are modeled
by increasing the variance on the transition time (e.g. anywhere from 20 to a 100

seconds).

44

Another generic model is the truncated exponential model, defined as

0 (0<t<ec)
F(tls,a) =9 S=2g (e <t <d) (3.6)
1 (t>d)

This model can accommodate a variety of temporal profiles by suitably choosing 6.
Low values (e.g. 6 = 0.01) will closely approximate a linear increase, and higher

values will generate a nonlinear profile.

(0.05,[5,6])

—_—

(0.9,[5,10])

w

(0.05,[10,20])

Figure 13. Example of an SMDP Model of the Forward Action. The figure displays the
transition probabilities and the transition times. With high probability, the
robot moves one grid cell with a transition time distributed uniformly between 5
and 10 seconds. With low probability, the robot stays in the same cell, or moves

two cells, in a shorter or longer time interval, respectively.

One immediate question that arises is whether the transition times can be
learned, say from execution traces. We use the Viterbi algorithm [42] (Figure 14) to
determine the most likely sequence of states from the execution trace. An execution
trace is a snapshot of the POSMDP at a decision epoch. It is a record of the proba-

bility distribution, the observation, the action and the time required to complete the

45

1. Set scale} = Y O(o1|s)as(s)

SES
2. Set of(s) = O(o1]s)as(s)/scale}, Vse€ S
3. Fork=1to K -1
(@) Sel sealelyy = 3 O(okials) maxaesnmsean P15 a)af (4]
() Set 1 (5) = Ofogsa|s) Masaesnaenin) P51 a)ay(s)]fscalely, Vs € §
4. Set sg = maxesa(s)
5. Fork=K—-1to1

(a) Set 5 =argmaxyesna,eay(s’)P(Skt1]s’, ar)

Figure 14. The Viterbi Algorithm.

action. The observation at the first decision epoch is used to normalize the initial
probability distribution. Moving forward in time until the penultimate decision epoch,
scaling factors are computed for each probability distribution in the execution trace.
The scaling factors, used in normalizing the probability distribution, and the updated
state probabilities are dependent on the current observational probability and state
probabilities from the previous decision epoch. Once all the probability distributions
in the execution trace have been updated, the robot is estimated to be in the max-
imum probability state, in the current distribution. Starting from the penultimate
decision epoch, and moving backward in time, the most likely state at each decision

2 over all states, and all actions allowed at

epoch is determined by taking the argmaz
each state, in an execution trace. Moving forward in time, the observed transition

times are then associated with the action that caused the transition from the current

state to the next state in the Viterbi sequence.

Zargmax,(f(z)) signifies the 2 that maximizes f(z)

46

3.2. The Reactive Behavior Layer

The reactive behavior layer is implemented on PAVLOV (Figure 1), a Nomadic
Technologies Nomad 200 mobile robot based on the approach described by Connell
[49]. PAVLOV has a ring of 16 Polaroid 6500 sonar ranging modules and 16 infra-red
sensors evenly distributed about its circumference at regular spacings of 22.5 degrees.
The infra-red sensors are fairly reliable short range proximity sensors, returning dis-
tance values ranging from 0 inches to 15 inches. The ultrasonic sensors give longer
range proximity information, returning distance values ranging from 5 inches to 255
inches, but are highly prone to specular reflections. A set of 20 bump sensors encircle
the robot, enabling it to determine if it is in physical contact with an object. Odo-
metric and angular information is also maintained, but this becomes inaccurate over
long runs.

This layer supports the abstract actions go-forward, turn-left, turn-right and
no-action. This is accomplished by an action vector that controls the translation and
rotational speed of the robot. Multiple behaviors modify this action vector.

A no-action directive causes the robot to stop all motions, and is only issued
by a goal state.

The turn-left and turn-right directive reorient the robot to the axis orthogonal
to the current one. The heading_align behavior forces the robot to turn to an axis
orthogonal to the current one, while the avoid_bump behavior causes the robot to
back up and turn, if the bump sensors indicate the robot is in physical contact with
an obstacle.

A go-forward directive attempts to move the robot approximately 1 meter for-
ward along its current axis. Movement along the orthogonal axis, resulting when

the robot is attempting to avoid obstacles, is not used in determining the distance

47

|

Go Yes
forward?,
No heading_align
heading_align
Reset Yes
angle?
avoid_bump
No sonar_align
£
8
:
T
m
:
§
04
H

<
&

Figure 15. Flow Diagram for the Reactive Behavior Layer. For turns (turn-left, turn-right),
only two behaviors are activated. For a go-forward directive, all behaviors are
initially active. Once the robot is aligned, the sonar_align behavior is deac-
tivated. The action vector is repeatedly modified until an action is deemed to

have been completed

48
traveled. The heading_align behavior attempts to keep the robot oriented in ap-
proximately the current direction, as it moves forward. At the beginning of every
go-forward action the sonar_align behavior forces the robot to stay parallel to walls.
This is accomplished by attempting to fit sonar data to lines, and altering the action
vector to align parallel to observed lines, if the fit is good enough. Once it judges the
robot to be parallel to a wall, it resets the internal angle to the current heading and 1s
deactivated, until the next go-forward action. This is necessary to compensate for an-
gular drifts, which becomes very noticeable over long runs. Responsibility for orient-
ing the robot to the desired heading is now the sole responsibility of heading_align.
Short range infra-red sensor readings are interpreted by ir_fend (prevents the robot
from side swiping wall), ir_around (forces the robot to avoid obstacles directly in
front by turning in the direction of least resistance), and ir_halt (forces the robot
to stop moving if the front infra-red sensors judge an obstacle to be closer than a
threshold). Longer range sonar information is interpreted by sonar_veer (steers the
robot to avoid obstacles in front) and sonar_speed (causes the robot to slow down or
stop, depending on whether an obstacle is detected in front, and the judged distance).
avoid_bump interprets data from the ring of bump sensors.

The action vector is interpreted by do_action, which continuously sets the ro-
tation and translation speeds of the robot. This is repeated until the desired rotation
or translation is accomplished, indicating the end of the abstract action. Control

returns to the planning layer, from which the next abstract action is issued.

3.3. Feature Detectors with ANNs

A four square meter robo-centric local occupancy grid of size 32 x 32 is contin-
ually updated while the abstract actions are executed. This provides the robot with

a spatial representation of the environment, from which features can be extracted.

49

In our office environment, most of the walls are very smooth and non-textured.
Specular reflections become very prevalent. Konolige [50] use a sensor model that is
a mixture of specular and diffuse reflections to update occupancy grids. Yamauchi
[35] recommends rotating the sonar sensors through a range of angles equivalent to
the width of the sonar arc while constructing the occupancy grids. If both specular
and non-specular reflections are possible from a given viewpoint, then both will be
incorporated into the evidence grid.

Since the elimination of specularities is not the focus of this thesis, we use a
simple approach of incorporating long sonar returns from sensors either parallel or
orthogonal to the walls in updating the grid. For all other sonars, only ranges below
4 meters were incorporated into the occupancy, since out widest corridors are about
3 meters wide. Even after these standard efforts, effects of the specular readings are
very noticeable in the occupancy grids. These specularities make feature detection
from occupancy grids a challenging task.

In our experiments, the occupancy grids were updated according to the meth-
ods defined by [20, 51, 19]. This approach assumes independent sensor readings in
updating occupancy cells. Thrun [44] trains an artificial neural network using back-
propagation to map sonar measurements to occupancy values. This approach does
not make a conditional independence assumption between adjacent sensors measure-
ments and could possibly do a better job in eliminating specularities.

Each local grid of 1024 values is divided into 4 regions - left and right halves,
and top and bottom halves. Consequently each region has 512 inputs, which are
directly applied to a neural net. We used a single hidden layer feed-forward neural
net (Figure 16) comprised of asymmetrical sigmoid units to detect features from the
local occupancy grids. Each of the 512 input units is fully connected to a hidden
layer of 32 units, which is, in turn, fully connected to an output layer of 4 units. Each

of the outputs indicates the confidence in the corresponding feature - door, opening,

50

Raw Occupancy Values

oo e
@

N
v
T

Input L ayer Hidden Layer Output Layer

Figure 16. The Artificial Neural Network. 512 raw occupancy cell probabilities serve as
input to the net and connect up to 32 hidden units. There are 4 output units,

corresponding to the four features.

51
wall and undefined. Currently we use the output with the maximum activation to
determine the feature detected.

Data for the nets was obtained by running the robot in the corridors. Initially,
occupancy grids were collected by issuing abstract actions to the robot (go-forward,
turn-left, turn-right) and recording the data. Each local occupancy grid was used
to generate 4 training examples, each of which was hand-labeled. It is possible to
perform rotations on the occupancy grids and generate many more examples. Since
data collection is a relatively easy process, this was not deemed to be necessary. The
artificial neural network was trained on this initial data set.

Subsequent training data was autonomously obtained as PAVLOV performed
navigation tasks. The final network weights, used in all experiments, was learned from
872 labeled examples, generated by 218 occupancy grids. The data was obtained
from a run around the Electrical Engineering department and a run in which the
robot was sent from node 1 to node 9 and back. The numerous tasks, performed
by PAVLOV, have generated over four thousand of occupancy grids. Generation of
more than sixteen thousand labeled example from this data would require a large time
commitment. To avoid this, we take the uniformity of the environment into account.
Doors and most walls have the same textures, anywhere in the environment. Random
visual inspection of the occupancy data indicate that the 218 occupancy grids, used
in generating the training data, is an encompassing representation of all possible
situations.

Simmons [52], Cassandra [22] and Schiele [53] use hard-coded feature detectors.
One advantage to using neural nets to compute high level features is that the robot
can be easily trained to work in different environments, where walls have a different
texture. This is facilitated by a short training time and the fact that data collection
and labeling is a relatively quick process. It is also possible to add new high level

features. In this case an easier approach would be to have a neural net for each

52
feature, and then train a net to predict the new feature. We choose to use one net
with four outputs because this requires only one forward-propagation, as opposed to

four for individual nets.

53

CHAPTER 4

RESULTS

In this chapter we provide a discussion of the results obtained from exper-
iments, divided into two sections. A discussion of the neural net used in feature
detection is provided. To demonstrate the effectiveness of this approach to deal with
specularities, example occupancy grids are provided. This is followed by a discussion
of the POSMDP approach. This includes a presentation of results which demonstrate

the ability of POSMDPs to estimate location, and model and learn transition times.

4.1. Feature Detection

Through experimentations, we discovered that the sonars were prone to specu-
lar reflections in a majority of the environment. We attempted to create a hard-coded
feature detector, but found that an artificial neural network could be trained to pro-
duce more accurate and consistent results. Not only was it easy to implement and
train, but it is also possible to port it to other environments and add new features.

The ANN used in feature detection was trained using Fahlman’s Quickprop
program [54]. This variation of the backpropagation algorithm has been highly opti-
mized to quickly learn the network weights. The sum of the weighted inputs are used
with an asymmetrical sigmoid function to produce an activation that is in the range
0 to 1. Initially, the weights between the input layer and the hidden layer and the
hidden layer and the output layer are set to random values. The ANN is presented

with each input-output pair of the training set. The activation from the input is

54
propagated through the network to the output. The ANNs response is compared to
the desired output. If the predicted response does not match the actual response,
an error for each output unit is computed and stored. The process is repeated for
every member of the training set, and is called a single training epoch. At the end of
a training epoch, the errors for all training examples are used, in a batch update, to
adjust the weights of the interconnections. The goal is to produce outputs that can

provide an overall better match to the desired outputs in the next training epoch.

Error curve for neural net feature detector

1200
1000 T
800 \

N
L

- : M |
0 i PO 90990000004
0 10 20 30 40 50 60

Epochs

Total Error

4

Figure 17. Learning Curve for ANN. The ANN for feature detection trained on 872 hand

labeled examples using Quickprop.

Sample local occupancy grids were collected by running the robot through the
hallways. Each local occupancy grid was then used to produce 4 training patterns.
The ANN was trained on 872 hand labeled examples. Since all sensors predict the

same set of features, it was only necessary to learn one set of weights. Figure 17

55
shows the learning curve for the ANN, using batch update. Starting off with a set of
random weights, the total error over all training examples converged to an acceptable
range (< 1) within about 60 training epochs.

A separate set of data, with 380 labeled patterns, was used to test the net.
This would be the approximately the number of examples encountered by the robot,
as it navigated the loop in the Electrical Engineering department (nodes 3-4-5-6 in
Figure 3). Feature prediction is accomplished by using the output with the maximum
value. Out of the 380 test examples, the ANN correctly predicts features for 322,
leading to an accuracy of 85%.

Figure 18 illustrates the variation in observation data, using examples of the
robo-centric local occupancy grids. In these occupancy grids, free space is repre-
sented by white, while black represents occupied space. Gray areas indicate that
occupancy information is unknown. The figures are labeled with the virtual sensors
and corresponding features, as predicted by the ANN.

Specular reflections occur when a sonar pulse hits a smooth, flat surface angled
obliquely to the transducer. The possibility exists that the sonar pulse will reflect
away from the sensor, and undergo multiple reflections before it is received by the
sensor. As a result, the sensor registers a range that is substantially larger than the
actual range. In the occupancy grids, this results in a physically occupied region
having a low occupancy probability. In Figure 18(a) where the specularities are rela-
tively insignificant, the ANN does an accurate job of predicting the features. Effects
of the specularities are noticeable in Figure 18(b) and Figure 18(c). In Figure 18(b)
the ANN is able to predict a wall on the left, although it has been almost totally
obscured by specular reflections. The occupancy grid in Figure 18(c) shows some
bleed-through of the sonars. In both examples, the ANN correctly predicts the high
level features. Figure 18(e) and Figure 18(f) are examples of occupancy grids where

the effects of the specularities become very noticeable. In these examples specularities

(Left Opening)

(Left Wall)

(Left Wall)

(Front Wall) (Front Opening)

(Right Opening)

2 =
s 0
5 3 E
3
(Back Opening) (Back Opening)
@ (b)
(Front Opening) (Front Opening)

O

(Left Wall)

(Right Wall)

A

(Back Opening) (Back Opening)
(© (d)

(Front Opening) (Front Opening)
~ "
3 S A
: 1 1O"
s 5| | Y
3 = i [

(Back Opening) (Back Opening)

G)

Figure 18. Example Occupancy Grids.

(Right Wall)

(Right Wall)

57
dominate, almost totally wiping out any useful information, yet the ANN is still able
to correctly predict features.

From the presented examples, it is apparent that the ANN can robustly predict
features in a highly specular environment. Testing the ANN on an unseen set of
labeled data reveals that it is able to correctly predict 85% of the features. In addition,
although examples have not been presented, the ANN is able to accurately predict
features even when the robot is not approximately oriented along one of the allowed

compass directions.

4.2. Navigation Results

PAVLOV is able to successfully navigate a dynamically changing environment
while traveling to goal locations. In the process of navigation, PAVLOV is able to
avoid static and moving objects. By maintaining a distribution over states, PAVLOV
is able to compensate for the different sources of uncertainty and can relocalize itself,
in the event that it gets lost. We also demonstrate that PAVLOV can learn to avoid

heavily populated corridors.

Table 4. Summary of Sample Runs on PAVLOV

‘ Task ‘ Trials ‘ Avg. Time ‘ Std. Dev ‘ Total Distance

1-5-1 18 15.09 min. | 0.97 min. 1655 m
1-16-15-1 D 11.61 min. | 1.56 min. 485 m
1-7-1 bt 15.15 min. | 0.86 min. 644 m

Table 4 summarizes some of the experimental results, in terms of the number
of tasks completed, total distance traveled, and the average time taken to do each

task. A task corresponds to PAVLOV traveling to specified goal nodes. For example,

58
in Table 4, task 1-7-1 indicates that PAVLOV was instructed to go from node 1 to
node 7, and then back to node 1. All tasks were performed on the third floor of the
Engineering building at the University of South Florida. In addition to randomly
placed static obstacles, PAVLOV also had to deal with enthralled and inquisitive
onlookers. In all cases, PAVLOV is able to successfully complete the specified task.
The table does not show all the runs that have been performed on PAVLOV, which

exceed many kilometers over a period of several weeks.

4.2.1. Odometric Uncertainty

One of the attractions of using the POSMDP approach is the fact that we
can combine the advantages of using a geometric and topological based navigation
system. While odometry is very accurate over small distances, errors accumulates
and becomes very noticeable with the passage of operating time. It is not possible
to rely solely on observations, since numerous locations in the environment can have
the same set of features, and sensors can occasionally be unreliable. The POSMDP
is able to take advantage of using both odometry and sensors in navigation. While
performing a task, PAVLOV might overshoot a node at which it was supposed to turn.
By maintaining a distribution over states, observations eventually localize the robot.
Once PAVLOV realizes that it has overshot the node, it can follow the pre-computed
policy to retrace its steps.

Figure 19 is an odometric plot of three successive runs on PAVLOV. Starting
from node 1, the specified goals are 4-5-6-1 (see Figure 3). The loop 3-4-5-6 cor-
responds to the Electrical Engineering department, where corridors are at most 2
meters wide. The severe odometric error is immediately apparent. From the figure,
and taking the diameter of the robot into account (0.275 meters), we should interpret

the corridors to more than 3 meters wide. Each run places intersections and corridors

59

Odometric plot of three successive runs on PAVLOV in the EE department

5

0

’@ -5
]
©
£

> -10

-15

-20

P
END |
we&%&i&%@f»%
hode]2
1 START 45
= @@%g%>® Bz D R G A S o 6
b plo” i e R
o P Do
4 L I3
L] ¢ k7|3 R
@ Q(yb | ‘0
ke Be
o ke ¢ Th
® ¢ ¢ 9 ¢
I B¢ MRS
4 ¢ S ¢¢
& Lo¢
& o <@ | <‘>
P b o
ISR 15 o fo
o g% gfg‘of-v%»e»e:of-s&-ezéﬁe%%w &
4 800000 0-00-0-0t 0000000 5
-5 0 5 10 15 20 25
X (meters)

Figure 19. Odometric Trace in the Electrical Engineering Department.

This shows the

robot starting at node 1, doing the loop (3-4-5-6) and returning to node 1. The

robot repeated this task three times, and succeeded despite significant odometric

€ITors

60
at vastly different absolute (X,Y) coordinates. This is definitely not the case, since the
members of the reactive behavior layer force the robot to stay approximately equidis-
tant between walls. Yet the robot successfully completes this task three times. This
is clearly a demonstration of the power and robustness of the probabilistic approach

to compensate for navigation uncertainty.

Odometric plot of PAVLOV going from node 1 to node 4

O=6-0b o000 4
EN
0 B i S 2
1 START 4¢
¢
lj; 6
5 o
- ? :
7 e
2 ¢
£ ;o
Z & ¢
>' '10 - “f
3
-15) gwﬂie«;,%ﬁ@;@\ -
: L
A NN P ot =2
4 5
-20
0 5 10 15 20 e
X (meters)

Figure 20. Odometric Trace Demonstrating Localization. PAVLOV was instructed to go
to node 4 and return to node 1. After successfully reaching node 4, PAVLOV
becomes lost when attempting to head back to node 1. PAVLOV assumes the
East-West corridor connecting node 4 to node 5 is the North-South corridor
connecting node 3 to node 4. However, upon reaching node 5, PAVLOV is able

to relocalize itself.

In addition to modeling uncertainty, the POSMDP approach is capable of relo-
calizing the robot, in the event that it gets lost. In Figure 20, PAVLOV was instructed

to go from node 1 to node 4 and back. PAVLOV successfully reaches node 4, but

61
becomes lost when attempting to return to node 1. At node 4, PAVLOV turns and
believes itself to be oriented North, when it is actually facing West. Since PAVLOV
cannot physically distinguish between two different corridors, it moves forward, main-
taining the belief that it is traveling towards node 3 from node 4 in the connecting
North-South corridor. In actuality, it is traveling from node 4 to node 5 in the con-
necting East-West corridor. In getting to node 1 from node 4, PAVLOV travels North.

Ideally, it should first encounter the observation at node 3 as

(front opening) (left wall) (back opening) (right opening)

and then at node 2 as

(front opening) (left opening) (back opening) (right wall)

Since PAVLOV is traveling in the corridor connecting node 4 and 5, it does not

encounter either of the observations. Instead, the observation

(front wall) (left opening) (back opening) (right wall)

is received when it reaches the end of the corridor. By maintaining a distribution
over states, PAVLOV is able to determine its true location to be at node 5. The pre-
computed policy is followed in reaching node 1. This demonstrates the relocalization
ability of the POSMDP approach, even when the robot is traveling in an orthogonally

different direction.

62

4.2.2. Temporal Modeling

By using the POSMDP approach, not only are we able to account for navigation
uncertainty, but we can also account for varying actions times in planning a path.
The standard POMDP approach is unable to deal with continuous time. The semi-
Markov approach allows us to model arbitrary time distributions. In addition, we

can also learn transition times that could result from PAVLOV traversing a crowded

corridor.
Odometric plot of one run on PAVLOV around Engineering Computing
30 o e .
7
&b
b 16
\e
25 %
&
§
! [
20 ¥ :
o $:
>
g 150
E
> —
10 $ ﬁ\Q
j :
514 2
> &
&>
o 15 1 5
0f i B s e @ENDST’ARJ_.—,‘ ¢ |2
e i i A B B
-15 -10 -5 0 5
X (meters)

Figure 21. Odometric Trace around Engineering Computing. This is an odometric trace of
one run on PAVLOV around Engineering Computing. In this plot, we are not
taking advantage of the POSMDP approach, and the robot chooses the shortest
path in reaching the goals (node 7, 15, 16 and 1). The numbers on the plot

correspond to the topological nodes in Figure 3.

To demonstrate the effectiveness of the POSMDP approach to deal with clut-

63

tered corridors, refer to Figure 21 and Figure 22. Figure 21 is an odometric trace of
the path followed by PAVLOV, starting from node 1 and specifying nodes 7, 15 and 1

as goals. PAVLOV chooses the path covering the least distance, visiting, in sequence

nodes 2, 7, 8, 9, 15, 16 and 1. This is the path followed if the standard POMDP

approach is used.

Odometric plot of one run on PAVLOV in the CSEE department

60 ‘
10 P e S g 17 Eahaha Q%é
50 3
§
40
o 7
6 3
E
>
’7
-9 END 2
START
'15 '10 -5 0 5 10
X (meters)

Figure 22. Odometric Trace in the Computer Science Department. This is an odometric
trace of one run on PAVLOV around the Engineering Computing and the Com-
puter Science Department. The corridor connecting nodes 2 and 7 has been
marked cluttered by modeling actions as having a high variation in transition
times. The specified goals were nodes 12, 10, 15 and 1. In getting from node 1
to 12, traversing the corridor connecting node 2 and 7 would cover the shortest
distance. However, since we are now using the POSMDP approach for planning,

the robot chooses the longer route. The numbers on the plot correspond to the

topological nodes in Figure 3.

The corridor connecting node 2 and node 7 is now modeled as “cluttered”.

64
This is facilitated by setting a high variance in the transition times for actions in
this corridor. Starting from node 1, the specified goals are nodes 12, 10, 15 and
1. If the transition times were not modeled, PAVLOV would take the shortest path
through node 7 to get to node 12. Incorporation of the transition times for actions
causes PAVLOV to avoid the “cluttered” corridor. In getting to node 12 from node

1, PAVLOV chooses the longer path (Figure 22).

4.2.3. Learning Transition Times

Rather than arbitrarily modeling the time difference in various parts of the
environment, it would be advantageous and realistic for PAVLOV to learn the true
variance in the transition times. With this in mind, Figure 23 and Figure 24 show
an experiment to test the algorithm for inferring transition times from the Viterbi
sequence of most likely states visited.

PAVLOV was asked to go from node 1 to node 5. In the plot in Figure 23
the route taken is via node 4. In this run, a crowded corridor was simulated by
forcing the robot to go around many obstacles on the way to node 5 and back. As
the robot avoids the obstacles, it slows down, resulting in a longer time to complete
actions. At the end of each action, PAVLOV saves the execution lrace®. Transition
times are learned off-line by the Viterbi algorithm, which is used to correctly associate
transition times with states. The second time around, PAVLOV utilizes the learned
transition times and replans a route to avoid the crowded corridor, by going to node
5 via node 6 (Figure 24).

In Figure 25 and Figure 26, Markov states that lie at topological nodes are
colored black, while non-topological Markov states are colored white. The transition

times, in seconds, are atop the arcs connecting states. The table in each figure

3An execution trace is a record of the probability distribution, the observation, the action and
the time required to complete the action

65

Odometric plot of PAVLOV going from node 1 to node 5

END
— o000
0 ; 2
lsTART " °%
¢ 6
¢
4
-5 ,
0 6|3
Q ¢
4 L &
:]
~ &
> -10 &
?
i <
0J
-15 g
&
i .
4 (& 0eooomon B . e 5
-20
0 5 10 15 20 25

X (meters)

Figure 23. Odometric Trace before Learning Transition Times. PAVLOV is instructed to
go to node 5. The default path is through the corridor connecting node 3 and 4.
This corridor has a number of obstacles, and hence there is a high variance in the

transition times for actions in the corridor. The numbers on the plot correspond

to the topological nodes in Figure 3

66

Odometric plot of PAVLOV going from node 1 to node 5

END
069625505009,
34 2
O 1 _ <? Y
START i%:%y;e@%@@ﬁ;@&%%75%@&%9@6%%@”%?%}_Q 6
1
5 o
? 3 R
[} ® 9
T g
S
> -10 §
¢
&
{
¢
-15 $
4 5
-20
0 5 10 15 20 25

X (meters)

Figure 24. Odometric Trace after Learning Transition Times. Using the Viterbi algorithm
to extract the most likely sequence of states and correctly associate transition
times, PAVLOV now decides to avoid the corridor connecting node 3 and 4. In
getting to node 5, it now chooses to go through node 6. The numbers on the

plot correspond to the topological nodes in Figure 3

67
represents the sequence of encountered states. A Markov node is identified either by
the topological node at which it lies, or by the pair of topological nodes in between
which it lies. Markov states are identified a Markov node label and a direction. For
example, PAVLOV starts off at node 1, facing east. This corresponds to the Markov
node I1 and Markov state I1 E. After the first decision epoch, PAVLOV is in the first
East facing Markov state in the corridor connecting node 1 and 2, which is labeled
I1-I2-1 E. Labels can be interpreted in a similar fashion. For example, I3-14-2 S
corresponds to the second south facing Markov state in the corridor connecting node
3 and 4. Corridors are discretized into one set of Markov nodes. For example, the
corridor connecting node 2 and 3 is approximately 3 meters long, resulting in three
Markov nodes in between. The Markov node I12-I3-1 corresponds both to the first
set of states encountered when heading from node 2 to 3, and the third set of states
when heading from node 3 to 2.

Using a most likely state estimation technique with the execution traces does
not guarantee a connected sequence of states. Application of such a technique to
determine the sequence of states encountered by PAVLOV can result in physically
disparate states being introduced. It has been observed that the POSMDP will
occasionally predict the robot to be in a state that is a couple of meters away from its
true location. This arises partly because of perceptual aliasing. PAVLOV is usually
able to localize itself after the next observation has been received. However, this still
results in the incorrect state being introduced into the sequence. Figure 25 displays
the believed sequence of states, as predicted by the POSMDP, when going from node
1 to 4 in Figure 23. This interpretation indicates that PAVLOV never encountered
node 3, and reached node 4 before it actually did. Since this is obviously not the
case, assumption of this sequence would cause an incorrect association of transition

times between states.

68

Epoch State ®> 5.4

0 ILE @

1 11-12-1 E D 95
3 11-12-2E @

3 11-12-3E

4 1-12-4E 3 “ 97
5 11-12-5 E

6 I2E @

7 12s D 54
8 1213-1S @

9 12132 S D 8.2
10 12-13-3S @

11 1314-1S D 122
12 13-14-2S @

13 13-14-3S D 5.3
14 13-14-4S @

15 1314-5S D 6.0
16 1314-6 S @

17 1314-7S D 5.3
18 13-14-8S @

19 1314-9S D 8.4
20 13-14-10 S @

21 13-14-11 S D 8.0
22 13-14-12 S @

23 13-14-13S D 8.1
24 13-14-14 S @

25 14S D 95
26 13-14-14 E @

27 1314-14 S D 5.2
28

14S ®> Y

6.9

Figure 25. A POSMDP Sequence. This shows the most likely sequence of states, as observed
by the POSMDP. A comparison with Figure 26 reveals the disparity. Assuming
the sequence of most likely states predicted by the POSMDP would result in an
incorrect association of transition times. The table displays the most likely state

at each decision epoch

69

Epoch State ®> 54

0 ILE @

1 11-12-1 E D 95

3 11-12-2E @

3 11-12-3E D 9.7

4 1-12-4E 3 “

5 11-12-5 E > 54

6 I2E @

7 12s > 8.2

8 12-13-1S @

9 12-13-2S D 122
10 12-13-3S @

1 I3S D 53
12 1314-1S @

13 1314-2S D 6.0
14 1314-3S @

15 1314-4 S > 5.3
16 1314-5S @

17 1314-6 S > 8.4
18 1314-7S @

19 13-14-8S > 8.0
20 13-14-9S @

21 13-14-10 S D 8.1
22 13-14-11 S @

23 13-14-12 S D 95
24 1314-13 S @

25 1314-14 S D 52
26 13-14-14 E @

27 1314-14 S > 5.9
28

14S ®> o

Figure 26. A Viterbi Sequence. The Viterbi algorithm is applied to the sequence of ex-
ecution traces to determine the most likely path followed by PAVLOV. The
transition time for performing an action was then associated with two successive

nodes. The table displays the most likely state at each decision epoch

70

To correctly associate transition times with states, it is necessary to determine

the most likely sequence of states followed. The Viterbi algorithm (Figure 14) uses
the history of execution traces in reconstructing the most likely sequence of states
encountered. Figure 26 shows the most likely sequence of states encountered in going
from node 1 to 4 in Figure 23, when using an execution trace history. The highlighted
decision epochs in the tables in Figures 25 and 26 indicate the inconsistencies in the
encountered state sequence. The first inconsistency arises when PAVLOV is traveling
through node 3. The POSMDP-determined state sequence indicates that state I3 S
was never encountered when going from state I12-13-3 S to I3-I4-1 S. The resulting
transition time will be associated with the transition from I2-13-3 S to I3-I4-1 S.
Not only would this be incorrect, but the net result is that all future transition times
will also be incorrectly associated. The Viterbi algorithm is able to determine that
PAVLOV traveled from I2-1I3-3 S to I3 S, thereby performing a correct transition
time to state association for this and subsequent states. Another inconsistency arises
when PAVLOV believes itself to have reached 14 S, when it is actually in I3-14-14 S.
By using the execution trace, the Viterbi algorithm is also able to handle this second

inconsistency.

71

CHAPTER 5

CONCLUSION

5.1. Contributions

This thesis has developed a novel POSMDP-based navigation system which
was implemented on the real robot PAVLOV. Incorporation of time into the stan-
dard POMDP-based architecture allows a more realistic approach in planning routes
to avoid crowded corridors. By determining actual transition times, PAVLOV is able
to learn to avoid crowded corridors. By learning the transition times in different cor-
ridors, this approach can better determine a minimum time path. PAVLOV averages
twenty centimeters per second, and control is reactive during navigation. In the pres-
ence of unreliable actuators and sensors, as well as uncertainty in the metric informa-
tion, this architecture has performed successfully through experiments that required
the robot to navigate a total of several kilometers. Errors resulting from odometric
uncertainty, incorrect sensor interpretation and perceptual aliasing are minimized,
while combining the advantages of geometric and topological map-based approaches.
Maintaining a probability distribution over states prevents PAVLOV from becoming
irrevocably lost. This probabilistic navigation technique allows PAVLOV to operate
unattended in a complex and uncertain environment. The navigation system will
serve as a basis of any future work, since to perform any task a robot must first be

able navigate reliably.

72

In addition we have shown that it is possible to utilize ANNs for reliable feature
detection from local occupancy grids in a highly specular environment. Results from
a test data set show that the ANN is able to correctly classify 85% of the labeled
features. It is easy to obtain and label examples, and training time is short. This
makes addition of other features and portability of the ANN to different environments

a realistic possibility.

5.2. Future Work

The main focus of this thesis is to show the representational power of the SMDP
model in modeling non-constant action times. However, there in one inherent diffi-
culty in using the Viterbi algorithm to learn transition times. The Viterbi sequence,
extracted from the execution trace, specifies only the most likely set of states, which
could have been occupied by the robot. There is much more to be investigated,
because transition can depend on many factors, such as time of day, trash in the
corridor, dynamic conditions and other random events.

More accurate observations will prevent PAVLOV from getting lost. Therefore,
research into methods of making feature detection more robust is necessary. At the
present time, specular reflections are the main source of error in feature detection from
local occupancy grids. The advantage of using the occupancy grids is that they can
be quickly updated, and are a useful means for sensing the environment in a reactive
system. Various researchers [50, 35, 55] have described methods for dealing with the
specularities, that could be adapted to our use. Thrun [44] describes a neural net to
predict occupancy values that forces dependence between adjacent sonars. However,
there is a limit to the usefulness of occupancy grids in feature detection. Occupancy

grids cannot be used to determine fine grained features. Specularities often prevent

73
detection of large features, such as doors. Other means of observing the environment
must be considered. One obvious choice is vision. Stemm [56] uses ANNs with image
segmentation to recognize objects and recycling bins. In our environment, where
doors are a distinctive color, such an approach would be practical. Sensor fusion is
supported by the POMDP framework. Therefore any future work should attempt
to maximize the information collected from both occupancy grids and vision. Since
image processing can often be computationally expensive, PAVLOV can resort to
using vision when other means of sensing do not provide enough information.

Currently we are using a static set of observation and transition probabilities.
It would advantageous to generate a POSMDP that best fits the empirical data.
Chrisman [57] uses a variation of Q-learning to approximate the optimal POMDP,
while Koenig [21] uses the Baum-Welch algorithm to update the transition and ob-
servation probabilities, and cause the improved POMDP to one that locally best fits

the execution trace.

1]

[10]

[11]

74

LIST OF REFERENCES

I. J. Cox, “Blanche: An experiment in guidance and navigation of an autonomous
mobile robot,” IEEFE Transactions Robotics and Automations, vol. 7, no. 3,

pp. 193-204, 1991.

J. Borenstein, H. Everett, and L. Feng, Navigating Mobile Robots. Wellesley,
Massachusetts: A. K. Peters, Ltd., 1996.

I. A. Getting, “The global positioning system,” [EFE Spectrum, pp. 46-57, De-
cember 1993.

L. J. Duchnowski, “Vehicle and driver analysis with real-time precision location
techniques,” Sensors, pp. 40-47, May 1992.

K. Jenkin, E. Milios, P. Jasiobedzki, N. Bains, and K. Tran, “Global navigation
for ARK,” in Proceedings of the 1993 IEEE/RSJ International Conference on
Intelligent Robotics and Systems, (Yokohama, Japan), pp. 2165-2171, July 1993.

H. R. Everett, D. W. Gage, G. A. Gilbreth, R. T. Laird, and R. Smurlo, “Real-
world issues in warehouse navigation,” in Proceedings SPIFE Mobile Robots IX,
pp. 24, November 1994.

C. DeCorte, “Robots train for security surveillance,” Access Control, pp. 37-38,
June 1994.

L. Gould, “Is off-wire guidance alive or dead?,” Managing Automation, pp. 38—
40, May 1990.

R. H. Byrne, P. R. Klarer, and J. Pletta, “Techniques for autonomous navi-
gation,” Tech. Rep. SAND920457, Sandia National Laboratories, Albuquerque,
NM, March 1992.

L. Kleeman, “Optimal estimation of position and heading for mobile robots using
ultrasonic beacons and dead-reckoning,” in Proceedings of IEFFE International
Conference on Robotics and Automations, (Nice, France), pp. 2582-2587, May
1992.

L. Kleeman and R. Russell, “Thermal path following robot vehicle: Sensor design
and motion control,” in Proceedings of the 1993 IEEE/RSJ International Con-
ference on Intelligent Robotics and Systems, (Yokohama, Japan), pp. 1319-1323,
July 1993.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

75

R. A. Russell, “Mobile robot guidance using a short-lived heat trail,” Robotica,
vol. 11, no. 5, pp. 427431, 1993.

R. Deveza, D. Thiel, R. A. Russell, and A. Mackay-Sim, “Odor sensing for robot
guidance,” The International Journal of Robotics Research, vol. 13, pp. 232-239,
June 1994.

R. A. Russell, “A practical demonstration of the application of olfactory sens-
ing to robot navigation,” in Proceedings of the International Advanced Robotics

Programme (IARP), (Sydney, Australia), pp. 35-43, May 1995.

R. A. Russell, “Laying and sensing odor markings as a strategy for assisting
mobile robot navigation tasks,” IKEFE Robotics and Automation Magazine, vol. 2,
pp- 3-9, September 1995.

B. Kuipers and Y. Byun, “A qualitative approach to robot exploration and
map-learning,” in Proceedings of the Spatial Resoning and Multi-Sensor Fusion

Workshop, (Chicago, 11.), 1987.

S. Thrun and A. Bicken, “Learning maps for indoor mobile robot navigation,”
Tech. Rep. CMU-CS-96-121, School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA, 1996.

S. Thrun, A. Biicken, W. Burgard, D. Fox, T. Frohlinghaus, D. Hennig, T. Hof-
mann, M. Krell, and T. Schmidt, “Map learning and high-speed navigation in
RHINO,” in Al-based Mobile Robots: Case-studies of Successful Robot Systems
(D. Kortenkamp, P. Bonasso, and M. R., eds.), MIT Press, 1997.

H. Moravec and A. Elfes, “High resolution maps from wide angle sonar,” in
Proceedings of the IEEE International Conference on Robotics and Automation,
pp. 116-121, 1985.

H. Moravec, “Sensor fusion in certainty grids for mobile robots,” Al Magazine,
vol. 9, no. 2, pp. 61-74, 1988.

S. Koenig and R. Simmons, “Xavier: A robot navigation architecture based
on partially observable Markov decision process models,” in Al-based Mobile
Robots: Case-studies of Successful Robot Systems (D. Kortenkamp, P. Bonasso,
and R. Murphy, eds.), MIT Press, 1997.

T. Cassandra, L. Kaelbling, and J. Kurien, “Acting under uncertainty: Dis-
crete bayesian models for mobile-robot navigation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 963-972, 1996.

D. Bertsekas, Dynamic Programming and Optimal Control. Belmont, Mas-
sachusetts: Athena Scientific, 1995.

M. Puterman, Markov Decision Processes: Discrete Dynamic Stochastic Pro-

gramming. New York, USA: John Wiley, 1994.

[25]

[26]
[27]

[28]

[29]

[30]

31]

32]

37]

[38]

76

C. Watkins, Learning from Delayed Rewards. PhD thesis, Kings College, Cam-
bridge, England, May 1989.

S. Ross, Stochastic Process. New York, NY: Wiley, 1996.

A. Cassandra, L. Kaelbling, and M. Littman, “Acting optimally in partially ob-
servable stochastic domains,” in Proceedings of the Twelfth National Conference

on Artificial Intelligence, (Seattle, WA), 1994.

W. Lovejoy, “A survey of algorithmic methods for partially observable Markov
decision processes,” Annals of Operations Research, vol. 28, pp. 47-66, 1991.

C. Papadimitriou and J. Tsitsiklis, “The complexity of Markov decision pro-
cesses,” Mathematics of Operations Research, vol. 12, no. 3, pp. 441-450, 1987.

A. Cassandra, “Optimal policies for partially observable Markov decision pro-
cesses,” Tech. Rep. CS-94-14, Brown University, Department of Computer Sci-
ence, Providence, RI, 1994.

M. Littman, “The Witness algorithm: Solving partially observable Markov de-
cision processes,” Tech. Rep. CS-94-04, Brown University, Department of Com-
puter Science, Providence, RI, 1994.

M. Littman, T. Cassandra, and L. Kaelbling, “Learning policies for partially-
observable environments: scaling up,” in Proceedings of the 12th International
Conference on Machine Learning, pp. 362-370, Morgan Kaufmann, 1995.

E. J. Sondik, “The optimal control of partially observable Markov processes over
the infinite horizon: Discounted costs,” Operations Research, vol. 2, pp. 282-304,
1978.

K. J. Astrom, “Optimal control of Markov decision processes with incomplete
state estimation,” Journal of Mathematical Analysis and Applications, vol. 10,

pp. 174-205, 1965.

B. Yamauchi and P. Langley, “Place learning in dynamic real-world environ-
ments,” in Proceedings of ROBOLEARN-96: International Workshop for Learn-
ing in Autonomous Robots, (Key West, FL), pp. 123-129, May 1996.

M. McCord-Nelson and W. T. Illingworth, A Practical Guide to Neural Nets.
Reading, MA: Addison-Wesley Publishing Company, Inc., 1990.

P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard, Cambridge, MA, August 1974.

J. McClelland and D. Rumelhart, Parallel Distributed Processing. Cambridge,
MA: MIT Press, 1986.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

77

T. J. Sejnowski and C. R. Rosenberg, “NETtalk: a parallel network that learns
to read aloud,” in Neurocomputing: Foundations of Research (J. Anderson and

E. Rosenfield, eds.), MIT Press, 1988.

S. Koenig and R. Simmons, “Passive distance learning for robot navigation,” in

Proceedings of the 13th International Conference on Machine Learning, pp. 266—
274, Morgan Kaufmann, 1996.

S. Koenig and R. Simmons, “Unsupervised learning of probabilistic models
for robot navigation,” in Proceedings of the IEFEE International Conference on
Robotics and Automation, 1996.

A. Viterbi, “Error bounds for convolutional codes and as asymptotically optimum
decoding algorithm,” [FKEE Transactions on Information Theory, vol. IT-13,
no. 2, pp. 260-269, 1967.

I. Nourbakhsh, R. Powers, and S. Birchfield, “Dervish: An office-navigating
robot,” Al Magazine, vol. 16, no. 2, pp. 53-60, 1995.

S. Thrun and A. Biicken, “Integrating grid-based and topological maps for mobile
robot navigation,” AAAI National Conference on Artificial Intelligence, 1996.

M. Littman, Algorithms for Sequential Decision Making. PhD thesis, Brown
University, 1996.

R. Parr and S. Russell, “Approximating optimal policies for partially observable
stochastic domains,” in Proceedings of the Fourteenth IJCAI pp. 1088-1094,
1995.

D. White, “Dynamic programming, Markov chains, and the method of succes-
sive approximation,” Journal of Mathematical Analysis and Applications, vol. 6,

pp. 373-376, 1963.

S. Mahadevan, “Average reward reinforcement learning: Foundations, algo-
rithms, and empirical results,” Machine Learning, vol. 22, no. 1, pp. 159-95,
1996.

J. Connell, “SSS: A hybrid architecture applied to robot navigation,” in Pro-
ceedings of the IEEFE International Conference on Robotics and Automation,
pp. 2719-2724, 1992.

K. Konolige, “A refined method for occupancy grid interpretation,” in Proceed-
ings of the International Workshop on Uncertainty in Robotics, (Amsterdam,
Netherlands), 1995.

A. Elfes, “Using occupancy grids for mobile robot perception and navigation,”
Computer, pp. 46-57, June 1989.

[52]

[53]

[54]

[55]

[56]

[57]

78

R. Simmons and S. Koenig, “Probabilistic robot navigation in partially observ-
able environments,” in Proceedings of the [JCAI pp. 1080-1087, 1995.

B. Schiele and J. Crowley, “A comparison of position estimation techniques us-
ing occupancy grids,” IFEE Conference on Robotics and Autonomous Systems,

pp. 1628-1634, May 1994.

S. Fahlman, “Faster-learning variations on back-propagation: An empirical
study,” in Proceedings of 1988 Connectionist Models Summer School, Morgan
Kaufmann, 1988.

A. Howard and L. Kitchen, “Generating sonar maps in highly specular environ-
ments,” in Proceedings of the Jth International Conference on Control, Automa-
tion, Robotics and Vision, December 1996. To appear.

M. Stemm, Using Artificial Neural Networks and Image Segmentation to Assist
in Mobile Robot Navigation. Bachelors Thesis, School of Computer Science,
Carnegie Mellon University, 1994.

L. Chrisman, “Reinforcement learning with perceptual aliasing,” in Proceedings

of AAAIL 1992.

