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Minimal Simulations For Evolutionary Robotics

Nick Jakobi

Summary

For several years now, various researchers have endeavoured to apply artificial evolution to the
automatic design of control systems for robots. One of the major challenges they face is how
the fitness of evolving controllers should be tested when each evolutionary run typically involves
hundreds of thousands of such assessments. This thesis puts forward new techniques for evolving
control systems for real robots using easy-to-build, fast-running simulations.

It begins with a tutorial in state-of-the-art Evolutionary Robotics and discusses the best types
of neural network, encoding scheme, genetic algorithm and genetic operators to use - and how to
use them. Several novel types are introduced, and their relative merits over previous approaches
are discussed.

After analysing the conditions that must be met by controllers if they are to perform the same
behaviour in reality as they do in simulation, a new methodology is proposed for building minimal
simulations within which controllers that meet these conditions will successfully transfer into
reality. Techniques are then put forward for forcing controllers that evolve to be reliably fit within
such minimal simulations to meet these conditions.

Four sets of experiments are reported, all involving minimal simulations. Controllers were
evolved for a small mobile robot that could solve a T-maze in response to a light cue, target
recognition and approach behaviours were evolved for a visually guided mobile robot, walking
and obstacle-avoiding behaviours were evolved for an eight-legged robot and motion-tracking
behaviours were evolved for a simple panning camera head. In all four cases, the evolution of
complex robot behaviours that would have taken many months to evolve if fitness evaluations had
been performed in reality was performed in a matter of hours, and controllers that evolved to be
reliably fit in simulation displayed extremely robust behaviour when downloaded into reality.
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Chapter 1

Introduction

Controlling robots is tricky. It is relatively cheap and easy to hook a powerful computer up to

sensor and motor systems these days, but programming it to perform more than a fraction of the

behaviours displayed by simple animals is presently beyond the state of the art. Over the past few

years, a growing number of researchers have become disillusioned with traditional engineering

approaches to this problem (Beer 1990; Brooks 1991b; Brooks 1991c) and have started looking

to biology for their inspiration. In particular, they have been studying the processes that give rise

to the behaviours of animals acting in the world, and asking whether abstracted versions of these

processes might be made to give rise to similar behaviours in robots (Cliff 1991; Brooks 1991a).

One such process is evolution, and the discipline that seeks to apply abstracted evolutionary

processes to the design of controllers for robots is known as Evolutionary Robotics. This term was

perhaps first used by Husbands and Harvey (1992), but the idea of using artificial evolution to au-

tomatically design controllers for robots can be found in several papers from around the same time

(Barhen, Dress, and Jorgensen 1987; Viola 1988; Garis 1991; Brooks 1992; Harvey and Husbands

1992). Early work in the field was concerned entirely with evolving controllers for simulated

robots (Beer and Gallagher 1992; Cliff, Husbands, and Harvey 1993b; Higuchi, Niwa, Tanaka,

Iba, Garis, and Furuya 1992). Since the first few practical examples (Harvey, Husbands, and Cliff

1994; Floreano and Mondada 1994; Yamanuchi and Beer 1994), however, there have been an in-

creasing number of papers dealing explicitly with the issues involved in evolving controllers for

real robots (Nolfi, Floreano, Miglino, and Mondada 1994; Jakobi, Husbands, and Harvey 1995;

Miglino, Lund, and Nolfi 1995; Jakobi 1997; Jakobi 1998), and that is what this thesis is about.

There are many different ways in which controllers can and have been evolved for robots. In

order to give the reader an intuitive idea of what such a process might look like, a simple exam-

ple of how a particular robot behaviour may be automatically generated using artificial evolution

shall now be described. A population of perhaps 100 initially random controllers are evaluated

according to a test function based on the controller’s ability to perform the desired behaviour, and

a score is attributed to each. The controllers with the highest scores are then subjected to var-

ious reproductive processes which create a brand new population of ‘offspring’ controllers that

are similar to their ‘parents’ but which differ in small random ways. This new population is then

used to make yet another population in the same way, and so on round in a cycle, generation after
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generation. The fact that the controllers of each new generation are less than perfect copies of the

best controllers from the generation before means that most of them will not score as highly on

the test function. However, the slight random variations also mean that some may score more on

the test function, and these will then be selected to act as parents for the next generation. In this

way, controllers can evolve to achieve higher and higher scores on the test function through the

dual actions of random variation and selection. The idea is that eventually, after many generations,

controllers evolve that can perform the desired behaviour. Magic!

But of course it is not magic and as several authors have pointed out (Brooks 1992; Harvey and

Husbands 1992; Mataric and Cliff 1996; Nolfi, Floreano, Miglino, and Mondada 1994), there are

many big questions that need answers if Evolutionary Robotics is to progress beyond the proof of

concept stage. One of the most urgent of these (in that if it is not answered, Evolutionary Robotics

is not going to progress very far at all) concerns how evolving controllers should best be evalu-

ated. If they are tested using real robots in the real world, then this has to be done in real time,

and the evolution of complex behaviours will take a prohibitively long time. If controllers are

tested using simulations then the amount of modelling necessary to ensure that evolved controllers

work on the real robot may mean that the simulation is so complex to design and so computation-

ally expensive that all potential speed advantages over real-world evaluation are lost. How then

should controllers be evaluated when testing in both simulation and reality seems fraught with

insurmountable problems?

The main contribution of this thesis is to offer an answer to this question. It does this by

presenting new ways of thinking about and building simulations for the evaluation of evolving

robot controllers. These minimal simulations run extremely fast and are trivially easy to build

when compared to more conventional types of real-world simulation, yet they are still capable of

evolving controllers for real robots. Thus the many advantages of using simulations are preserved

while most of the major disadvantages are avoided. I shall now explain the structure of this thesis

in detail.

In order to bring the inexpert reader up to speed, the thesis starts with an Evolutionary Robotics

tutorial. Aimed at the newcomer to the field, this chapter presents my selection of the best tech-

niques currently available for the artificial evolution of robot controllers, and just as importantly,

the circumstances in which they should be applied. Although most of these techniques have been

invented by other authors over the past few years (and this chapter serves as a review of these),

others are presented here for the first time. It begins with a simple high level example of what an

Evolutionary Robotics experiment might look like, and this is used to introduce the topics cov-

ered in the rest of the chapter. These include how to decide on what type of controller to use

given the nature of the behaviour to be evolved, the best ways of representing these controllers

within the evolutionary process, different types of evolutionary algorithms and operators and the

circumstances under which they should be used, and how to go about designing a fitness function

for evaluating evolving controllers. It is hoped that by the end of this chapter, the reader will be

equipped with almost everything they need to know to go about setting up and performing their

own Evolutionary Robotics experiments. There is however one thing they will not learn from this

chapter: how to apply fitness functions and evaluate evolving controllers in practice. This is the

preserve of the next chapter.
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Chapter 3 presents the general theory and methodology behind a new way of evaluating evolv-

ing robot controllers: minimal simulations. This is done in several stages working from first

principles up to a step-by-step guide to building a minimal simulation for the evolution of robot

controllers. The chapter starts with an analysis of what it means to say that a controller has trans-

fered from simulation to reality, and this is used to investigate the general conditions under which

controllers can and do transfer. The idea of a minimal simulation - the simplest possible type of

simulation capable of evolving robot controllers - is then introduced and the general conditions for

successful transfer are recast within this context. If this was all there were to minimal simulations,

however, then it is unlikely that controllers would evolve to fulfill these conditions. Techniques

are therefore proposed for using the evolutionary process itself to force controllers that evolve to

perform the desired behaviour within a minimal simulation to also fulfill the conditions for suc-

cessful transfer into reality. All the various threads are then brought together and summarised to

produce a simple step-by-step guide to building a minimal simulation for evolutionary robotics.

Chapter 4 presents a formal treatment of the theory behind minimal simulations. It introduces

a logical formalism for reasoning about controllers performing behaviours in environments and

derives a minimal set of conditions for successfully crossing the reality gap from the same set

of assumptions as those made in chapter 3. The fact that these conditions correspond closely to

those put forward in chapter 3 provides good evidence for the sound theoretical basis underlying

minimal simulations.

Chapters 5, 6, 7 and 8 detail experiments in which controllers were evolved to perform the

following robot behaviours:

� T-maze solving behaviour for a Khepera robot. A T-maze environment was constructed
in which a beam of light could be shone across the the first corridor from either side. Con-
trollers were evolved to guide a Khepera robot through the T-maze, ‘remembering’ from
which side the beam of light was shone and turning down the corresponding corridor arm at
the junction.

� Shape-discrimination behaviour for the gantry robot. An equilateral triangle and a
square of white paper were both stuck onto a long wall of an otherwise black arena. Starting
from different positions and orientations, controllers were evolved to steer the gantry robot
towards the triangle while ignoring the square.

� Walking and obstacle-avoiding behaviour for an octopod robot. Controllers were evolved
to make the octopod robot walk around its environment, turning away from objects that fall
within range of the IR sensors and backing away from objects that touch the front bumpers
and whiskers.

� Motion-tracking behaviour for a panning camera-head. Controllers were evolved to
make a simple panning camera-head track arbitrarily patterned objects as they moved against
arbitrarily patterned backgrounds.

In addition to describing working examples of minimal simulations and how they were designed,

these 4 chapters also show how many of the techniques from chapter 2 may be used in practice.

In order to bring out the general nature of the underlying methodologies - with respect to both

minimal simulations and the rest of the evolutionary machinery - the same explanatory structure

(section headings, subsection headings and so on) is used in each chapter.

The thesis concludes in chapter 9 with a few thoughts for the future.



Chapter 2

A Crash Course In Evolutionary Robotics

At present, there are at least as many different methodologies for evolving robot controllers as

there are researchers in the field, and probably a whole lot more. This does not matter so much

for those whose experience can sort the wheat from the chaff but what of the newcomer to the

field? When faced with a mountain of papers, each reporting that the techniques within are of

fundamental importance, it is extremely hard for them to know where to start. It might be said

that the same is true of any young field, but evolutionary robotics is now mature enough that

some techniques are widely used while others have fallen by the way-side. Although it is still

too early to say exactly which techniques should be included in a definitive library of techniques

for evolutionary robotics, it is now possible to say with some objectivity which of the existing

techniques should be used in which circumstance.

Although others have written about the main issues of Evolutionary Robotics in a theoretical

way (Husbands and Harvey 1992; Brooks 1992; Nolfi, Floreano, Miglino, and Mondada 1994;

Kodjabachian and Meyer 1994; Mataric and Cliff 1996), this chapter does something different - it

takes the form of a tutorial. Aimed primarily at those in possession of at least a passing acquain-

tance of the main concepts, such as the majority of researchers from the Artificial Intelligence

community at large, this chapter provides both a review of the good work in the field of Evolu-

tionary Robotics and a guide as to how to apply it in practice. In so doing, a reader from the target

audience should be left with a good idea of how to go about setting up and performing their own

evolutionary robotics experiments.

2.1 An example

Before diving into detailed explanations of the state-of-the-art, this section provides a high-level

description of a simple evolutionary robotics example. This will provide intuitive explanations of

the main concepts and processes involved and provide a context for the more detailed and low-level

discussions later in the chapter. We begin by examining a simple genetic algorithm and show how

it can control the processes of selective reproduction and fitness evaluation to evolve controllers

for robots. We then go on to deconstruct these latter two processes into their constituent parts,

each of which is the subject of a section later in this chapter.
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genotypes

Evaluation

Reproduction

unevaluated evaluated
genotypes

Figure 2.1: The top level.

Figure 2.1 shows a block-diagram of the workings of a typical genetic algorithm. This is a

generic search technique, invented by Holland (1975), that lies at the heart of most of the present-

day evolutionary robotics research. Genetic algorithms do not work directly with robot controllers,

however, but instead operate upon populations of ‘genotypes’, as can be seen from the diagram.

For explanatory purposes, genotypes are best thought of as strands of robot controller DNA and

they can be represented in a computer program in a number of ways: the simplest of which is prob-

ably as binary strings of 1’s and 0’s. Typically, the initial population of genotypes are randomly

generated and unevaluated.

The algorithmic cycle of figure 2.1 starts with a fitness evaluation phase. This results in a

fitness value, based on the ability of the robot controller it encodes, being associated with every

genotype in the population. When this phase is complete, we are left with a population of evaluated

genotypes and the reproduction phase of the algorithm commences. This involves repeatedly

selecting probabilistically fit genotypes as parents and applying various genetic operators to them

to create offspring genotypes. When enough offspring have been created, we are left with a brand

new generation of unevaluated genotypes, and the cycle begins again.

Since the new genotypes of each generation are created from the fittest genotypes of the last

generation, the idea is that, over time, the population as a whole becomes fitter and fitter. Even-

tually, if all goes to plan, genotypes will evolve that code for robot controllers which are able to

perform the behaviour(s) we are interested in. We will now look at the processes of evaluation and

reproduction in a little more detail.

Evaluation

Figure 2.2 shows a typical ordering of events for the evaluation of a genotype. After it has been

selected, a genotype must first be turned into its phenotype ready for testing. The word ‘pheno-

type’, in an Artificial Evolution context, refers to the objects that the system has been set up to

evolve and hence to those objects whose properties are directly tested during the evaluation phase;

in the case of evolutionary robotics, phenotypes are most usually some sort of robot controller.
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whole population
continue until

is evaluated

pick next genotype 
from unevaluated

population

add genotype to
evaluated population

=24.3

decode phenotype
from genotype test phenotype 

24.3

Figure 2.2: Evaluation.

The way in which a genotype encodes a phenotype is known as the ‘encoding scheme’ and may

take many different forms. The choice of which scheme to use can have tremendous impact on

the success or failure of the evolutionary robotics process as a whole and the pros and cons of a

number of different schemes are discussed in section 2.3. A choice also needs to be made as to the

type of robot controller we want to evolve. Although evolutionary robotics is not restricted to any

one particular type of controller, some are definitely better than others and various different types

are discussed in section 2.2.

After a robot controller has been decoded, the next thing to do is to test it. This will normally

involve making it control a robot or a simulation of a robot for a period of time and scoring its

ability to perform a particular behaviour by way of some automatic fitness function. Issues to

do with designing and formulating the fitness function are discussed in section 2.5. This testing

is normally the most time consuming part of the entire evolutionary process by several orders of

magnitude, and since many hundreds of thousands of tests may need to be performed, exactly how

they are done may make the difference between years spent evolving and minutes. This problem

is addressed in chapter 3 where a major new methodology is introduced for creating simple fast

simulations that can be used to perform these evaluations.

continue until
new unevaluated
population is full

translocation

mutation

crossover
add offspring to new 

unevaluated population

pick two probabalistically fit
parents from evaluated population

Figure 2.3: Reproduction.
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Reproduction

Figure 2.3 shows one way in which new genotypes can be created. Two ‘parent’ genotypes are

selected from the current generation on the basis of their high fitness and genetic operators are

applied to produce an ‘offspring’ genotype. In the figure, this procedure occurs in several stages.

Firstly, the crossover operator is applied to produce the basic offspring genotype by taking a seg-

ment at random from one parent genotype and joining it to a complimentary section taken from the

other. A mutation operator is then applied to make small random changes, with low probability,

to any and all parts of the genotype. Finally a translocation operator takes a segement at random

from the offspring gentoype and moves it to a new random location on the same genotype. The

offspring genotype is then added to the next generation and the cycle continues via selection and

reproduction until the new generation is complete.

In fact, there are many ways to create offspring genotypes, both in terms of the way in which

parents are selected and in terms of the operators applied to them to produce offspring. Section

2.4 looks at different types of genetic algorithms and genetic operators and discusses which are

the best suited to the particular problems found in evolutionary robotics.

2.2 What to evolve?
Control architectures for evolutionary robotics

Unlike other machine learning techniques, artificial evolution is not restricted to a particular type

of control architecture. In fact, any type of control architecture that can be replicated and mutated

is capable of being evolved. The question thus arises, what is the best type of control architecture to

use when evolving controllers for robots? This section begins by considering the options available

and putting forward arguments for artificial neural networks as the best type of general control

architecture. It then goes on to examine which type of artificial neural networks in particular

should be used in which circumstance.

Apart from neural networks, various other types of control architecture have been evolved

for robots (either simulated or real). The most common are Lisp or Lisp-like programs (Winston

1988). These were first used to control robots by Koza who adapted techniques from his Genetic

Programming (Koza 1990; Koza and Rice 1992). These programs are formed from a subset of Lisp

or other building blocks which can be represented using the tree structure characteristic of Lisp.

It is this tree structure that provides much of the attraction of Genetic Programming techniques

since it is particularly robust to the application of genetic operators (Koza 1992). Lisp expressions

themselves however display few of the properties listed below that make neural networks attrac-

tive for use in evolutionary robotics. Brooks (1992) has proposed keeping the tree representation

and using building blocks more suitable for robotics. However, the blocks he suggests are state-

ments in some high-level behaviour language, which seems inappropriate for the type of low-level

behaviour evolutionary robotics is currently concerned with. A compromise has been reached by

Gruau who has succeeded in representing and evolving artificial neural networks for real robots

using Lisp-like tree structures (Gruau 1992; Gruau 1997).

Other types of controller architectures that have been employed include classifier systems

(Holland 1987) where genetic algorithms are applied to sets of simple rules for controlling robots

(Schults and Grefenstette 1992; Dorigo and Schnepf 1993; Colombetti and Dorigo 1992; Dorigo
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and Colombetti 1997). It is hard to argue, however, that a system based on a discontinuous set

of discrete rules engaged in the classic match/conflict-resolution/act cycle is the most appropriate

type of control architecture for the control of a noisy, real-world, dynamically complex robot.

Although all these alternative architectures have been used with some success on simple

robotics problems, there are some good reasons why neural networks in general might be prefer-

able:

� By varying the properties and parameters of the simple processing units used, many differ-
ent types of functionality can be achieved with the same type of network structure. This
means that the same encoding schemes (see section 2.3) can be used independently of the
functionality of the control system.

� Using neural networks allows us to implement and test ideas from biology about how neural
mechanisms for the generation of behaviour might work. This is a rich source of design
inspiration that can be readily coopted for engineering ends as demonstrated by Beer and
Gallagher in their design for a hexapod robot controller (Beer and Gallagher 1992). Also,
using neural networks allows us to test and refine proposed biological models through the
exploration of parameter spaces which may suggest new hypotheses (Ijspeert, Hallam, and
Wilshaw 1997).

� There are many other adaptive processes which we may want to use in conjunction with arti-
ficial evolution such as various forms of supervised and un-supervised learning. As pointed
out by Nolfi, Floreano, Miglino, and Mondada (1994), these are readily implemented within
the artificial neural networks paradigm (Floreano and Mondada 1996b; Nolfi, Miglino, and
Parisi 1994).

� The behaviours that evolutionary robotics is concerned with at present are low-level be-
haviours, tightly coupled to the environment through simple, precise feedback loops. Arti-
ficial neural networks are ideal for this purpose. The time may come when the behaviours
we want to evolve are more complicated and may require higher level primitives, but even
if this is the case, there is no reason why these should not be pre-evolved neural assemblies.
Various versions of this point can be found elsewhere (Husbands, Harvey, and Cliff 1995;
Nolfi, Floreano, Miglino, and Mondada 1994; Cliff, Harvey, and Husbands 1993).

If the arguments above are accepted, then the next question becomes that of which types of

neural networks to use for the evolution of which types of behaviour. This is discussed below. In

the last part of this section on control architectures for evolutionary robotics we discuss how vari-

ous aspects of the robot body itself may be evolved in conjunction with the controller to produce

complete brain and body systems.

2.2.1 Neural networks for evolutionary robotics

Some adaptive mechanisms for neural networks, such as back-propagation (Hinton, McClelland,

and Rumelhart 1986), can only operate when certain classes of neural network are used. Artificial

evolution, on the other hand, is not restricted in this way and we are free to dream up and use

any type of network we like. Some types of network will evolve better than others, however,

and certain types of network are better suited to certain types of behaviour than others. Various

different types are discussed below. They are divided up into three behavioural categories, roughly

in order of complexity: networks for simple reactive behaviours, networks for simple non-reactive

behaviours and networks for dynamically complex non-reactive behaviours.
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Networks for reactive behaviours

A reactive behaviour may be defined as one in which the motor output at any particular time is

completely determined by the current sensor input. Simple examples include obstacle avoidance

and phototaxis1. These are amongst the simplest behaviours to evolve since they consist only of

a direct mapping from sensor input to motor output. The question of which networks to use for

this sort of behaviour, therefore boils down to one of which sort of network is the best at evolving

input-output mappings.

The obvious choice of network for input-output mappings is the multi-layered perceptron

(Rumelhart, Hinton, and Williams 1986). These have been shown to be capable of producing

arbitrary mappings between inputs and outputs and are therefore, in principle, capable of pro-

ducing any reactive behaviour within the mechanical limitations of the particular robotics system.

Networks normally consist of three or more layers of units (one input layer, one output layer and

a variable number of hidden layers) connected together in a feed forward fashion with activity

flowing from inputs to outputs. The input activity A j of the jth unit is usually calculated from the

weighted sum of its inputs

A j
� ∑Oiwi j

�
I j (2.1)

where Oi is the output from the ith neuron, wi j is the weight on the connection from the ith neuron

to the jth neuron, and I j is any external input to the jth neuron from outside the network. The output

O j of the jth neuron is calculated from the input activity A j according to the sigmoid function

O j
��� 1 � e � t j � A j ���	� 1 (2.2)

where t j is a threshold constant associated with the jth neuron.

Multi-layered perceptrons have been used by several researchers to evolve simple reactive

behaviours such as obstacle avoiding behavior for the Khepera robot (Nolfi, Miglino, and Parisi

1994; Lund 1995). However, multi-layered perceptrons are often capable of much more than we

need. They may be capable of arbitrary mappings from inputs to outputs but for most of the

reactive behaviours that evolutionary robotics has, up to now, been interested in, the inclusion of a

hidden layer will do nothing but vastly increase the space that evolution must search.

There are in fact many different types of networks that serve perfectly well for the vast majority

of reactive behaviours. Two-layer perceptrons, for example, use the same sigmoid function of

equation 2.2 but have only two layers of units: one for inputs and one for outputs. Not only

have these been used by Floreano and Mondada (1994) to perform the same obstacle avoidance

behaviour on a Khepera robot as mentioned above, but Lund and Hallam (1996) have shown that

they are capable of evolving behaviours such as exploration and homing that, at first sight, one

might not even think of as reactive. Other types of networks that have been used to evolve reactive

behaviours include biologically inspired continuous-time networks (Hopfield 1984) as used by

Beer to evolve simple orienting behaviours on a simulation of a visually guided robot (Beer 1996).

These networks are actually of most use in the evolution of non-reactive behaviours, however, and

a detailed description of how they work is left until Section 2.2.1 below.

Successful reactive behaviour often necessitates extremely short sensorimotor feedback loops.

As long as this feedback is of the correct sign, furthermore, then the exact nature of the function

1Although these may also be implemented in non-reactive ways.
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that produces it need not be complex. It is for this reason that Braitenberg’s vehicles (Braitenberg

1984), which just connect sensors to outputs through a linear gain, are so successful at phototaxis

and obstacle avoidance. The same is also true of the type of networks that can be used to evolve the

vast majority of simple reactive behaviours. These need not employ sigmoid activation functions

or complex time dynamics, simple linear threshold units are usually sufficient, or even binary

valued units that can only be ‘on’ or ‘off’ (Jakobi 1994; Jakobi 1998).

Networks for simple non-reactive behaviours

A non-reactive behaviour may be defined as one where the motor output at any particular time

is not a function of the current input. Thus any behaviour that requires a ‘memory’ or internal

state generated by some past input falls into this category. Also behaviours that do not require

any input to generate appropriate output, such as blind walking behaviour in a hexapod robot, are

non-reactive. The common defining feature of non-reactive networks is that they have their own

internal dynamics which can be influenced by input to the network at any one time but never com-

pletely determined by it. Amongst other things, this makes them extremely difficult to analyze

once they have evolved although some interesting attempts have been made (Husbands, Harvey,

and Cliff 1995; Gallagher and Beer 1993; Beer 1995b; Cliff, Husbands, and Harvey 1993a; Hus-

bands, Harvey, and Cliff 1993a). Networks that are non-reactive will often nevertheless have

reactive elements to their behaviour. For example, a network controlling a robot that solves a

T-maze in response to a past light-signal it has ‘remembered’ (see Chapter 5) may still descend

the corridor without crashing into the walls in a reactive way. Non-reactive behaviours subsume

reactive behaviours, and in general they are more challenging to evolve. The four examples of

chapters 5, 6, 7 and 8 are all non-reactive.

In order to have internal dynamics there must be internal mechanisms by which past states

of the network can influence present states. The easiest way to achieve this is simply through

allowing recurrency in the connectivity of a network. This means that it is possible to find loops of

connectivity within the network whereby the input to a neuron depends, at least in part, on some

previous output from that same neuron. Thus the state of the network at any particular time will

be a function, at least in part, of its state at some previous time.

Various researchers have used recurrency alone (i.e. without altering any of the simple tempo-

ral properties of nodes and links) to achieve internal network dynamics sufficient for the evolution

of non-reactive behaviour. One elegant example is provided by Floreano and Mondada (1996a)

who evolved exploration and homing behaviour for a Khepera robot using a multi-layer percep-

tron with self-recurrent links on the hidden units. In the experiments the Khepera had a virtual

battery which could be charged when it entered the illuminated corner of a rectangular arena. The

aim of the behaviour was to explore as much of the arena as possible, follow the light back to the

charging area when the battery was close to running out, set out to explore when the battery had

charged and so on. Controllers were evolved whose internal dynamics were sufficient to switch

between exploration and light-seeking behaviours in such a way that the robot explored the arena

efficiently without its batteries ever running out.

Husbands, Harvey and Cliff used recurrent neural networks featuring inherently noisy neu-

ron activation functions to evolve behaviours for a visually guided mobile robot. In (Husbands,
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Harvey, Cliff, and Miller 1997) they describe experiments in which controllers evolved that could

distinguish a white triangle from a white square and steer the robot towards it. Although the net-

works they used are certainly capable of displaying non-reactive behaviours, it is not clear whether

the task in question could not equally well have been performed by a feed-forward reactive net-

work. Until they are used to evolve controllers on a task that is non-reactive by nature, judgement

as to the evolutionary abilities of these noisy networks to evolve such behaviours must be withheld.

Even simpler recurrent networks were used in the experiments described in chapter 5 (see

also (Jakobi 1998)). As a Khepera descended the first arm of a T-maze, it received a light-signal

from either the left or the right. In order to perform the behaviour correctly, the robot had to

‘remember’ from which side the light signal came and turn down the appropriate arm of the maze

at the T-junction. The networks that were evolved to perform this task consisted almost entirely of

very simple binary-valued neurons that were either ‘on’ or ‘off’. The exceptions were the neurons

governing the motors which operated according to a linear threshold function. To calculate the

output O j of the jth neuron, its input activity A j was first calculated according to the simple

weighted sum of equation 2.1

A j
� ∑Oiwi j

�
I j

where Oi was the output from the ith neuron, wi j was the weight on the connection from the ith
neuron to the jth neuron, and I j was any external input to the jth neuron from outside the network.

After this, if the jth unit was not a motor neuron then its output O j was calculated according to the

function

O j
�
�

0 A j � t j

1 A j � t j
(2.3)

and if the jth unit was a motor neuron then its output O j was calculated according to the function

O j
�����
��
� 1 A j � t j � 1

A j � t j t j � 1 � A j � t j
�

1

1 A j 	 t j
�

1

(2.4)

where, in both cases, t j was a threshold constant associated with the jth neuron.

Networks for dynamically complex non-reactive behaviours

Although conventional networks (such as multi-layered perceptrons) can be made to exhibit non-

reactive behaviours, this is not what they were designed for and recurrency alone can be insuffi-

cient for problems where the behaviour to be evolved entails complex temporal dynamics. This is

because the temporal dynamics of such networks emerge only indirectly from the interactions of

parameters such as weights and thresholds. Since weights and thresholds also play other roles in

the dynamics of the system these interactions can be extremely epistatic and difficult for evolution

to manipulate. For behaviours involving complex temporal dynamics it is often preferable to use

types of network where the temporal properties of individual units or the links between them can

be accessed by evolution directly. Two different approaches are discussed here.

Beer uses networks of biologically inspired continuous-time neurons originally invented by

Hopfield (1984). In these networks, instead of the simple weighted sum of equation 2.1, the input

activity A j of the jth neuron is calculated according to the function

τ jȦ j
� � A j

� ∑wi jOi
�

I j (2.5)
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where τ j is a time constant that affects the rate and extent to which the jth neuron responds

to input, Oi is the output from the ith neuron, wi j is the weight on the connection from the ith
neuron to the jth neuron, and I j is any external input to the jth neuron from outside the network.

The output O j of the jth neuron is calculated from the input activity A j according to the sigmoid

function

O j
��� 1 � e � t j � A j � � � 1

where t j is a threshold constant associated with the jth neuron.

This sort of network is well suited to the evolution of behaviours which involve dynamically

complex outputs for motor pattern generation. Examples include walking behaviours for multi-

legged robots (Beer and Gallagher 1992; Chiel, Beer, Quinn, and Espenschied 1992) (and see

chapter 7) and swimming behaviours on simulated lampreys (Ijspeert, Hallam, and Wilshaw 1997).

As for behaviours involving dynamically complex input signals, Yamanuchi and Beer (1994) and

Beer (1996) have had some success in using this sort of network but it remains to be seen whether

this is the best choice for this type of task. Neurons either both react fast and decay fast or react

slowly and decay slowly, depending on the time constant. For tasks which involve dynamically

complex inputs, however, we often require short-lived stimuli to have long-lasting effects on the

internal dynamics. This is of course possible with this sort of network through recurrency, but then

the benefits of explicitly parameterising time constants due to a reduction in evolutionary epistasis

are lessened.

Chapter 8 describes experiments in which controllers were evolved that allowed a simple pan-

ning camera-head to track arbitrarily patterned objects moving against an arbitrarily patterned

background. The input signals involved in this behaviour are dynamically complex in that the

behaviour may only be achieved through the comparison and integration of different images re-

ceived over time. The networks used in these experiments were made from binary-valued neurons

(either ‘on’ or ‘off’) with evolved weights and thresholds, much like those described above for the

T-maze experiments of chapter 5. In addition, a time constant was associated with each neuron

that specified a period of time that the neuron would remain ‘on’ after the stimulus that caused it

to turn ‘on’ in the first place had decayed. In this way short-lasting stimuli could very easily have

long-lasting effects on the internal dynamics of the system, and these networks were sufficient to

evolve successful motion tracking behaviour.

To calculate the output O j of the jth neuron, its input activity A j was first calculated from the

simple weighted sum of equation 2.1

A j
� ∑Oiwi j

�
I j

where Oi was the output from the ith neuron, wi j was the weight on the connection from the ith
neuron to the jth neuron, and I j was any external input to the jth neuron from outside the network.

The output O j was then calculated according to the function

O j
�
�

0 A j � t j

1 A j � t j or TA j
�

t j � τ j
(2.6)

where TA j
�

t j was the elapsed time since A j � t j was last true, τ j was a time constant associated

with the jth neuron and t j was a threshold constant associated with the jth neuron.
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For behaviours which involve complex input, output and internal dynamics, perhaps the best

type of network would be a combination of the biologically inspired neurons favoured by Beer and

those used in the motion-tracking experiments of chapter 8. The time constants associated with

the biologically inspired neurons control both the rate of activation and the rate of decay. The time

constants associated with the neurons of the tracking experiments control only the rate of decay.

The beneficial properties of both of these approaches could be combined by providing each neuron

with two time constants: one for the rate of activation and one for the rate of decay. Although the

addition of an extra time-constant per neuron increase the dimensionality of the search space, it

also presents evolution with a far easier task in manipulating the dynamics of the evolving systems.

2.2.2 Evolving brain and body

As well as the dynamics of the controller, the physical dynamics of the robot within its environ-

ment also play a major role in determining the overall behaviour of the whole system (Smithers

1994; Beer 1995a). The shape, number and arrangement of sensors, for instance, control what

features of the environment can affect the inputs of the controller and what features, more impor-

tantly perhaps, cannot. On the output side, the physical dynamics of the actuators determine the

set of possible actions controllers may use to perform the behaviour with. For these sorts of rea-

sons several researchers have attempted to evolve features of the physical dynamics of the system

at the same time as evolving the controller: usually by encoding both on the same genotype. The

results are as yet thin on the ground. However, there are a few notable successes where this sort of

approach has led to the evolution of behaviours that are unlikely to have come about in any other

way.

Evolving the physical properties of an agent in its environment is most easily done when both

the agent and the environment exist solely in a simulation. This is for the obvious reason that a

physical artifact does not have to be actually realised at each fitness evaluation. Sims (Sims 1994b;

Sims 1994a) created a complex virtual world with a ‘life-like’ physics and evolved the bodies

and brains of virtual creatures to perform a variety of different behaviours including swimming,

jumping, and competing with other creatures for the possession of a green cube. His motivation

for the work was to create interesting and engaging computer graphics but his results certainly

provide a vivid demonstration of what is possible if the full physical manifestation of an agent can

be put under evolutionary control.

Evolving the physical properties of physical robots in the real world presents much more dif-

ficulty. Although there have been a few attempts to evolve a robot’s actuators (Lund, Hallam,

and Lee 1997; Fukuda 1989), the only real successes I am aware of concern the evolution of a

robot’s sensor morphology. This was first done by Harvey, Husbands, and Cliff (1994) where

controllers were evolved for a visually guided robot that could perform a simple shape discrimina-

tion task. Each input to the controller was proportional to the grey-level value of a visual field: a

sub-sampled circular region of the camera image whose size and position were under evolutionary

control. As well as encoding the information necessary to develop a neural network, each geno-

type also encoded the position and size of a variable number of these visual fields. The networks

that finally evolved to successfully perform the task depended in a fundamental way on the evolved

geometry of the inputs as well as the dynamics of the controller. This technique of evolving visual
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morphology alongside the controller turns out to be extremely powerful and plays a central role in

the experiments of chapters 6 and 8.

2.3 How to encode it?
Encoding schemes for evolutionary robotics

Having decided on the type of artificial neural networks one wants to evolve, the next thing to do

is to decide on the process, known generically as the encoding scheme, by which genotypes (the

robot-controller ‘DNA’) get turned into phenotypes (the neural networks). This is important, since

the right decision here can mean the difference between success and failure. If we have intuitions

about what potential solutions to a problem might look like, then the encoding scheme can be used

to bias the evolutionary search to areas of phenotype space that are rich in these potential solutions.

If used carelessly it can too easily do the opposite. As an example, consider a robotics task for

which successful neural networks are likely to be symmetrical. If the encoding scheme is such that

genotype space maps uniformly onto phenotype space, then evolution may take an unacceptably

long time simply because symmetrical neural networks make up an extremely small proportion

of the space of all neural networks. However, if the encoding scheme is biased or restricted such

that the proportion of all genotypes that map onto symmetrical networks is massively increased,

then much more of the evolutionary effort will be spent producing and evaluating symmetrical

networks, and if our intuitions are correct, we are likely to find a solution a lot quicker.

Using the encoding scheme to build domain knowledge and bias into evolutionary search is an

invaluable, and some would say unavoidable, part of the evolutionary robotics process. However,

researchers in the field are far from an accord as to how exactly this should be done. One of the

most basic disagreements is over whether the encoding scheme should be used to just bias the

properties of possible phenotypes so that random genotypes are likely to code for phenotypes that

fit with our intuitions, or whether it should be used to restrict the properties of possible phenotypes

so that random genotypes only code for phenotypes that fit with our intuitions. Both options have

their advantages and disadvantages. If the former option is employed then this will speed up

the time taken to find a solution if our intuitions are correct, and we may potentially still find a

solution even if our intuitions are wrong. The latter option means that if our intuitions are correct

then evolution is likely to find a solution even quicker than with the former option since it will

only be searching through phenotypes that fit with these intuitions. However, if our intuitions are

wrong, then this option means that evolution can never find a solution.

I think encoding schemes should restrict rather than bias the phenotypes they code for. My ar-

guments for why are pragmatic but quite subtle (Jakobi 1996a; Jakobi 1996b) . Evolving complex

robot behaviours is so difficult using current techniques that often the only way that solutions can

be found within an acceptable time-period is if enough well-founded intuitions and heuristics are

built into the encoding scheme. So if solutions can only be found within an acceptable time-period

if sufficient well-founded heuristics are employed then there is no point in making allowances for

when these heuristics are not well-founded. Another way of understanding this is to realise that by

using an encoding scheme that biases evolution in favour of phenotypes that display a certain prop-

erty, evolution is biased against those phenotypes that do not display that property. This makes it

likely that if the problem is hard enough that we need to apply our intuitions, then if our intuitions
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are wrong, evolution will not find a solution within an acceptable time using an encoding scheme

that is, in effect, biased against finding solutions. There is therefore no point in using an encoding

scheme that allows genotypes to code for phenotypes that do not fit with our intuitions. If we think

that successful networks will be a certain shape or size or display some other property, then the

encoding scheme should restrict the possible phenotypes that may be encoded to those that are of

that shape or size or display that property.

The one exception to this is when we want to apply an intuition to a problem, but the intuition

is not an all or nothing thing but a matter of degree. An example of this might be when we

are confident that successful networks will display some repeated structure, but we are not sure

exactly how much and we therefore want evolution to decide. In this case, restricting phenotypes

to displaying a certain fixed amount of repeated structure misses the point, and I would advocate

using an encoding scheme such as Gruau’s cellular encoding (Gruau 1994) where the exploration

of the amount of repeated structure may be very tightly controlled within well-defined limits.

I would not advocate, for practical purposes, the use of any of the more biologically inspired

encoding schemes modelled on natural development (Dellaert and Beer 1994; Cliff 1994; Nolfi

and Parisi 1995a; Jakobi 1996c; Kitano 1995; Dellaert and Beer 1996; Vaario 1993; Kodjabachian

and Meyer 1994). These are interesting from a biological point of view, but do not come close to

the more abstract schemes described below in terms of their efficiency to evolve robot controllers.

2.3.1 Encoding schemes for networks of fixed size

Neural networks of fixed size, or more importantly a fixed number of parameters, present none

of the encoding problems associated with networks whose size is under evolutionary control (see

below). It is therefore sufficient in almost all cases to use a simple one-to-one mapping from

genotype to phenotype. Such a one-to-one mapping is commonly referred to as a ‘direct’ encoding

scheme, and has been used by several researchers to successfully evolve neural networks of fixed

size for the control of robots (Floreano and Mondada 1996a; Nolfi and Parisi 1995b; Gallagher,

Beer, Espenschied, and Quinn 1996). In its most common form, each genotype is made up of a

string of characters or numbers, and each parameter of the network has its own position on the

genotype. Thus the first 20 characters might code for the parameters of neuron 1 and its links to

other neurons in the network, and the second 20, neuron 2 and its links and so on.

The space of possible phenotypes that a direct encoding scheme can produce may be easily

restricted by allowing a single region on the genotype to code for more than one set of network

parameters2. For instance we may impose symmetry by encoding the parameters for only half a

neural network and create the other half through reflection. Repeated structure on a larger scale

may be imposed by encoding the parameters for a single sub-network that is then repeated several

times throughout the network as a whole. Techniques like these are used to create the symmet-

rical controllers that allow the Khepera to perform the T-maze task of chapter 5, and the 6-fold

symmetrical hexapod controllers of (Gallagher, Beer, Espenschied, and Quinn 1996).

There are also ways of keeping the number of neurons constant but allowing the number of

links between neurons to vary without straying too far from the simplicity of direct encoding

schemes. The scheme used for the experiments of chapter 5 constitute a nice demonstration of

2It is not so easy to bias, rather than restrict, the set of possible genotypes using a direct encoding scheme.
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this. The 10 neurons that make up each network are numbered 0 to 9, and every neuron has

three possible links associated with it. Each link indexes the neuron it connects to with a number

between 0 and 16, and if a link tries to connect to a neuron with a number greater than 9 then it

will just fail to connect. Thus the number of links connecting to each neuron is under evolutionary

control with a maximum of 3 and a minimum of 0. The length of the genome, however, remains

fixed, and the problems of varying length genotypes described below are avoided.

2.3.2 Encoding schemes for networks that vary in size

If we want to do open-ended evolution where the complexity of a solution is not known beforehand

then we need to use an encoding scheme that allows the neural networks that it encodes to vary in

size. Such a scheme must enable neurons to be added or subtracted from a network without overly

disrupting its overall shape and form. Also, if we are using crossover, then this must be able

to produce viable offspring when performed on two genotypes that code for networks of different

size. This is actually quite hard to achieve since variation in genotype length means variation in the

relative positions of each neuron’s coding section on the genotype. Thus a simple direct encoding

scheme which specifies the links between neurons by their coding positions on the genotype (e.g.

neuron 4 connects to neuron 2) will be massively disrupted by changes in genotype length. Cliff,

Harvey and Husbands suggest as a solution using a mixture of absolute and relative addressing

(Cliff, Harvey, and Husbands 1993), but this is still subject to similar problems. Others have tried

to duck the issue altogether by introducing mechanisms that allow the size of the network to vary

while keeping the size of the genotype fixed (Jakobi 1994; Cliff 1994). However, these schemes

come with their own limitations not least of which is that they set an upper limit to the amount a

neural network can grow which may not always be desirable. The two encoding schemes described

below are the only two I am aware of which both allow variable length genotypes and are robust

to genetic operators.

Cellular Encoding

Gruau has put forward an encoding scheme for the evolution of neural networks called ‘cellular

encoding’. This has been applied successfully to the evolution of controllers for a simulated

hexapod robot (Gruau 1995) and a real octopod robot (Gruau 1997). For details of how it works

and how it is able to evolve solutions to many of the more abstract and traditional neural network

problems such as the n-bit parity and symmetry problems see (Gruau 1994). The power of cellular

encoding derives from the fact that it uses Lisp-like tree structures of graph rewriting rules as

genotypes to develop the size, connectivity and parameter values of arbitrarily large graphs of

connected nodes: the neural network phenotypes. Starting from an initial graph consisting of a

single neuron connecting inputs to outputs, development proceeds by applying successive graph

transformations (taken in order from the top of the genotype tree downwards) until all the ‘leaves’

of the tree are reached and the neural network is complete. To get at least some idea of this, figure

2.4 shows some examples of the sort of graph transformations that are used and what happens

when they are applied to the initial graph. For a full picture, the reader is referred to (Gruau 1994).

The use of Lisp-like tree structures as genotypes means that the scheme is extremely robust

with respect to different sized genotypes. Nodes may be added or subtracted by adding or sub-
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Figure 2.4: This shows three examples of the sort of graph transformations that are used in cellular

encoding and what happens when they are applied to the initial graph.

tracting terminals, and crossover may be easily implemented between trees of different sizes by

exchanging sub-trees. Gruau has shown how cellular encoding is able to generate any size and

shape of network, and by careful selection of the types of graph transformations that form the

genotype trees, network modularity and repeated structure may be easily and naturally imposed

on evolving networks. The scheme is also the only scheme available that is capable of biasing

evolving networks towards say, repeated structure, in a controlled and efficient enough way to be

used by artificial evolution in practice. This can be useful for problems where it is known that

successful networks will display repeated structure, but it is not known beforehand how much.

The only problem with cellular encoding is that it is complicated and unintuitive, and a proper

implementation requires a large computer program that will slow the process of artificial evolution

down. Large computer programs also mean bugs. Unless the problem at hand really does require

an exploration of the amount or degree of repeated structure, therefore, I advocate the use of the

much simpler and intuitive spatially determined encoding described below.

Spatially Determined Encoding

In a normal direct encoding scheme, the genotypic code for a neuron and its links has a particular

location on the genotype. The code for each connection specifies another location on the genotype

(either through relative or absolute addressing) where the code for the target neuron of that partic-

ular connection can be found. As stated above, this works fine except when genotypes are allowed

to vary in size. If this occurs, then the locations on the genotype of the code for each neuron can

change, and this can have massive effects on the shape and functionality of the network.

This problem can be eleviated by genetically specifying a particular location in an independent
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Figure 2.5: A simple network generated using the spatial encoding scheme. The left-hand diagram shown

how the developmental space can be divide up into input regions, output regions, and ‘hidden’ unit regions.

The eight inputs in this example might correspond to the IR sensors of a Khepera robot and the outputs to

its two motors. The network on the right, typical of those that underly obstacle avoidance in the Khepera,

is generated through reflection from the genotypic specification of three neurons.

developmental space for each neuron over and above its location on the genotype. If the links

between neurons are then genetically specified using these new locations, it does not matter where

the code for a neuron is situated on the genotype: its location within the developmental space

remains the same and thus so do its links to and from other neurons. Several encoding schemes

have been invented that use this idea (Cliff 1994; Nolfi and Parisi 1995a; Husbands, Harvey,

Cliff, and Miller 1994), although for the most part they take their inspiration from biology and

are unnecessarily complex. For problems in which the degree of repeated structure of evolving

networks is fixed, I advocate the simple spatially determined encoding scheme first used in (Jakobi

1998). We will now look in detail at how a genotype develops into a neural network using such a

spatially determined encoding scheme.

The left-hand-side of figure 2.5 shows a two-dimensional example of a typical developmental

space in which development can take place. For each possible network input and output, a region

of this space is specified. Development begins by plotting the position of each neuron into the

space according to their genetically specified locations. Depending on which region each neuron

is plotted into it is identified as an input neuron, an output neuron or a hidden neuron.

After plotting the locations of all of the neurons in the network, the connectivity of the network

is then determined. As with a direct encoding scheme, a large part of the genetic code for each

neuron specifies a certain number of links to or from other neurons. The code for each link

specifies a target location within the developmental space. If there are any neurons located within

a predefined range of this target location, then the nearest one of these is identified as the neuron

which the link connects to. If there happen to be no neurons situated within this range then the

link fails to connect. The right-hand-side of figure 2.5 shows a very simple, symmetrical network

developed from the genetic code for three neurons by a process of reflection.

Spatially determined encoding is simple, in that two paragraphs suffices to completely de-
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scribe it, and yet it suffers none of the problems that direct encoding schemes suffer when the

genotype is allowed to vary in size. Crossover between genotypes of different lengths may also be

easily achieved through reference to the developmental space. Instead of randomly determining

a crossover point on the genotype, a crossover line is determined on the developmental space (a

horizontal line in the space of figure 2.5). If two parent genotypes of different length are selected

to form a single offspring genotype, then the sections of parent 1 that code for neurons which are

located in the developmental space on one side of the crossover line are joined to those sections of

parent 2 that code for neurons which are located on the other side to form the offspring3. In this

way, the crossover operation again has nothing to do with the spatial organization of the genotypes,

and therefore does not run into any of the problems associated with crossover between genotypes

of different lengths.

This encoding scheme is a powerful tool for evolving complex neural networks. It can also

be easily extended so that other position-defined properties of a controller, such as its sensor

morphology, may be encoded on the same genome. The experiments of chapters 6 and 8 both

involve versions of spatially determined encoding.

2.4 How to evolve it?
Genetic algorithms and genetic operators for evolutionary robotics

Apart from the encoding scheme, there are several other processes essential to an evolutionary

robotics system that work directly on or with genotypes. These include the genetic algorithm

itself, which is responsible for the high-level allocation of tasks between all the other processes

of the system, and the genetic operators which are responsible for generating new genotypes from

old. Both of these types of processes are examined below. Before entering into a discussion

of exactly what form these processes should take, however, we first need to define exactly what

genotypes themselves are to consist of.

Apart from Gruau’s cellular encoding, all the encoding schemes discussed in section 2.3 natu-

rally operate with strings of values as genotypes. Cellular encoding is an exception to this since it

operates with Lisp-like tree structures instead. Since there are only certain circumstances in which

cellular encoding is advocated, however, the functions proposed below are described in terms of

operations upon strings of values. Equivalent functions could be implemented for Lisp-like tree

structures, but what these might look like is left as an exercise for the reader. Other alternatives

to using simple strings include using genotypes made from two strings (diploid) rather than one

(haploid). Results in (Calabretta, Galbiati, Nolfi, and Parisi 1996) suggest that this may increase

the ability of evolving individuals to ‘buffer environmental change’. If the environment is not

constantly changing, however, then the increase in complexity to the setup as a whole is probably

not justified.

Specifying that genotypes are made up of strings of values still begs the question of how

these values should be represented. Although many researchers (Holland 1975; Goldberg 1989b;

Goldberg 1989a) prefer to use genotypes of 1’s and 0’s where each parameter is binary-encoded

3Note that this can easily be done without having to develop each parent genotype into a network. If the third
parameter of the code for a neuron corresponds to its vertical position in the developmental space, then crossover just
involves travelling down each genome, looking at each third parameter and deciding by its value which of the offspring
genotypes the code for that neuron belongs to.
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by a certain number of bits, others prefer to use real numbers (Back, Hoffmeister, and Schwefel

1991; Back and Schwefel 1993). I advocate using genotypes made from strings of real numbers

for the following reasons:

� The probability distribution of the ways in which parameters can change under mutation
may be tightly controlled. If a binary encoding is used then this probability distribution is
always the same: the effects of a mutation to the k‘th bit being 2k time more than the effects
of mutation to the 0’th bit. We have no reason for thinking this is a good distribution.

� Unless some sort of Gray encoding is used (Salomon 1996) then the possible effects of
single mutations on a particular binary number will vary, depending on the value of that
number. For example it is not always possible to increment by one the value of a binary
number through a single-point mutation. The same is of course not true of real-number
encodings.

� Genotypes made from real numbers are easier to use and write computer programs with than
binary strings.

Possible arguments for using binary values and against using real-numbered values might be

couched in terms of the schema theorem and building block hypothesis (Goldberg 1989b), both

of which have been put forward as attempts to explain how and why genetic algorithms can be so

efficient in classical optimization problems. However, if a genetic algorithm is run according to

SAGA principles (Harvey 1992) so that the population is highly converged for the majority of the

evolutionary run (see below), then neither the schema theorem nor the building block hypothesis

have much purchase.

2.4.1 Genetic algorithms for evolutionary robotics

Figure 2.1 shows a diagram of a simple genetic algorithm: the top-level function that controls

and coordinates the evolutionary process as a whole. Specifically, the genetic algorithm (GA) is

responsible for the process by which genotypes are selected to act as parents for the creation of

offspring, and the process by which new offspring genotypes are introduced back into the system

to replace the old. All the other processes that are part of an evolutionary robotics system such

as the evaluation process and the reproduction process can be ported from one type of genetic

algorithm to another.

Genetic algorithms come in various forms: generational, steady state, distributed and so on,

and a good introduction can be found in (Mitchell 1996). However, as the ‘no free lunch’ theorems

make clear (Wolpert 1995), there is no such thing as the best GA for all problems, but only the

best GA for a particular problem. Although certain types of GA have been shown to perform

better than others on certain types of fitness landscapes (De Jong 1975), it is not clear how these

landscapes relate to those involved in a typical evolutionary robotics scenario. Until this work

is done, therefore, or a comparison of various GAs is made on some test-suit of evolutionary

robotics tasks, it is not clear what is the best overall type of GA for evolutionary robotics. Given

an arbitrary decision, I tend to err on the side of simplicity (see below). There are however a few

general things one can say about the sort of genetic algorithms one should use, given the specific

problems one runs into when using artificial evolution for the creation of robot controllers.
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One feature of robotics that sets it apart from many other domains to which artificial evolution

has been employed is noise. If we are working with real robots, or simulations that behave like real

robots, then any evaluation function based on some empirical measurement of a controller’s ability

to perform a task will be noisy. This means that comparisons between different controllers will

often yield different results on different occasions, and those individuals that receive the highest

fitness values may not always be the fittest. If a genetic algorithm is to be used in evolutionary

robotics, therefore, then it must be as robust as possible to noise on the fitness test. In particular

the way in which genotypes are picked as parents for the creation of new offspring must be as

robust to noise as possible. One way of doing this is to evaluate each individual a number of

times, instead of just once, and take an average score as the fitness value. If resources are tight,

then various statistical techniques can be used which allocate the number of trials per genotype in

the most efficient way (Aizawa and Wah 1994; Fitzpatrick and Grefenstette 1988). Keeping the

selection pressure low to prevent the population from dashing off in the wrong direction through

fitness space also helps, and hard elitist strategies whereby the fittest is copied from generation to

generation without re-evaluation is not a good idea. Apart from these few hints, though, it is not

obvious which selection strategies are more robust to noise than others.

One interesting avenue of research on this topic concerns an effect reported in (Eigen 1987;

Huynen and Hogeweg 1994) and adapted for engineering purposes by Thompson(Thompson

1996a; Thompson 1995b). Given the choice between two peaks of equal height in the fitness

landscape, evolution seems to favour the peak whose fitness is the more robust to mutation. More-

over Thompson has shown that this effect only occurs if certain selection strategies such as rank

selection, and fitness proportional selection are used. The effect seems to be less noticeable if trun-

cation selection, for instance, is employed. The amount which fitness values vary across offspring

events in response to mutation is equivalent to the amount fitness values vary across offspring

events in response to noise. If evolution favours those places in the fitness landscape which vary

less in response to mutation then the same effect may mean that it will also favour those places in

the fitness landscape which vary less in response to noise. This is only a hypothesis, but it seems

reason enough, given an otherwise arbitrary decision, to use the selection strategies that Thompson

has found pronounce this lesser-known feature of evolution to the fullest.

Taking all of this into account, I advocate the use of a simple, easy to program genetic algo-

rithm such as the basic generational example of section 2.1. The selection should be rank-based

and afford even the least fit members of the population a chance to participate in offspring events.

All the examples of chapters 5, 6, 7 and 8 use genetic algorithms of this type.

2.4.2 Genetic operators for evolutionary robotics

The genetic operators are responsible for the way in which new offspring genotypes derive from

old parent genotypes. Some of the more commonly used include the crossover operator that com-

bines the genetic material of two parent genotypes to produce offspring, the mutation operator

that introduces random mutations into the genotype, and the translocation operator that randomly

relocates segments of genetic code elsewhere in the genotype (Mitchell 1996). Since the genetic

operators are responsible for how similar offspring genotypes are to their parents, they play a

large role (in concert with the selection pressure) in determining the degree of genetic diversity



Chapter 2. A Crash Course In Evolutionary Robotics 28

within the population, and the rate at which it converges from its initial random state. This in turn

determines the speed and operational characteristics of the evolutionary process.

For many who use genetic algorithms on more traditional optimization problems, the process

of artificial evolution occurs as an initially random population converges upon a solution, gradually

decreasing the genetic diversity until an equilibrium is reached. At this point, it is assumed that no

significant change will occur and the process for all practical purposes is finished. If genotypes are

of fixed length then the same can be assumed for most evolutionary robotics problems: at some

point the population will converge, the rate at which fitness increases will level off, and the run is

over. In this sort of scenario, evolutionary robotics problems may be treated as noisy optimization

problems. and mutation, crossover and other operators may be applied using conventional genetic

algorithm techniques (Goldberg 1989b).

The situation is made more complex if genotypes are allowed to grow and vary in length. This

is because there is always the possibility that significant change can occur after the rate of genetic

convergence has stabilized. To take advantage of this, Harvey (1992) developed the principles of

Species Adaptive Genetic Algorithms (SAGA). If we want to do open-ended evolution of arbitrary

complexity with variable length genotypes, he suggests, then we should allow the evolutionary

process to continue running long after the rate of genotypic convergence has stabilized. In the

natural world, after all, evolution occurs as a dynamic equilibrium that adapts to environmental

pressures in an open-ended way rather than a limited and finite search process with a start and a

finish. Perhaps it is only after this initial convergence phase, therefore, that the real business of

open-ended artificial evolution may begin.

There are a variety of ways in which genotypes can be allowed to change in length under

evolutionary control. Probably the simplest is to employ operators that just add or delete genetic

material with a small chance at each offspring event. Another method might be to allow crossover

to occur at different points on each parent genotypes, thus producing two offspring genotypes of

different lengths. Whichever method is used, however, no more than a slight change in length

should be allowed to occur at each offspring event. Although it is important that there is sufficient

generation and evaluation of new genetic material after the rate of convergence has stabilized, too

much will overpower the selection pressure and reduce the adaptive abilities of the evolutionary

processes to those of random search.

In the context of a converged population, the role of the crossover operator is unclear. It may

on occasion combine useful ‘building blocks’ from two parent genotypes in the same offspring

genotype, but the fact that all individuals within the population are very similar means that this

will not occur often and will not therefore play a major role. There are arguments that crossover

lessens the effects of Muller’s Ratchet (Nowak and Schuster 1989) but again it is hard to see

how this makes it crucial to the evolutionary process. It may be that by incorporating some sort

of sexual selection (Todd and Miller 1993; Todd 1996) as well as fitness proportional selection,

crossover may be made to earn its keep. Until this has been shown, however, thought must be

given to whether the extra unpredictable mutation effects produced by this operator are worth the

gain.

If we decide against using crossover, then we must rely on random mutation in one of its many
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forms4 to maintain the genotypic variation necessary for ongoing open-ended evolution. However,

the question of how to apply mutations when dealing with variable length genotypes again presents

us with a dilemma. Either mutation is fixed at a particular rate per genotype or it is fixed at a

particular rate per unit of genotype. Both have their problems. To illustrate this, let us consider a

variable length genotype that can be divided up into a variable number of ‘genes’, depending on

its length, each coding for a neuron or group of neurons and consisting of a certain fixed number

of values. If the mutation rate is fixed at a particular rate per genotype, then as the length of the

genotype increases, the effective mutation rate per gene decreases in proportion to the reciprocal.

Thus the more complex the neural network encoded on the genome, the slower new complexity

evolves until eventually, in practical terms, evolution grinds to a halt. If the mutation rate is fixed

at a particular rate per gene then, as the genotype grows in length, the effective mutation rate per

genotype increase until we are faced with a different problem: that of the error catastrophe (Nowak

and Schuster 1989). This occurs when the mutation rate is so high that fit traits and individuals

are lost to mutation before they have a chance to spread through and establish themselves in the

population. Thus mutation overcomes the forces of selection, and the rate at which new complexity

evolves again drops to zero.

One answer to this dilemma is to protect ‘fit’ genes from the deleterious effects of major

mutations in some way. The existing work on adaptive mutation rates is a step in this direction

(Smith and Fogarty 1997), however here we consider the circumstances under which ‘fit’ genes

might be protected from major mutation completely. Once it has been established that a gene

contributes to the fitness of genotypes that contain it, then it will usually continue to contribute to

the fitness of such genotypes from generation to generation. When this will not be true is if the

fitness peak that the population occupies due to the gene is a local maximum, and later on in the run

evolution finds a higher maximum elsewhere whose fitness the gene does not contribute to. This is

not, however, what we observe happening in an open-ended evolutionary robotics performed on a

static fitness landscape according to S.A.G.A. principles. In this case, populations are converged,

and once evolution has come up with a way of producing a particular behaviour it tends to stick

to it. Later on, with growth of the genotype, it may evolve to produce other behaviours as well.

Thus if a gene is beneficial (i.e. plays a significant role in increasing the fitness of genotypes that

contain it) then we can expect it to stay in the population indefinitely, and protect it from major

mutations without negative consequences to the evolutionary process as a whole.

If an automatic process can be found which ‘mutation-locks’ beneficial genes of this type

then this would offer a possible solution to the problem of applying mutation in an open-ended

evolutionary robotics scenario. This is because, with the correct genotypic growth rate, the number

of un-locked genes can be kept more or less constant as genes lock automatically. Therefore a

mutation rate per gene, which maintains the degree to which new complexity is explored, will

result in an effective mutation rate per genotype that is also constant, thus avoiding the error

threshold.

The experiments of chapter 8 employed an automatic mutation-locking process inspired from

the way in which some genes on a real chromosome are more likely to undergo mutation during

reproduction than others due to their evolutionary age. This process works as follows. Associated

4I am counting any operator that has a random effect on a single genotype, such as translocation, as a form of
mutation.
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with each gene on the genotype is a number that represents the gene’s ‘age’. Initially, all genes

are aged zero. At each offspring event, the age of every gene that is copied unscathed from parent

to offspring is increased by 1, and the age of those genes that undergo major mutation are reset

to zero. With this setup, the only way in which a particular gene can achieve an old age is if

genotypes that contain unmutated copies of it are constantly selected to act as parents. If genes

that contain mutated copies are equally likely to be selected, then after a certain amount of time

we can expect the gene in its unmutated form to disappear from the population due to the effects of

genetic drift. After a gene reaches a certain age, therefore, we can be reasonably confident that it

is beneficial and protect it from any further major mutation. This age can be arrived at empirically

by running the genetic algorithm on a neutral fitness landscape for several thousand generations

and observing the maximum age achieved by a gene in that time. When run on the real fitness

landscape, only beneficial genes will survive for significantly longer than this maximum age.

2.5 How to evaluate it?
Fitness function issues for evolutionary robotics

A typical evolutionary robotics run will involve the constant and repetitive evaluation of hundreds

upon thousands of robot controllers. Since these evaluations involve controllers’ ability to behave

in a certain way or perform a certain task on a real robot, this process is far from a trivial mat-

ter; a choice has to be made between whether evaluations are to be done using the real robots

themselves or using simulations of the real robots, and both of these alternatives have their prob-

lems. Evaluation on real robots, for example, has to be performed in real time which may take

prohibitively long. Evaluation in simulation, on the other hand, means that evolved controllers

may not work when transferred into reality unless the simulation is prohibitively complex. How

to overcome these problems is one of the major challenges faced by evolutionary robotics at the

moment (Mataric and Cliff 1996) and one of the main issues tackled by this thesis. Chapter 3.3

introduces new ways of thinking about and building fast-running easy-to-design minimal simula-

tions for evaluating real robot controllers.

Before getting onto this question of whether an evaluation is best performed in simulation or

in reality, however, we first take a look at what such an evaluation might consist of. The rest of

this section discusses the best way to go about designing and formulating fitness functions for the

automatic prescription of fitness values.

Typically in evolutionary robotics, the fitness of evolving controllers is evaluated by running

them on either a real or simulated robot (see next chapter) and using an automatic fitness function5

to judge their ability to perform a task or behave in a certain way. This fitness function operates

upon measurements of features of the robot and its environment and the way in which they change

over the course of the trial period. Of course, which of the features of the robot and its environment

can be measured and used by the fitness function depends on the robotics setup in question: it is

one of the advantages of performing evaluations in simulations that practically every one of these

features is at our disposal. There is, as yet, no principled way of designing a fitness function for

evolutionary robotics, and as several researchers have pointed out (Floreano and Mondada 1996a;

Mataric and Cliff 1996), it can be a laborious trial-and-error process. There are, however, a few

5Although fitness can also be prescribed by hand. See (Gruau 1997) for an example of this.
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design criteria which can aid the evolution of the behaviour we are after:

� The only way in which evolving controllers should be able to get a high score is if they
successfully display the behaviour we are after. Careful attention must be paid to this:
evolution is not fussy and will exploit any loop-holes it is presented with.

� At all stages during the evolutionary process, the extra complexity needed to evolve in or-
der that fitness can increase should be as small as possible. This is akin to saying that if a
behaviour can be broken down into sub-behaviours, then the fitness function should incre-
mentally reward the evolution of each sub-behaviour.

� The value returned by the fitness function must be as accurate a reflection of the underlying
fitness of the controller as possible. For this reason, the measured features of the environ-
ment that we choose to base the fitness function upon should be those that are the most
reliable and least noisy.

� If all we are after is a robot controller that displays a particular behaviour, then it does
not matter how specific the fitness function is. If, however, we want to explore a space of
possible robot behaviours, then the fitness function must be as un-biased as possible, and
we must take great care that it rewards all the different ways there are of performing the
particular behaviour equally.

Examples of what fitness functions look like in practice are provided in chapters 5, 6, 7 and 8.

2.6 Here endeth the lesson

This chapter has provided a crash course in state-of-the-art Evolutionary Robotics. It is hoped

that the reader who wants to evolve a particular robot behaviour will now have a good idea of

the type of neural networks they should use, how to encode them onto a genotype, and the best

genetic algorithms and operators to use. However, although section 2.5 offers some ideas about

how to go about designing a suitable fitness function, it did not go into details of how this fitness

function should be applied to evolving controllers in practice. In particular, the question of whether

evolving controllers should be evaluated in simulation or reality has still to be answered.

One of the major aims of this thesis is to offer an answer to this question. The next chapter

introduces new ways of thinking about and building fast-running easy-to-design minimal simula-

tions that can be used to evaluate evolving controllers for real robots. A formal treatment of the

theory behind these minimal simulations is then presented in chapter 4. Chapters 5, 6, 7 and 8

provide details of experiments in which these minimal simulations were used, in conjunction with

many of the techniques explained in this tutorial chapter, to successfully evolve controllers for real

robots.



Chapter 3

Minimal simulations I: General Theory and Methodology

The artificial evolution of controllers typically involves the constant and repetitive testing of hun-

dreds upon thousands of individuals as to their ability to behave in a certain way or perform

a certain task. In the case of real robots this testing procedure is far from a trivial matter and

(with the exception of certain hybrid approaches (Thompson 1995a; Nolfi, Floreano, Miglino, and

Mondada 1994)) can be done in only one of two ways: controllers must either be evaluated on real

robots in the real world, or they must be evaluated in simulations of real robots in the real world.

Both of these approaches have their problems.

As Mataric and Cliff (1996) point out, the evaluation of controllers on real robots must be done

in real time, and this makes the entire evolutionary process prohibitively slow. As an example,

they cite the evolution of collision-free navigation on a Khepera robot, which in the experiments

reported in (Floreano and Mondada 1994) took a total of 65 hours (100 generations at 39 minutes

a generation) to evolve1; it is hard to see how this approach can scale up, if the behaviours we

are after require thousands or even millions of generations. But even if we are resigned to an

evolutionary process that takes years rather than days, then there are different problems that must

be faced. The process must be automated, for instance. This begs questions about how data is

to be collected for fitness evaluations, how the robot is to be returned to its starting position at

the end of each fitness trial without human intervention and so on. Power must also be supplied

continuously to robots in situations where batteries have limited life-spans and tethering by a

permanent power lead is not always possible. And machines break down, especially under the

sort of continuous random battering that the real-world evaluation approach advocates. Clearly

the alternative simulation approach would be preferable since it avoids all these problems. It can

also run at faster than real time.

As has been shown by several experimenters (Jakobi, Husbands, and Harvey 1995; Beer and

Gallagher 1992; Miglino, Lund, and Nolfi 1995), it is possible to evolve controllers in simulation

for a real robot. Now that this is no longer in doubt the question becomes one of whether the tech-

nique will scale up. Mataric and Cliff (1996) (and similar points were made earlier in (Husbands

and Harvey 1992; Brooks 1992; Harvey and Husbands 1992)) argue that if behavioural transfer-

1The shape-discrimination behaviour evolved in (Harvey, Husbands, and Cliff 1994) only took 36 hours to evolve,
but this is still of the same order of magnitude.
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ence can only be guaranteed when a carefully constructed empirically validated simulation is used,

then as robots and the behaviours we want to evolve for them become more complicated, so do the

simulations. The level of complexity involved, they argue, would make such simulations:

� so computationally expensive that all speed advantages over real-world evolution are lost.

� so hard to design that the time taken in development outweighs time saved by fast evolution.

Clearly the main challenge for the simulation approach to evolutionary robotics is to invent a

general theoretical and methodological framework that enables the easy and cheap construction of

fast-running simulators for evolving real-world robot behaviors.

This chapter puts forwards such a theoretical and methodological framework. It starts in sec-

tion 3.1 with an analysis of what it means to say that a controller transfers across the ‘reality gap’

from a simulation into reality. This is then used in section 3.2 to investigate the general conditions

under which controllers will and will not transfer. Section 3.3 introduces the idea of a minimal

simulation - the simplest possible type of simulation capable of evolving robot controllers - and

recasts the conditions on controllers for successful transfer within this context. Techniques are

then proposed, in section 3.4, for using the evolutionary process itself to force controllers that

evolve to perform the desired behaviour within a minimal simulation to also fulfill the conditions

for successful transfer into reality. All the various threads are brought together and summarised,

in section 3.5, to produce a simple step-by-step guide to building a minimal simulation for evolu-

tionary robotics. Finally, a discussion of the pros and cons of the minimal simulation approach is

offered in section 3.6.

3.1 What is this reality gap anyway?

If we are to develop a general methodology for building simulations for evolutionary robotics

then the first thing to do is to define what we mean when we say that a controller has transferred

from simulation into reality. There are several reasons for doing this, not least of which is that

if we do not all have an agreed set of criteria for successful transfer, then there is little point in

asking under what conditions these criteria might be fulfilled, since we will all be asking different

things. This section sets up a terminological and conceptual framework within which a criterion

for successful transfer (and the discussion in the following sections) is stated. While the definitions

given below may not be agreed upon by everyone as the only way or the best way in which to cut

the conceptual pie, they should nevertheless be seen as a way: and that is all that is needed to

ensure that the discussion to come is unambiguous and precise.

The section begins by drawing a line between a controller and its environment in order that we

may be quite clear about exactly which features of the real-world situation belong to the controller

(which we do not have to simulate) and which features belong to the environment (which we do).

It then goes on to ask under what conditions a controller can be said to be performing a particular

behaviour within a particular environment and gives two conditions: one on the controller and one

on the environment. Finally a definition of successful behavioural transference is stated.
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Figure 3.1: This figure shows where, for the purposes of this paper, the line is drawn between controller

and environment.

3.1.1 Drawing the line between controller and environment

The distinction between controller and environment can be drawn in a number of ways (Smithers

1994; Beer 1995a; Smithers 1997). For the purposes of this paper, the boundary needs to be drawn

such that a controller running on a robot and a controller running in a simulation can uncontrover-

sially and simply instantiate two copies of the same dynamical system; if this is not done, then we

cannot talk about testing the same controller in both simulation and reality.

In each of the four sets of experiments described in chapters 5, 6, 7 and 8, controllers are

dynamical systems instantiated by a piece of code running on a computer. The environment is

another dynamical system instantiated either by a real world dynamical system such as a mobile

robot acting in the world or by a piece of code running on a computer that simulates such a real

world dynamical system. Figure 3.1 shows diagrammatically how the boundary between controller

and environment is drawn for the purposes of this paper. The digital signals that are output from

the controller undergo some digital to analogue processes within the environment that gives rise

(via the motors) to actions in the world, and analogue to digital processes within the environment

give rise (via the sensors) to digital signals that are input to the controller. The boundary between

controller and environment occurs at those point where signals are more profitably regarded as

digital rather than analogue or vice versa. The most important thing to realize about this particular

distinction is that the environment contains the robot’s sensors and actuators or their simulated

equivalent

If the boundary is drawn in this way, the controller can be seen as existing entirely in the digital

domain. Provided copies of the controller in simulation and reality are run on computers that use

the same rules of computation and run at the same rate, therefore, they can be seen as constituting

two copies of the same dynamical system.
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3.1.2 What counts as an instance of a behaviour?

Having defined what we mean by a controller, and what we mean by an environment, this subsec-

tion examines the conditions under which a controller can be said to perform a particular behaviour

within an environment. In the next subsection, we will examine the conditions under which a con-

troller can be said to perform the same behaviour in two different environments: simulation and

reality, for example.

The internal state of a controller and the way in which the environment acts upon it are, in

general, central to the generation and maintenance of a particular behaviour. It is the controller’s

output and the effects this has on the state of the environment, however, that determines whether

or not, from an observer’s point of view, the agent actually performs the behaviour2. To illustrate

this, consider the behaviour that consists of driving a car down a road. If someone sits in a car and

steers it down the road with a blindfold on, then we will still say they are driving the car (blind-

folded) down the road. However, if someone receives visual input as if they were driving the car,

but they are not in the driver’s seat and are not touching the steering wheel, then we will say they

are not driving the car down the road. In general, whether or not a controller performs a partic-

ular behaviour within a particular environment depends on the way the state of the environment

changes in response to controller output rather than the way in which the state of the controller

changes in response to input from the environment.

The environment must be capable of supporting the behaviour

The way in which the state of the environment changes is obviously a function of the controller’s

motor signals, but it is also a function of the environment itself and the ways in which the controller

may interact with it. For instance, if a person makes breast-stroke motions with their arms and

kicks their legs, then they are producing the correct motor output for swimming. However, it is

not until they are immersed in water or something equivalent that they actually are swimming3.

As another example, consider corridor-following behaviour by a small mobile robot. Unless the

environment includes something that acts like a corridor for the robot, it does not matter what

motor output the robot generates, it cannot display the behaviour. The same goes for driving a

car down a road (blind-folded or otherwise): without something equivalent to a car or a road, the

behaviour is simply not possible.

For any particular behaviour the environment must contain a base set of environmental features

that the agent can interact with in appropriate ways. Unless such features exist, the question of

whether the agent produces the correct motor output to perform that behaviour is meaningless. In

the swimming example, there must be a base set of features that the agent can interact with as if

it were immersed in a liquid. In the corridor example, there must be a base set of features that

the agent can interact with as if it were moving about in a corridor, and in the driving example

there must be a base set of features that interact with the sensors and motors of the agent as if it

were driving a car down a road. The point is that whether or not the agent actually is immersed

in a liquid, or moving about in a corridor, or driving a car down a road is immaterial. To decide

2There are certain behaviours to do with the internal activity of the controller itself that this is not true of. Since
there is no difference between simulation and reality for such behaviours, however, they shall not be considered here.

3Thanks to Joe Faith for this example.
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Figure 3.2: This shows the analogue world of figure 3.1 divided up, with reference to a particular be-

haviour, into two dynamical systems: one that contains all the features of the behaviourally defined base

set, and one that contains all those features of the world that can not affect the base set. The solid dark

arrows represent the fact that the members of the base set must interact with each other and the output from

the controller in appropriate behaviour-defined ways if the environment is to support the behaviour.

whether or not the environment is capable of supporting the particular behaviour, we just need to

know that it contains a base set of features that the agent can interact with as if it were.

The base set

This concept is so important to the discussion that follows in this thesis that we hereby give it a

special name. From now on, the set of environmental features that must interact with each other

and the controller’s output in the appropriate behaviour-defined ways will be referred to as the

base set with respect to that behaviour. Whether or not a particular environment is capable of

supporting a behaviour is a function of whether or not that environment contains a suitable base

set.

For a particular behaviour, the environmental features that make up the base set are all those

that can affect whether or not the controller actually performs the behaviour on any given test.

Thus the base set will include all those environmental features upon which behavioural success or

failure is predicated and all the other environmental features and processes that can affect them.

The important thing to realize is that the base set constitutes a dynamical system in its own right,

instantiated as part of the larger dynamical system that is the analogue world, but affected from

the outside only by output signals from the controller.

This is shown diagrammatically in figure 3.2. The analogue world of figure 3.1 has been

divided up, with reference to a particular behaviour, into two dynamical systems: one that contains

the behaviourally defined base set, and one that contains all those features of the world that cannot

affect the members of this set. The solid dark arrows represent the fact that the members of the

base set must interact with each other and the output from the controller in appropriate behaviour-

defined ways if the environment is to support the behaviour.
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The controller must produce the correct output

Given that the environment contains a suitable base set, whether or not a controller actually per-

forms a particular behaviour depends on the output it actually produces, and specifically how this

affects the way in which those features of the world that make up the base set change over time.

A controller is said to reliably perform a particular behaviour if the way in which the members of

the base set interact with each other and react to the controller’s output constitutes an instance of

the behaviour on every fitness trial. To sum up, a controller is said to have performed a particular

behaviour over the course of a test period if two conditions are fulfilled:

1. The controller’s environment must contain a suitable base set of features that may interact
with each other and react to the controller’s output in appropriate behaviour-defined ways.

2. The way in which the members of the base set do interact with each other and react to the
controller’s output over the course of the test period satisfies some suitable criterion for
behavioural success.

In the next subsection, we use these conditions to state the circumstances under which a con-

troller’s behaviour in a simulation can be said to transfer into reality.

3.1.3 What counts as a successful transfer?

There are several different ways of judging whether a controller successfully transfers into reality

after being evolved in a simulation, and the authors that have written about it so far use different

methods. Miglino, Lund, and Nolfi (1995), for instance, look at the fitnesses of controllers in

simulation and compare them to the fitnesses of controllers when downloaded into reality: the

nearer the fitnesses the better the transfer. Jakobi, Husbands, and Harvey (1995), on the other

hand, the authors use a more subjective approach to judge whether controllers behave qualitatively

similarly in reality to how they behave in simulation. Neither of these methods will be used here,

the main reason being that they are too general: we are not interested in how every controller

that evolves in a simulation transfers into reality but only those that perform behaviours we are

interested in. If we build a simulation in order to evolve light-seeking behaviours, for example,

then it is of no consequence if a controller that jiggles on the spot in the simulation jiggles on

the spot in a different fashion when downloaded into reality. What we will be interested in are

how controllers that seek light in the simulation transfer into reality, and specifically whether they

guide the real robot towards the real light.

As we shall see in section 3.3, the sort of minimal simulations that this thesis advocates build-

ing are constructed specifically for the evolution of particular robot behaviours. With this in mind,

a very simple and straightforward criterion for successful transfer is adopted. Controllers are said

to successfully cross the reality gap if, having evolved to reliably perform the particular behaviour

we are after in simulation (according to the definition of reliable behaviour given above), they re-

liably perform the behaviour when downloaded into reality. It should be stressed that this does not

necessarily involve any direct comparison between how the controller performs in simulation and

how it performs in reality, but just a judgement of whether a controller that has evolved to reliably

perform the particular behaviour in simulation, continues to reliably perform the behaviour when

downloaded into reality. As in (Jakobi, Husbands, and Harvey 1995) this may often be a some-

what subjective measure, but should nevertheless be unambiguous in practice. If I use a simulation
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to evolve controllers that cause a virtual robot to move around a cluttered environment avoiding

objects, for example, then controllers successfully cross the reality gap if, when downloaded, they

cause a real robot to move around a cluttered environment avoiding objects in a reliable fashion.

If I use a simulation to evolve visually guided controllers that steer a virtual robot towards a target,

then controllers successfully cross the reality gap if, when downloaded, they reliably steer a real

robot towards the target in a satisfactory and acceptable manner.

3.2 Overcoming the failings of simulation

As has been demonstrated in several papers (Jakobi, Husbands, and Harvey 1995; Beer and Gal-

lagher 1992; Nolfi, Miglino, and Parisi 1994) it is possible to evolve controllers in simulation for a

real robot. However, the explanations offered by the authors of these papers as to why behaviours

successfully transfer to reality when evolved under certain simulation conditions while not under

others fall well short of the level of understanding necessary for the development of a general

simulation building methodology. The consensus view seems to be that controllers will success-

fully transfer if the right amount of noise is included in a carefully constructed and empirically

validated simulation of the robot and its environment4. But there is no such thing as the perfect

simulation; some real-world features will be modelled at the expense of others. And since my

empirically validated simulation might be your unrealistic toy-world we cannot proceed onto the

question of what the perfect simulation for evolutionary robotics might look like without at least

some agreement on how evolved controllers can and do transfer from simulations into reality in

the first place.

If it were possible to build a perfect simulation of a real world robotics setup then crossing

the reality gap would present no problems. This is because there would be no difference, from

the point of view of the controller, between simulation and reality, and the behaviour it displayed

in both would be identical. Unfortunately, any real-life simulation of a robot acting in the world

will fail on two counts: it will only model a subset of the possible robot-environment interactions,

and those that it does model, it will model inaccurately. Below, we examine each of these in

turn and identify certain properties that evolving controllers must display if they are to overcome

the failings of simulation and cross the reality gap. In this section, these properties are defined

only in general terms to provide the reader with an initial understanding of the important concepts

involved. As we shall see, they correspond respectively to the properties of being being base set

exclusive and base set robust: both of which are more fully defined in section 3.3.

3.2.1 Simulations can’t accurately model everything

Even the most comprehensive simulation can only hope to capture a subset of the totality of real

world features and processes that make up a robot acting in the real world. The simulation built

from this subset must nevertheless form a coherent whole from the point of view of evolving

controllers, and the gaps left by the real-world features and processes that are not modelled must

be filled in. However this is done, through filling in the gaps with arbitrary features or processes

4Although the nature of the ‘right amount of noise’, and indeed even what it means for a behaviour to ‘successfully
transfer from simulation to reality’, varies markedly between papers on the topic
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or whatever, this means that there will be aspects of even the most accurate of simulations which

have no basis in reality.

For example, if a particular robot sensor blips high under certain circumstances and this real-

world feature is not modelled, then the fact that the sensor does not blip high in the simulation

under the same circumstances has no basis in reality. As another example, if the unknown prob-

ability distribution underlying the apparent stochasticity of a particular real world feature is arbi-

trarily modelled in the simulation by a normal distribution, then even if it has the same mean and

standard deviation, there will be aspects of this normal distribution that have no basis in reality.

The problem this presents to controllers evolving in simulation is that they may come to rely

on these aspects that have no basis in reality to perform their behaviour, and such controllers will

more than likely fail to cross the reality gap. As long as controllers depend exclusively on those

aspects of a simulation that do have a basis in reality, however, then this does not matter. This

then is one of the conditions that must be met by evolved controllers if they are to overcome the

failings of simulation. In order to cross the reality gap, the behaviour of evolved controllers must

depend exclusively on those features and processes of the simulation that have been modelled on

features and processes of the real world and on no other.

3.2.2 Simulations can’t accurately model anything

Even if a controller evolves to depend exclusively on those aspects of a simulation that have a

basis in reality, it may still not cross the reality gap. Modelling any set of real-world features and

processes with 100% accuracy is just not possible, even with the most careful empirical validation;

the environmental features and processes that a controller depends upon to perform its behaviour

in simulation will inevitably differ from the real-world environmental features and processes they

are modelled upon. To explain how controllers can and do cross the reality gap, therefore, requires

an explanation of how a controller may continue to perform the same behaviour, even when there

is a change to the environmental features and processes that this behaviour depends upon.

Consider first that, as explained in section 3.1.3, for a controller to cross the reality gap does not

necessarily mean that it performs the task in exactly the same way in both simulation and reality.

Thus small inaccuracies in the modelled features of a simulation may result in slight differences

between a controller’s behaviour in simulation and its behaviour in reality. As long as it continues

to behave satisfactorily in reality then we may say that the controller has successfully crossed the

reality gap. This is akin to hitting a barn door with a shot-gun at five paces. If your aim is off

by a metre or so, you’ll still hit it and this is all we are after. Of course in more complicated and

involved situations there will not be so much room to manoeuvre, but it should be kept in mind

that even for the most delicate of behaviours there will normally be a little bit of slop that can soak

up small discrepancies.

Some controllers, however, will be more robust to inaccuracy than others. The level of model

inaccuracy that an evolved controller can tolerate before it ceases to perform satisfactorily in the

real world will depend on exactly how it uses the modelled features of the simulation to perform

the task. For example, it has long been appreciated in the engineering world that processes which

employ feedback or similar techniques will be far more robust to inaccuracy and noise than those

that don’t (Brogan 1991), and this is true here also; non-brittle control strategies and behaviours
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that constantly correct themselves as they go, either through explicit feedback loops or implicitly

via the environment (as in Braitenberg’s vehicles (Braitenberg 1984)), lend themselves to the

handling of the differences between simulation and reality. However, in certain situations even

the most brittle, ballistic of control strategies will perform the task satisfactorily in reality, as in

the shotgun example given above.

Unfortunately we cannot say anything much stronger than that controllers must be robust to

the differences between the modelled features of a simulation and the real world features they

are modelled on if they are to cross the reality gap. This is because there are so many ways of

handling these differences depending on the behaviour, what we demand of it, the nature of the

real-world features that are modelled in the simulation and so on. As we shall see, however, there

may be ways of forcing the evolution of this type of robustness (in whatever form evolution cares

to come up with), and there is therefore no need to focus too hard on exact mechanisms by which

controllers may be robust since this job may be left to the evolutionary process itself. All that is

important for our present purposes is to acknowledge that this type of robustness is a necessary

property of controllers if they are to overcome the failings of simulation and successfully cross the

reality gap

3.3 Minimal simulations

If the simulation approach to evolutionary robotics is to succeed then we must not only show

how controllers can be evolved in simulation for real robots, we must also show how this can be

done using simulations that run fast and are easy to design and build. Having defined what the

reality gap consists of and given an account of the ways in which controllers can transfer across it,

this section explores the concept of minimal simulations: the simplest type of simulation capable

of evolving controllers for real robots. It starts by examining the minimal set of features that

a simulation must include if the performance of a particular behaviour within that simulation is

to be possible in the first place. It then goes on to examine the minimal relationships that these

features must bear to reality if transfer across the reality gap is also to be possible. Having defined

what a minimal simulation consists of, the section ends by restating, within the context of minimal

simulations, the conditions that must be satisfied by a controller if it is to successfully transfer

across the reality gap. In section 3.4, we go on to examine ways of evolving controllers that meet

these conditions.

3.3.1 What features must be included?

In section 3.1.2 two conditions were given under which the motor output from a controller could

be deemed to produce an instance of a particular behaviour. Of the two conditions, one was

about the motor output itself but the other was to do with the environment. It stated that if the

environment was to be capable of supporting the behaviour, then it must contain a suitable base

set of environmental features that interact with each other and react to the controller’s output in

appropriate behaviour-defined ways. If the environment does not contain a suitable base set, it

was claimed, then it is not even a meaningful question to ask whether a controller does or does not

perform the behaviour in question. For this reason, logical necessity demands that any simulation

for the evolution of a particular behaviour includes a suitable base set of features which interact
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with each other and react to output signals from the controller in appropriate ways. Note that

this is not the same as saying that the simulation contains a model of any particular base set of

real-world features, but just that it contains a set of features that interact and react in appropriate

behaviour-defined ways.

For most types of behaviour that we will be interested in, it is also necessary that evolving

controllers receive a certain amount of input in some way from their environment. It is just not

possible, for example, for a controller to evolve that can drive a simulated car down a simulated

road in any sort of general way if that controller receives no input: the car will crash because the

controller has no way of knowing where or when to steer. If it is necessary for certain features of

the environment to affect controller input, furthermore, then it should be clear that these environ-

mental features will be members of the base set. This is because the members of the base set are by

definition the behaviourally relevant features of the environment; input originating from any other

feature will therefore not be necessary for the successful performance of the behaviour. Again, this

does not mean, from a logical point of view, that the simulation must necessarily model some par-

ticular real-world process by which controller input signals arise from some particular real-world

feature, but just that the controller must receive enough input deriving from the relevant base set

features of the simulated environment to make the performance of the behaviour logically possible

within the simulation.

3.3.2 What relationships must these features bear to reality?

From a logical point of view, then, a simulation must include two things: a base set of environ-

mental features that interact with each other and react to controller output in appropriate ways,

and a sufficient number of processes by which the members of this base set can affect controller

input. This, however, says nothing about the relationships that these features and processes must

bear to the real world if transfer across the reality gap is to be possible - or just how minimal these

relationships can be.

The first thing to realize is that we are only interested in whether controllers that reliably

perform the behaviour in simulation continue to perform it in reality. We are not interested in how

controllers that do not perform the behaviour in simulation behave when they are downloaded

into reality. This has profound consequences for the amount of modelling that needs to be done,

especially when one considers that the hardest aspects of some real-world situations to model are

often those involved in the robot or robots not performing the behaviour rather than performing

it. Thus, if we are evolving corridor following behaviour, the dynamics of the simulation might

differ wildly from those of reality if the controller hits a wall or goes round in circles, but this does

not matter since the controllers we are interested in transferring across the reality gap will neither

hit walls nor go round in circles. Similarly, if we are evolving walking behaviour in an insect-like

robot, the dynamics of the simulation might differ wildly from those of reality when the robot’s

legs clash or drag, but this will not matter since neither of these events occur during satisfactory

and acceptable walking behaviour. The relationships that the logically necessary features of a

simulation bear to reality may be arbitrary, therefore, when the behaviour is not being performed.

If crossing the reality gap is to be at all possible for controllers that do perform the behaviour,

however, then they must be able to fulfill the conditions for successful transfer put forward in
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Figure 3.3: This figure represents the relationship that a minimal simulation bears to reality. The fea-

tures represented by the dark grey areas and solid black lines in simulation (the base set aspects) model

the features represented by the dark grey areas and solid black lines in reality. The features represented

by the white area and dashed lines in simulation (the implementation aspects) do not model the features

represented by the white area and dashed lines in reality.

section 3.2. The only demand this makes on the simulation (from section 3.2.1) is that it must

contain a sufficient number of features and processes, that controllers may exclusively depend

upon to perform the behaviour we are after, which have a sound basis in reality. By definition,

the features and processes identified in the previous section are the logical minimum sufficient

for successful behaviour. If these are all the minimal simulation consists of, furthermore, then

it is these features and processes that successful controllers will depend upon to perform their

behaviour. If crossing the reality gap is to be possible, therefore, then when (and only when) the

behaviour is being performed, the logically necessary features and processes of the simulation

must mirror the real world.

3.3.3 Overcoming the failings of minimal simulations

Figure 3.3 shows a diagram of the minimal amount of modelling that must be included in a sim-

ulation for the evolution of a specific robot behaviour. A base set of real-world features that are

capable of underlying the behaviour must be identified, and the way in which these interact with

each other and react to controller output signals when the behaviour is being performed must be

modelled. In addition, a number of input processes by which the real-world base set gives rise to

aspects of controller input signals when the behaviour is being performed must be identified and

modelled. The number of these processes that are modelled must be sufficient to ensure that the

controller receives enough information about its environment to make performing the behaviour

possible.

Such a minimal simulation fails to be identical to the real-world situation it tries to model in

the same two ways as any other simulation: it fails to model everything, and that which it does

attempt to model it models inaccurately. The conditions under which controllers cross the reality

gap given in section 3.2, therefore, are also true for minimal simulations. It is important for the

discussion to come, however, to spell out exactly what these conditions consist of in a minimal

simulation context. This is done below through the introduction of new terminology that will be

used widely throughout the rest of this thesis.
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Base set aspects and implementation aspects

As explained in section 3.2, the environmental features and processes of even the most compre-

hensive and empirically validated of simulations can be divided into two types: those that are

inaccurately modelled on the real world, and those that have no counterpart in reality at all. The

distinction between these two is an important one to keep clear, in the context of minimal simu-

lations, and we hereby give it its own terminology. Since all the modelled features and processes

of a minimal simulation will have something to do with the base set, they shall be referred to

throughout the rest of the thesis as the base set aspects of the simulation. All those features and

processes of a minimal simulation that have no counterpart in reality shall be referred to as the

implementation aspects of the simulation.

In practice, the distinction between base set aspects and implementation aspects can be am-

biguous. For instance, there will be aspects of the simulation that do not match up with reality due

to modelling inaccuracy; should such aspects be base set aspects (because they are inaccurately

modelled on the real world) or implementation aspects (because they have no basis in reality)?

This is a matter of definition and is answered here as follows. If a minimal simulation is to be

capable of evolving controllers that cross the reality gap then, as explained above, it must in-

clude a behaviourally defined base set of features and processes which are all modelled on the real

world. Any aspects of these features and processes that do not match up with reality will be due

to modelling inaccuracy, therefore, and it seems sensible to call them base set aspects. A minimal

simulation must also include processes by which the modelled base set gives rise to controller in-

put. However, it is only logically necessary to model enough (and not all) of these processes on the

real world. There may therefore be aspects of controller input within the simulation which do not

match up with reality and which are not due to modelling inaccuracy: they have no basis in reality

at all. Aspects such as this can only be referred to as implementation aspects. For consistency’s

sake, any aspects of controller input that do not match up with reality due solely to modelling in-

accuracy should again be referred to as base set aspects. Thus if an aspect of a minimal simulation

does not match up with reality due to modelling inaccuracy then it is a base set aspect. If an aspect

of a minimal simulation has no basis in reality and this is not due to modelling inaccuracy then it

is an implementation aspect. The distinction between base set aspects and implementation aspects

is shown diagrammatically in figure 3.3.

Base set exclusive

Reformulating the conclusions of section 3.2.1 using the terminology just introduced, a controller

is only likely to transfer from a minimal simulation into reality if it depends exclusively on the base

set aspects of the simulation, and those aspects alone, to perform the behaviour we are interested

in. A controller is defined to be base set exclusive within a minimal simulation if it depends

exclusively on the base set aspects in this way.

One important point to note here is that, according to the definition given above, the only way

in which the implementation aspects of a minimal simulation can affect the controller’s behaviour

is through its input signals. This can be seen in figure 3.3 where the only way in which the white

area marked ‘the rest of the simulated world’ can affect the grey area marked ‘modelled base set’ is

via the dashed line leading off to the controller input. A controller is base set exclusive, therefore,
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if it depends exclusively on the base set aspects of its input signals to perform the behaviour, and

those aspects alone.

Base set robust

The base set aspects of a minimal simulation will always be slightly different to the real-world

features and processes that they model. Even if controllers evolve to be completely base set exclu-

sive, therefore, there will still be differences for them between the minimal simulation and the real

world. In order to successfully transfer they must be robust to these differences. This is the con-

dition on crossing the reality gap that was put forward in section 3.2.2. From now on, a controller

that is robust to the differences between the base set aspects of a minimal simulation and the real

world features and processes they model will be referred to as base set robust.

3.4 Evolving controllers to cross the reality gap

In the previous section we analysed just how minimal a simulation for the evolution of robot

controllers can be and stated the properties that controllers which have evolved in such a minimal

simulation must display if they are to successfully transfer into reality. Controllers that evolve

to perform the behaviour we are after will not necessarily display these properties, however, and

unless we possess techniques for forcing them to, we are no closer to a useful tool for the evolution

of controllers for real robots than we were before. This section puts forward such techniques. It

examines exactly how one might go about building simulations that are not only minimal in the

sense put forward in the previous section, but which also force controllers that evolve to perform

the behaviour we are after to be both base set exclusive and base set robust.

3.4.1 Evolving controllers to be base set exclusive

When evolving controllers in simulation to perform a specific task, a fitness criterion is used

(usually an explicit function tailored to the task) to tell which controllers are fitter than others.

If this fitness criterion is set up correctly, then all controllers that are able to consistently and

robustly perform the task we are after will also be reliably fit and vice versa. If a single fitness

evaluation consists of taking the average scores from several independent trials, then a reliably fit

controller will score a high fitness value on all such trials. In such a situation, a controller that is

base set exclusive is one that employs the base set aspects of its input, and these aspects alone, to

be reliably fit.

One way of forcing this to happen is to make all the implementation aspects of a controller’s

input unreliable by varying them randomly from trial to trial. If this is done correctly, then the only

practicable way in which a controller can be reliably fit, trial after trial, is by using those aspects

of its input that are in themselves reliable i.e. the base set aspects. Since a single fitness evaluation

involves several independent trials, reliably fit controllers will score more highly, in the long run,

over those that are less reliable, and we may expect them to be selected for by the evolutionary

process. If the process succeeds, and reliably fit controllers evolve, then we can be confident that

they will rely exclusively on the base set aspects of their input to perform their behaviour, and will

therefore be base set exclusive.
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Before making the implementation aspects of a controller’s input unreliable, they must first be

identified. They will arise mostly as an incidental artifact of the modelling process, although they

do not actually model anything themselves, which can make them quite subtle and hard to spot.

For example, one of the base set aspects of controller input in a particular real-world situation

might be that a particular sensor returns a value in the interval 0 to 13 when pointed in a certain

direction. In implementing this interaction as a base set aspect of controller input in the simulation,

however, we must chose a particular way in which values are returned between 0 and 13. Values

could be returned from across the whole interval, or they could all equal 7. The point is that unless

the way in which values are returned within this interval in simulation models the way in which

they are returned in reality, then it is an implementation aspect of controller input and has no real-

world basis. If the way in which values are returned within the interval 0 to 13 is randomly varied

from trial to trial, however, then evolving controllers cannot rely on how they arise within this

interval (the implementation aspect), but only on the fact that they do (the base set aspect).

In other cases, the implementation aspects of controller input signals will be obvious to us

since we have put them in especially to make the modelling process easier or to reduce compu-

tational overheads. For example, we may note that the real-world base set aspects of controller

input that we would like to include in our simulation are very simple to model when the robot is

located within certain areas of its environment, and very hard to model in others. In order to make

the job of building our simulation easier, therefore, we might include a model of the processes by

which the real-world base set affect controller input which is accurate when the virtual robot is

in the easy-to-model areas, but which is totally unrealistic when the robot is in the hard-to-model

areas. In this case, the effects that these modelled processes have on controller input when the

virtual robot is situated in the easy-to-model areas are base set aspects of the input, and the effects

that they have on controller input when the virtual robot is situated in the hard-to-model areas

are implementation aspects of the input. These implementation aspects can be made completely

unreliable by randomly varying from trial to trial the effects that the modelled processes have on

controller input when the virtual robot is situated in the hard-to-model area. Reliably fit controllers

will employ strategies, therefore, that rely on the effects that the modelled processes have on con-

troller input in the easy-to-model areas, while completely ignoring any effects that the modelled

processes have on controller input when the robot is situated in the hard-to-model areas. Extra

care must be taken in this sort of situation to ensure that the base set aspects of controller input

within the simulation are comprehensive enough to allow reliably fit controllers to evolve. There

is a real danger, if we are over-zealous in our lust for computational and modelling expediency,

that we may effectively exclude so many real-world features from the simulation that what we are

left with is insufficient for successful behaviour.

Once made explicit, we must then tackle the task of injecting randomness into the implemen-

tation aspects of controller input. In many cases it will be tempting to just add large amounts of

noise to everything which is not a base set aspect and to leave it at that. However, if this noise

is in itself reliable in the sense that evolving controllers can always count on it being there, then

they can and will (Jakobi, Husbands, and Harvey 1995) evolve to use it to achieve high fitness.

The secret is to randomly vary the implementation aspects of the controller input from trial to

trial as opposed to just during each trial. Since a fitness evaluation consists of several trials, each



Chapter 3. Minimal simulations I: General Theory and Methodology 46

controller will be subjected to several different instances of each implementation aspect: noisy,

absolute, black, white, big, small or whatever, depending on the nature of the particular aspect and

the ways in which it can be varied. As long as there is nothing that all instances of a particular

implementation aspect have in common, then reliably fit controllers will be totally independent of

that aspect, or they will not be reliable.

Of course in practice it may be very difficult to ensure that there is nothing that all instances

of any particular implementation aspect have in common. However, if the implementation aspects

of the controller input within a simulation are made unreliable enough, then it is so much harder

for evolution to find a way of using them reliably than it is for evolution to find a way of totally

ignoring them that we can be extremely confident that controllers that evolve to be reliably fit will

be base set exclusive.

3.4.2 Evolving controllers to be base set robust

In order to ensure that reliably fit controllers are base set robust, we must be able to ensure that they

are able to cope with the differences between simulation and reality caused by inevitable modelling

inaccuracy. We may approach this by adapting ideas borrowed from (Husbands and Harvey 1992)

(with further elaborations in (Husbands, Harvey, and Cliff 1993b)). The idea is that by slightly

varying, from trial to trail, every base set aspect of the simulation, reliably fit individuals will have

to be able to cope with a certain amount of variation in order to be reliable. There will therefore

be a selection pressure in favour of controllers that are better able to cope with slightly different

base set aspects with slightly different dynamics, and thus in favour of controllers that are better

able to cope with the differences between the base set aspects of the simulation and the real-world

environmental variables, features and processes that they model. So in order to evolve reliably

fit individuals that are base set robust, all we need is some way of knowing how much random

variation it is necessary to apply to the base set features of the simulation and the best way in

which to apply it.

As has already been said, it is rarely possible to simulate even the smallest portion of the world

completely accurately. However, it is also rare that the simulation builder will not have at least

some idea of how inaccurate their simulation is, and this seems a sensible way to work out limits

on the amount of random variation we need to apply to the base set aspects of the simulation in

order to evolve reliably fit controllers that are base set robust.

As to how this variation should be applied, there are lessons to be learnt from experiments

reported in (Jakobi, Husbands, and Harvey 1995). In these experiments extra noise was added to

the simulation over and above that present in reality and controllers were able to evolve that made

use of the extra noise in such a way that they were reliably fit in simulation but failed miserably

when down-loaded onto the real robot. However, this extra noise was reliably present during every

trial, so evolving controllers that relied on its presence were still able to be reliably fit. In other

words, evolving controllers were faced with the same base set aspects at every fitness trial, and

these base set aspects were significantly different to the real-world features and processes that

they modelled i.e. they were much more noisy. Given this fact, it is unsurprising that evolved

controllers were unable to cross the reality gap.

In order for there to be a selection pressure in favour of controllers that can cope with slightly
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differing versions of each base set aspect of a simulation, they need to be varied between trials,

and not during them. There should of course be noise, during each trial, on base set aspects that

model real-world entities such as sensors and actuators since there will also be noise on sensors

and actuators in the real world. However, this noise should be regarded as an integral part of these

base set aspects and not something extra to them. Noise levels should be altered between trials

along with all the other base set aspects of a simulation. They should not be left steady throughout

the evolutionary process at unrealistic levels.

3.5 How to build a minimal simulation for evolutionary robotics

In this section we put together all of the analysis and theory into a simple step-by-step recipe

for building a minimal simulation for the evolution of a robot behaviour. The guide-lines put

forward are very general and a fair amount of knowledge and insight is needed to tailor them to

any particular real-world situation. However, it is hoped that together with the example simulations

of chapters 5, 6, 7 and 8 the reader will be left with at least some idea of how they might go about

constructing good minimal simulations for evolutionary robotics.

1. Precisely define the behaviour. Start by making a precise definition of the behaviour to be
evolved. This should include both a description of the task to be performed by the robot(s) and the
range of environmental conditions it is to be performed under.

2. Identify the real-world base set. Distinguish between those real-world features and processes
that are relevant to the performance of the behaviour and those that are not. Those that are relevant
constitute the base set. If possible, identify the way in which the members of the base set interact
with each other and react to motor signals during the performance of the behaviour.

3. Build a model of the way in which the members of the base set interact with each other
and react to controller output (when the robot is performing the behaviour). Make a
model of the real-world base set of features and processes. The dynamics of this model need copy
those of the real world only during the performance of successful behaviour. The dynamics when
the behaviour is not being performed may often be shaped to smooth the fitness landscape, thus
facilitating the evolution of successful controllers.

4. Build a model of (enough of) the way in which the members of the base set affect con-
troller input (when the robot is performing the behaviour). Identify and model processes
by which members of the real-world base set give rise to aspects of controller input. Just as with
the model of the base set, these modelled processes need only copy their real-world counterparts
when the behaviour is being performed. Make sure that the input aspects that these processes give
rise to in the minimal simulation are sufficient to underly successful behaviour. Note that there are
often several ways in which sufficient input processes may be identified and modelled, and the exact
choice affects the possible strategies that evolving controllers may employ.

5. Design a suitable fitness test. Design a suitable fitness test that only awards maximum fitness
points to those controllers that reliably perform the behaviour: some points to keep in mind are listed
in section 2.5. In particular, each evaluation must involve a sufficient number of trials so that, with
the right amount of trial to trial variation (see below), we can be confident that controllers which
achieve high fitness in all of them are reliably fit, base set exclusive and base set robust.

6. Ensure that evolving controllers are base set exclusive. Make a distinction between the
implementation aspects of controllers’ input signals and the base set aspects. Those implementation
aspects that are present during the performance of the behaviour must be randomly varied from
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trial to trial so that evolving controllers that depend upon them are unreliable. In particular, enough
variation must be included to ensure that evolving controllers can not, in practice, be reliably fit
unless they are base set exclusive i.e. they actively ignore each implementation aspect and depend
exclusively on the base set aspects of their input to perform the behaviour.

7. Ensure that evolving controllers are base set robust. Every base set aspect of the simulation
must be randomly varied from trial to trial so that reliably fit controllers are forced to be base set
robust. The extent of this random variation must be large enough that controllers which evolve to be
reliably fit are also able to cope with the inevitable differences between the base set aspects of the
simulation and their real-world counterparts. Care should be taken that this variation is not so large
that reliably fit controllers fail to evolve at all.

3.6 The pros and cons of minimal simulations

Various different simulations have been used in the past to evolve controllers for robots: in (Jakobi,

Husbands, and Harvey 1995), an empirically verified model of the underlying physics was con-

structed; in (Miglino, Lund, and Nolfi 1995), look-up-tables compiled from real-world sensor data

were used; and in (Yamanuchi and Beer 1994), the factory-built simulation came supplied with the

robot. However, the fundamental approach underlying the use of all of these simulations to evolve

controllers for robots is the same: the less differences there are between simulation and reality,

the less likely it is that controllers will evolve to depend on them and fail to download into reality.

Such an approach is committed to building simulations that are as faithful and accurate a model of

the real world as possible. It will not scale up.

The approach put forward in this chapter is very different. Instead of trying to eliminate the

differences between simulation and reality they are acknowledged, and mechanisms are put in

place to prevent evolving controllers from relying on them. Thus controllers are not only evolved

in a minimal simulation to perform a specific real-world behaviour, they are also evolved to be

robust to the differences between the minimal simulation and reality. A careful inspection of the

arguments put forward in this chapter will reveal that nowhere is it implied that the base set aspects

of a simulation should reflect reality as closely as possible, nor that the number of implementation

aspects of a simulation should be kept to a bear minimum, and this is where the potential power

of minimal simulations lies. A reliably fit controller that evolves in a simulation containing very

inaccurate base set aspects and lots of implementation aspects is just as likely as any other to cross

the reality gap provided that the right amount of random variation is included in the simulation in

the right way according to the methodology laid out above.

What is much more likely in this situation, is that reliably fit controllers will fail to evolve at

all. There will always be limits to the amount of randomness that the evolutionary machinery can

find ways of coping with, no matter how this machinery is set up. If the amount of variation neces-

sary to ensure that reliably fit controllers cross the reality gap surpasses this limit, then reliably fit

controllers will just fail to evolve. However, if the evolutionary machinery is sufficiently powerful

we can evolve complex controllers, capable of performing non-trivial real-world tasks, using sur-

prisingly inaccurate and simple simulations. This means that how one chooses to model features

of the world within a minimal simulation may be governed by considerations of computational

expense or ease of construction rather than those of fidelity.

Minimalism has trade offs. By providing only a minimally sufficient base set of robot-environment
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interactions within a minimal simulation, we are depriving evolution of its opportunistic ability,

when performed within the real world, to ground reliable behaviour in any aspect of the environ-

ment it sees fit, whether we have thought of it or not5. However, this point also has its positive side.

By making explicit and modelling only the behaviourally relevant features of a particular robotics

setup, we ensure that the only controllers that can evolve to be reliably fit within the simulation

will be those that are able to perform the ‘real’ task in a general non-brittle way, without relying

on non-behaviourally relevant features that are specific to the particular environment within which

they evolved. Thus the famous neural network, developed by the U.S. military, that could tell

pictures of landscapes containing tanks apart from pictures of landscapes that did not - due to the

unfortunate fact that all the pictures containing tanks were taken in the morning while those that

did not were taken in the afternoon - could not evolve in a minimal simulation.

Chapter 4 presents a formal treatment of the general theory and methodology presented above.

Chapters 5, 6, 7 and 8 each provide a practical example of a minimal simulation and detail experi-

ments in which controllers were evolved using these simulations and transferred successfully onto

real robots.

5Adrian Thompson’s work with evolvable hardware (Thompson 1996b) provides a beautiful example of this type of
artificial evolution.



Chapter 4

Minimal Simulations II: A Formal Treatment

This chapter presents a formalism for reasoning about controllers performing behaviours in envi-

ronments and details an attempt to logically derive a minimal set of conditions for successfully

crossing the reality gap from the same set of assumptions as those made in the last chapter. This

attempt was only partially successful in that the derived conditions correspond closely to those put

forward in the last chapter but are problematic to apply in practice due to the almost unavoidable

clash between the universal quantifications required by logic and the finite nature of the real world.

The insights afforded by this undertaking contributed greatly to the arguments and discussions of

the last chapter, however, and the fact that the derived conditions correspond closely to those put

forward in the previous chapter provides good evidence for the logical soundness of the theory

underlying the minimal simulation approach. Details of the derivation are included here for the

same reason as a mathematician includes the derivation of a theorem in a mathematics paper - if

there is only analytic evidence to support a claim then this evidence must be provided. The reader

who prefers their evidence to be empirical rather than analytic, however, may want to skip this

chapter and go straight to the practical examples of minimal simulations described in chapters 5,

6, 7 and 8.

The first two sections of this chapter formalize the conceptual analysis of section 3.1: in Sec-

tion 4.1 a notation is introduced for describing the way in which the coupled dynamical system that

is a controller and its environment changes over time, and in Section 4.2 this is used to characterise

what it means for a controller to perform a behaviour in such a system. This logical framework

is then used in Section 4.3 to derive a minimal set of conditions for guaranteeing that a controller

which performs a behaviour in one controller-environment system will continue to perform it in

another. These conditions, which are of course the conditions on behavioural transference, are

then listed in section 4.4. Finally, section 4.5 discusses how these formally derived conditions fit

in with the general theory and methodology presented in chapter 3.

4.1 State-space equations for a general controller-environment system

The distinction between controller and environment can be done in a number of ways (Smithers

1994; Beer 1995a; Smithers 1997). For the purposes of this thesis, when the controllers we are
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talking about are instantiated by a piece of computer code, we draw the line around the controller

entirely in the digital domain (see section 3.1.1). This should be kept in mind as the formalism

is put forward below. The software that receives digital input signals (in the form of an input

vector) from the sensors and sends digital output signals (in the form of an output vector) to the

motors is treated as the controller, and everything else including the actual sensors, motors and

the controller’s embodied form is treated as the environment. When defined thus, both controller

and environment constitute separate dynamic systems, each with their own state, that are linked

through the controller’s input and output vectors. This section introduces a formalism that can be

used to capture these interactions mathematically and puts forward general equations for the way

in which they change over time. Before we do this, however, some basic notation is introduced:

Let G be a dynamical system. The state of G at time t will be referred to as the state vector
gt. The set of possible initial states g0 that G can start from at time t � 0 will be referred to as
Ginit . The function which describes the way in which the value of gt

�
1 depends on gt and any

external inputs or controls it will be referred to as Gdi f f . Thus the equations

g0
� Ginit and gt

�
1

� Gdi f f
�
gt � it � (4.1)

completely capture the behaviour of the dynamical system G from time t � 0.

The controller

The controller constitutes a dynamical system in its own right whose trajectory through state space

can be perturbed by the environment by way of the controller’s input signals it. If we call this

dynamical system C, then ct is the state vector of the controller at time t, Cinit is the set of possible

initial states c0and Cdi f f is the function that describes the way in which ct � 1 depends on ct and it.

Thus the equations

c0
� Cinit and ct � 1

� Cdi f f
� ct � it � (4.2)

completely describe how the controller’s state changes over time in response to input signals.

The environment

The environment is also regarded as a dynamical system in its own right whose trajectory through

state space can be perturbed by the output signals of the controller ot. If we call this dynamical

system E, then et is the state vector of the environment at time t, Einit is the set of possible initial

states e0 and Edi f f is the function that describes the way in which et � 1 depends on et and ot. Thus

the equations

e0
� Einit and et � 1

� Edi f f
� et � ot

� (4.3)

completely describe how the environment’s state changes over time in response to the controller’s

output signals.

Controller-environment interaction equations

In order to completely describe the way in which a particular controller-environment system

changes over time, we need to introduce two new functions that describe the way in which the

input signals it to the controller C are a function of the state of the environment E at time t,

and the way in which the output signals ot to the environment E are a function of the state of
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the controller C at time t. We will call these functions Eout and Cout respectively. These func-

tions effectively couple the dynamical system C to the dynamical system E resulting in a coupled

controller-environment dynamical system. Such a system shall be referred to throughout the rest

of the chapter using the notation C
�

E. Thus the equations that completely describe how the

dynamical system C
�

E changes over time are

c0
� Cinit e0

� Einit

ot
� Cout

� ct
� it � Eout

� et
�

ct � 1
� Cdi f f

� ct � it � et � 1
� Edi f f

� et � ot
�

(4.4)

Substituting the second line into the third line we define a trajectory TCE of C
�

E to be a sequence

of pairs of states � ci � ei 	 such that

c0
� Cinit e0

� Einit

ct � 1
� Cdi f f

� ct � Eout
� et
�	�

et � 1
� Edi f f

� et � Cout
� ct
�	�

(4.5)

In the next sections we will look at what it means for a controller to display a particular behaviour

within such a system, and go on to ask what the conditions are under which a controller that

displays a behaviour in one system will continue to display it in another.

4.2 What counts as an instance of a behaviour within a
controller-environment system?

The conceptual analysis of section 3.2 concluded that a controller could only be deemed to perform

a particular behaviour within a particular environment if:

1. The controller’s environment contains a suitable base set of features that may interact with
each other and react to the controller’s output in appropriate behaviour-defined ways.

2. The way in which the members of the base set do interact with each other and react to
the controller’s output over the course of a test period satisfies some suitable criterion for
behavioural success.

This section uses the formal notation developed so far in this chapter to express these two

conditions as formal logic statements that must be true of a controller-environment system if the

behaviour is to be performed.

If the ways in which the members of a base set of environmental features interact with each

other and react to controller output are solely responsible for the future states of that base set,

then the base set combined with the controller output forms a dynamical system of the same form

as in (4.1). To require that an environment contains a suitable base set of features that may in-

teract with each other and react to controller output in appropriate behaviour-defined ways (as

in the first condition listed above), therefore, is the same as requiring that the environment con-

tains a suitable base set of features that combine with controller output to form some appropriate

behaviour-defined dynamical system. If for a particular behaviour β, say, we refer to the set � Bi �

of all such appropriate behaviour-defined dynamical systems as βenv, then an environment sup-

ports the particular behaviour β if and only if we can pick out some base set of features of the

environment that may be combined with controller input to form one of the dynamical systems

B � βenv. Putting this more formally:
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Let Re be a reduction operator over state vector et of dynamical system E such that the
vector Re

�
et � consists of an ordered subset of the variables that make up et. Let βenv

� �
Bi �

be the set of dynamical systems B that specifies all the different ways in which a subset of
environmental features can interact with each other and react to controller output in order
to make possible the performance of a particular behaviour. Environment E can support the
behaviour if and only if

�
Re and

�
B � βenv s � t �

1 ��� e0
�

Einit Re
�
e0 � �

Binit

2 � Re
�
et � � bt �
Re

�
Edi f f

�
et � ot � � � B j

di f f

�
bt � ot �

(4.6)

If we can find a suitable Re such that (4.6) is satisfied, then whether or not the controller actually

does perform the behaviour within a given time interval is a function of how the variables that

Re picks out change over time. In other words, if TCE
� � c0 � e0 	 � � c1 � e1 	��	�	� � cτ � eτ 	 is a

trajectory of the system C
�

E, then whether this trajectory constitutes an instance of a particular

behaviour β, say, will be a behaviour defined function of the sequence Re
� e0

� � Re
� e1

� �	�	� � Re
� eτ �

obtained by applying Re to every et in TCE in turn. We will slightly bend the notation to refer to a

sequence of Re
� et
� obtained in this manner as Re

� TCE
� . We define the behaviour-defined function

βact , which returns true or false, to be such that for any particular trajectory TCE ,

βact
� Re

� TCE
� ��
 the controller exhibits behaviour β

To sum up:

An controller is said to reliably perform the behaviour β in C � E if and only if

�
Re s � t �

1 � � B � βenv s � t ��
a � � e0

�
Einit Re

�
e0 � �

Binit�
b � Re

�
et � � bt �

Re
�
Edi f f

�
et � ot � � � Bdi f f

�
bt � ot �

2 �
� TCE βact
�
Re

�
TCE � �

(4.7)

These two logic statements are the formal equivalents of the conditions for successful behaviour

put forward in section 3.2.

4.3 When does a controller’s behaviour in simulation imply
its behaviour in reality?

In this section we formally derive a minimal set of conditions that must be true of a controller and a

simulation if the controller’s reliable behaviour in simulation is to guarantee its reliable behaviour

in reality. The derivation precedes in three stages: from a completely hypothetical and idealized

simulation to one that is realizable. This section is the most mathematical of the chapter and as

such makes very little reference to real-world examples. In section 4.5 ways of turning theory into

practice are discussed.

In the first stage of the derivation we consider a real world controller-environment system

C
�

E and a simulation that consists of a single controller-environment system C
�

S. We show
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that if S is identical to E, then any behaviour β that the controller reliably performs in simulation,

it will also reliably perform in reality.

In the second stage of the derivation we again consider a real world controller-environment

system C
�

E and a simulation that consists of a single controller-environment system C
�

S.

In this scenario, however, all that E and S have in common is that they both support the same

behaviour β, and in so doing, both ‘track’ the same dynamical system B � βenv. We derive condi-

tions on the simulation and controller under which the fact that the controller reliably performs β
in simulation implies that it will reliably perform it in reality.

In the third stage we again consider a real world controller-environment system C
�

E, but

our simulation consists of a whole set of different controller-environment systems � C �
Si � . In

this scenario, all Si support behaviour β but only one Sj ��� Si � tracks the same dynamical system

B � βenv as E. We extend the conditions derived in the previous stage under which the fact that the

controller reliably performs β in simulation implies that it will reliably perform it in reality.

4.3.1 S � E

In this subsection we look at a hypothetical simulation consisting of a single controller-environment

system C
�

S that is identical to a real-world controller-environment interaction system C
�

E

and show that any behaviour that the controller reliably performs in C
�

S it will also reliably

perform in C
�

E.

From Section 4.1, we can write controller-environment interaction equations for two systems,

C
�

E and C
�

S. Note however that the controller dynamical systems C are the same for both

systems, so to avoid confusion the symbols for the state of each controller ct include superscript

symbols corresponding to the names of their environment dynamical systems.

cE
0
� Cinit e0

� Einit

cE
t � 1
� Cdi f f

� cE
t � Eout

� et
�	�

et � 1
� Edi f f

� et � Cout
� cE

t
�	�

(4.8)

and
cS

0
� Cinit s0

� Sinit

cS
t � 1
� Cdi f f

� cS
t � Sout

� st
�	�

st � 1
� Sdi f f

� st � Cout
� cS

t
�	�

(4.9)

Now if S � E then it is evident that every trajectory TCE of C
�

E is a possible trajectory TCS

of C
�

S. So if something is true of all possible trajectories TCS of C
�

S, it is also true of all

possible trajectories TCE of C
�

E. Therefore

βact
� R � TCS

� � � R � TCS
��� βact

� R � TCE
�	� � R � TCE

�

4.3.2 S and E track the same B � βenv

In this scenario, our simulation again consists of a single controller-environment system C
�

S and

a real-world controller-environment interaction system C
�

E. All that S and E have in common,

however, is that we can define reduction operators Rs and Re for both systems such that for some
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dynamical system B � βenv,

1 �
�

e0
� Einit Re

� e0
� � Binit

2 � Re
� et
� � bt

�

Re
� Edi f f

� et � ot
�	� � Bdi f f

� bt � ot
�

(4.10)

and
1 �

�
s0
� Sinit Rs

� s0
� � Binit

2 � Rs
� st
� � bt

�

Rs
� Sdi f f

� st � ot
�	� � Bdi f f

� bt � ot
�

(4.11)

This is a much looser constraint on the two controller-environment system than identity. In

particular it means that the simulation does not need to model the whole of E, which is the entire

universe when taken to its logical conclusion, but only the behaviourally relevant features. We

shall now derive two conditions on the simulation and controller that must be fulfilled if the fact

that the controller reliably performs β in simulation is to imply that it reliably performs β in reality.

Applying the relevant reduction operators to (4.8) and (4.9) we get

cE
0

� Cinit e0
� Einit

cE
t

�
1

� Cdi f f
�
cE

t � Eout
�
et � �

Re
�
et � 1 � � Re

�
Edi f f

�
et � Cout

�
cE

t � � �
and

cS
0

� Cinit s0
� Sinit

cS
t

�
1

� Cdi f f
�
cS

t � Sout
�
st � �

Rs
�
st

�
1 � � Rs

�
Sdi f f

�
st � Cout

�
cS

t � � �
And we can deduce from (4.10) and (4.11) that

Re
�
et � � Rs

�
st �

�
Re

�
Edi f f

�
et � ot � � �

Rs
�
Sdi f f

�
st � ot � � � ot

therefore if we introduce the condition on C and Sout that

Re
�
et � � Rs

�
st �

�
Cdi f f

�
ct � Eout

�
et � � �

Cdi f f
�
ct � Sout

�
st � � � ct

(4.12)

then
cE

t
� cS

t and Re
�
et � � Rs

�
st �

�
Cdi f f

�
cE

t � Eout
�
et � � �
Cdi f f

�
cS

t � Sout
�
st � �

Re
�
Edi f f

�
et � Cout

�
cE

t � � � �
Rs

�
Sdi f f

�
st � Cout

�
cS

t � � �
which is the same as saying that

cE
t

� cS
t and Re

�
et � � Rs

�
st �

�
cE

t
�

1
� cS

t
Re

�
et

�
1 � � Rs

�
st

�
1 �
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and if we introduce a further condition on S that

� e0
� Einit

�
s0

� Sinit

s � t � Re
�
e0 � � Rs

�
s0 � (4.13)

then we can say by induction that

� e0
� Einit

�
s0

� Sinit

s � t � Re
�
e0 � � Rs

�
s0 �

and
Re

�
et � � Rs

�
st � � t

In words, this means that provided condition (4.12) and (4.13) are true then every trajec-
tory R

�
TCE � of C � E is a possible trajectory R

�
TCS � of C � S. Therefore if βact

�
R

�
TCS � � for

all possible R
�
TCS � of C � S then βact

�
R

�
TCE � � for all possible R

�
TCE � of C � E.

At first sight, condition (4.12) seems contrived and unlikely. However, it is actually the same

conditions as that first described in section 3.2.1. In words, it is the condition that all aspects of

the input signals that can affect the controller’s internal state must derive exclusively, and in the

same way for both systems, from the base sets of environmental features that are picked out by Re

and Rs. In keeping with the terminology introduced in section 3.3.3, we shall refer to controllers

that fulfill this condition within an appropriate simulation as being base set exclusive.

Condition (4.13) is much easier to reach an intuitive understanding of: for every possible start

state in reality, there must be a possible start state in simulation which is identical with respect to

the base sets of environmental features that are picked out by Re and Rs.

4.3.3 Sj � � Si � and E track the same B � βenv

In practice, a simulation rarely models even a small portion of the real world 100% accurately.

The situation in which S and E track the same dynamical system is, therefore, for the most part

hypothetical. However, even if it is impossible to specify exactly a single S that tracks the same

dynamical system as the real world environment E, a simulation builder may be able to define a

set of dynamical systems � Si � (possibly by specifying parameter ranges rather than values) that

contains an Sj � � Si � that tracks the same dynamical system as the real world environment E. If

the controller then reliably performs behaviour β in all C
�

Sj, and condition (4.12) and (4.13) of

section 4.3.2 are fulfilled, then the controller will reliably perform behaviour β in reality.

More formally,

If the set
�
Si � is such that

�
Sj � � Si � s � t �

1 � Re
�
et � � Rs j

�
sj

t �
�

Re
�
Edi f f

�
et � ot � � �

Rs j
�
S j

di f f

�
sj

t � ot � � � ot

2 �	� e0
� Einit

�
sj

0
� S j

init

s � t � Re
�
e0 � � Rs j

�
sj

0 �

(4.14)
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and if the controller is base set exclusive for all
�
Si � such that

� Sj � �
Si �

Re
�
et � � Rs j

�
sj

t �
�

Cdi f f
�
ct � Eout

�
et � � �

Cdi f f
�
ct � S j

out
�
sj

t � � � ct

(4.15)

then the proof of section 4.3.2 goes through: every trajectory R
�
TCE � of C � E is a possible

trajectory R
�
TS jC � of C � Sj.

Therefore since for all possible Sj � � Si � , βact
�
R

�
TS jC � � for all possible R

�
TS jC � , we know

that βact
�
R

�
TCE � � for all possible R

�
TCE � of C � E.

Note that this requires that

�
Sj ��� Si � �

TS jC βact
� Rs j

� TS jC
� � (4.16)

which is a stronger condition on the controller’s behaviour than that it just reliably performs be-

haviour β in one single controller-environment system C
�

S. If condition (4.16) is fulfilled then

the controller must be able to perform behaviour β robustly with respect to variations in the way

in which the behaviourally relevant base set of environmental features changes over time and re-

sponds to output signals. This is the same condition as that first described in section 3.2.2. In

keeping with the terminology introduced in section 3.3.3, we say that a controller that fulfills

condition (4.16) is base set robust.

4.4 Minimal conditions for behavioural transfer

We are now in a position where we can sum up the last section and put forward a minimal set

of formal conditions on both controller and simulation that are minimally sufficient to ensure the

controller’s reliable behaviour in reality. The conditions have been roughly divided in half, two

for the controller C and two for the set of simulation environments � Si � .

Let β be a behaviour that defines a set βenv of dynamical systems B and a function βact

that returns true or false when applied to a sequence of the form Re
�
e0 � � Re

�
e1 � �
�
� � Re

�
eτ � .

Let C � E be a real-world controller-environment interaction system that supports be-
haviour β such that (4.6) is satisfied.

Let
�
C � Si � be a set of controller-environment interaction systems that together consti-

tute a simulation, and each of which supports behaviour β such that (4.6) is satisfied.
Now if �

Sj � � Si � s � t �

1 � � e0
� Einit

�
sj

0
� S j

init

s � t � Re
�
e0 � � Rs j

�
sj

0 �

2 � � � csj

t � sj
t

� �
TCS j s � t � βact

�
Rs j

�
TCS j � �

cE
t

� csj

t and Re
�
et � � Rsj

�
sj

t �
�
Re

�
Edi f f

�
et � Cout

�
cE

t � � � �
Rs j

�
S j

di f f

�
sj

t � Cout
�
csj

t � � �

(4.17)
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and
� Sj � � Si �

1 �	� TCS j βact
�
Rs j

�
TCS j � �

2 �	� � ct � sj
t

� � TCS j s � t � βact
�
Rs j

�
TCS j � �

Re
�
et � � Rs j

�
sj

t �
�

Cdi f f
�
ct � Eout

�
et � � �

Cdi f f
�
ct � S j

out
�
sj

t � �

(4.18)

then
� TCE βact

�
RE

�
TCE � �

Conditions (4.17.1) and (4.18.1) are versions of conditions (4.14.2) and (4.16) respectively.

Note however that conditions (4.17.2) and (4.18.2) are scoped differently to conditions (4.14.1)

and (4.15) from which they are respectively derived. The qualification

� � csj

t � sj
t 	 � TCS j s � t � βact

� Rs j
� TCS j

�	�

means that these conditions are only required to hold true for those trajectories of the simulation

that constitute instances of the controller actually performing behaviour β. But, as explained less

formally in section 3.3.2, this is all we need. If condition (4.18.1) is true, then this will be the only

sort of trajectory that the simulation is capable of anyway.

4.5 Turning theory into practice

This section compares how these logically derived conditions on crossing the reality gap fit in with

the practical methodology for building minimal simulations put forward in chapter 3. Specifically

it discusses whether minimal simulations built according to this methodology fulfill conditions

4.17.1 and 4.17.2 above, and also whether controllers evolved in such minimal simulation fulfill

conditions 4.18.1 and 4.18.2 above. Each is examined in turn.

In order to fulfill conditions 4.17.1 and 4.17.2 a simulation must model not one but a set of

environments. At least one of these environments, furthermore, must contain a base set of envi-

ronmental variables that interact with each other and react to controller output during successful

behaviour in exactly the same way as the real-world base set. In practice, however, these conditions

can rarely be completely fulfilled. Minimal Simulations do indeed model a set of environments

whose dynamics are designed to ‘contain’ that of the real thing due to the way in which the base

set aspects of the simulation must be varied from trial to trial (see section 3.4.2). However, most

modelling of a real-world dynamical system will involve a simplification, and this is a difference

which no amount of parameter-twiddling will render more complex. It is therefore extremely

unlikely that the dynamics of any single member of this set will match those of the real world.

Nevertheless, even if the simulation involves a simplified model, if a controller performs the de-

sired behaviour in every environment Sj instantiated by this model (i.e. fulfills condition 4.18.1),

then it is robust to small changes in the underlying dynamics of its world. If the set � Si � is large

and varied enough, therefore, it is extremely unlikely that the mechanisms employed by reliably

fit controllers to cope with all the various � C �
Si � will not also be sufficient to cope with the
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differences between the closest C
�

Sj and C
�

E (for a discussion of what these mechanisms

might look like see section 3.2.1).

It should also be noted that condition 4.17.2 corresponds to the arguments put forwards in

section 3.3.2: we do not need to build the simulation so that some Sj � � Si � tracks the same

B � βenv as E for all trajectories of the two systems. The dynamics need only be the same or

similar for those states of the simulation that occur when the controller is actually performing

behaviour β.

In order to fulfill condition 4.18.1, controllers must be able to reliably perform the behaviour in

question in all of the environments that can be instantiated by the simulation. In order to be reliably

fit (from the definition in section 3.4.1), a controller must achieve high fitness on all of the trials

that make up a fitness evaluation. Thus controllers that evolve to be reliably fit fulfill something

close to condition 4.18.1 since each trial instantiates a different environment (see section 3.4.2).

The difference is that a controller may only be tested on a finite number of environments in a

single fitness evaluation, and we can not be sure therefore that it will be able to reliably perform the

behaviour in question in all of the environments that can be instantiated by the minimal simulation.

However, if a fitness evaluation contains a sufficient number of trials, then a controller which

reliably scores high fitness on all such trials is robust to change in the base set aspects of its

environment, even if we cannot be sure that it is 100% robust to all types of change. Furthermore,

in order to propagate through a population of evolving individuals, and persist generation after

generation within that population, evolving controllers (and their descendents) must score highly

in many complete fitness evaluations. We may therefore be extremely confident that controllers

which evolve to be reliably fit within a minimal simulation will be robust enough to variation in

the base set aspects that it will also be robust to the variation between these aspects and their

real-world counterparts.

In order for a controller to fulfill condition 4.18.2, two things need to be true: at least some

of the processes by which the real-world base set gives rise to aspects of the controller‘s input

must be modelled 100% accurately in the simulation, and the controller’s behaviour must depend

exclusively on these aspects and these aspects alone. In a minimal simulation, of course, such

processes can not be modelled 100% accurately, and the fact that this is not taken into account

by condition 4.18.2 is a shortcoming of the formalism; in a minimal simulation, the modelled

processes by which the members of the base set affect controller input are treated like any other

base set aspects of the simulation and varied from trial to trial (see section 3.3.3). The second part

of this condition corresponds precisely to the condition of being base set exclusive described in

section 3.3.3. Since the implementation aspects of controller input are randomly varied from trial

to trial in a minimal simulation in a way that makes them completely un-reliable (as prescribed by

section 3.4.1), reliably fit controllers are forced to be base set exclusive and thus, as far as possible,

to fulfill condition 4.18.2.

Ideally, the conditions of section 4.4 could be applied in practice. This would involve iden-

tifying those features of a particular controller, simulation and real-world setup that correspond

to the terms of equations 4.17.1, 4.17.2, 4.18.1 and 4.18.2, and testing empirically to see if the

relationships between them correspond to the relationships described by the equations. The less

formal conditions of chapter 3 could therefore be thrown away and we would be left with precise
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conditions whose satisfaction would logically guarantee the successful transferrance of controllers

from simulation into reality.

Unfortunately this can not be done in practice for two reasons:

� Many of the terms of equations 4.17.1, 4.17.2, 4.18.1 and 4.18.2 are defined with reference
to the dynamical system E which, in principle, describes the entire real world. In order
to relate these terms to features of a particular real-world situation, however, we must first
agree on a mapping between the variables of E and the features of the real world. Although
such a mapping is possible ‘in principle’ it is not possible in practice since e.g. we would
have to account for every feature of the entire real world to avoid performing an ad-hoc
reduction before we mean to.

� The logic of the conditions of section 4.4 employs universal quantifiers and there are only
finite resources at our disposal for evaluation purposes. For example in order to test that
equation 4.18.1 is true, we would have to test that every possible trajectory of the controller
within the simulation constituted an instance of the behaviour, and while this may not be an
infinite number it is large enough to be impractical.

Thus we are left with the conclusion that the formalism can only be applied in principle and

not in practice. Does this mean that it serves or has served no real purpose? Answer no:

� The conditions of section 4.4 correspond closely to those of chapter 3. The assumptions
made in each case, and the way in which the arguments progress, can also be seen to corre-
spond closely. This provides good evidence for the logical soundness of the arguments that
led to the conditions for successful behaviour transferrance put forward in chapter 3.

� The development of the formalism, and the derivation of the conditions of section 4.4, ne-
cessitated a deep examination of the issues and led to insights into the problem which may
not have arisen otherwise. There is no doubt that chapter 3 would have looked very different
if the work put forward in this chapter had not been undertaken.

Thus the work presented in this chapter backs up and contributed to the less formal theory and

argument of chapter 3, and for these reasons it is worth including. However, it cannot be applied

directly in practice due to the reasons given above. This does not matter, provided we are prepared

to admit that the general theory and methodology of chapter 3 does not guarantee, in any logically

strong sense, that controllers which evolve to be reliably fit within a minimal simulation will trans-

fer into reality. Careful thought as to the number of trials that make up a fitness evaluation and the

extent to which the base set aspects are varied between trials makes it extremely unlikely that they

won’t transfer, however, and this is good enough for practical purposes. As empirical evidence of

this, chapters 5, 6, 7 and 8 provide practical examples of minimal simulations and detail experi-

ments in which controllers were evolved using these simulations and transferred successfully onto

real robots.



Chapter 5

A minimal simulation of a Khepera robot

Figure 5.1: The Khepera robot.

4

0 5

1
32

67

Figure 5.2: A plan of the Khepera robot showing

the positions and numbers of the infra red sensors

and the two wheels.

This chapter describes experiments in which neural network controllers were evolved for a Khep-

era robot using a minimal simulation. This robot, shown in figure 5.1, is 5.8 cm in diameter and

about 3 cm high. It has eight infra red sensors, which respond to nearby objects, placed around

the robot body as shown in figure 5.2. In a different mode these sensors may also be used to detect

ambient light levels in the vicinity of the robot with very rough directional sensitivity (K-Team

1993).

Several different groups (Jakobi, Husbands, and Harvey 1995; Miglino, Lund, and Nolfi 1995;

Michel 1995) have built Khepera simulators on which they have successfully evolved controllers

that cross the reality gap. These simulators, however, were built to faithfully reproduce the real-

world as accurately as possible, so seeing whether an inaccurate minimal simulation of a Khepera

robot is equally capable of evolving controllers that cross the reality gap provides a good test of the

theory and methodology of chapter 3.3. Specifically, experiments involving a minimal simulation

of a Khepera that includes noise over and above that present in reality (as prescribed in section 3.4)



Chapter 5. A minimal simulation of a Khepera robot 62

Figure 5.3: The task in the real world.

can be directly contrasted with the experiments reported in (Jakobi, Husbands, and Harvey 1995).

Here controllers failed to download from a simulation of a Khepera robot into reality when too

much (or too little) noise was present in the simulation. As argued in section 3.4, however, it was

because this noise was reliably present that controllers could evolve to depend on it to perform

their behaviours. The solution proposed in section 3.4 was to make each fitness evaluation the

result of a number of individual fitness trials and to vary the amount and character of noise from

trial to trial. This ensures that any noise is present in ways that controllers are extremely unlikely

to evolve to rely on to perform their behaviours since the noise is itself unreliable. The experiments

reported in this chapter represent a good test of this proposed solution.

The aim of the experiments was to evolve a behaviour for the Khepera robot that was at least

one step up from the simple reactive behaviours that have been prevalent in the Evolutionary

Robotics literature so far. The behaviour that was decided on is shown diagrammatically in fig-

ure 5.3. As a Khepera robot begins to negotiate a T-maze, it passes through a beam of light shining

from one of the two sides, chosen at random. To score maximum fitness points the control archi-

tecture must ‘remember’ on which side of the corridor the light went on and, on reaching the

junction, turn down the corresponding arm of the T-maze. This behaviour involves several ele-

ments: not only must controllers guide the robot down the corridors without touching the sides

and negotiate the junction at the end of the first corridor (simple reactive behaviours both), but

they must also involve some internal state that allows them to ‘remember’ which side the lamp

was on so that they can take the correct turning at the junction.

5.1 The minimal simulation

The key observation upon which the minimal simulation was based was that, with respect to the

infra-red sensors of a Khepera which have a maximum range of only about 8cm, a T-maze was

identical to an infinite corridor almost everywhere. Where a T-maze differed from a corridor,

at the T-junction, the interactions between the sensors and the corridor walls could be treated as

implementation aspects of the simulation, and randomly varied from trial to trial according to the

methodology laid out in section 4.15. Reliably fit controllers could therefore be forced to use
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dx

dy
θ

Figure 5.4: A look up table holds horizontal and vertical increment values for 36 different orientation

values and an average speed of 1.

strategies that depended on the interactions between the infra-red sensors and the sections of the

walls of the T-maze that could be regarded as straight and continuous corridor walls, and those

interactions alone. In this way, the infra-red sensor model employed by the minimal simulation

was constructed from two different phases of a simple continuous corridor model. Below, the step-

by-step framework of section 3.5 is used to explain how the minimal simulation was constructed.

Precisely define the behaviour

As a Khepera robot begins to negotiate a T-maze, it passes through a beam of light shining from

one of the two sides, chosen at random. To score maximum fitness points the control architecture

must ‘remember’ on which side of the corridor the light went on and, on reaching the junction,

turn down the corresponding arm of the T-maze.

Identify the real-world base set

Whether or not the controller performs the behaviour is a function of the robot’s path through the

corridor system in relation to the side the light was on. The features of the world that can affect this

path are those that make up the causal pathway from controller output to movement of the robot

within its environment. These include the way in which controller output affects the movement of

the wheels, and the way in which wheel motion affects the position of the robot within the corridor

system.

Build a model of the way in which the members of the base set interact with each other and

react to controller output (when the robot is performing the behaviour).

The simulation was updated the equivalent of ten times a second. Figure 5.4 shows how the

new position of the virtual Khepera within its environment was calculated at each iteration. The

orientation was used as an index to a look-up-table with 36 pairs of values: horizontal and vertical

increments for a Khepera travelling at a speed of 1cm per second. To work out its new position,
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phase 2

phase 1

noise zone

light zone

Figure 5.5: Two phases of a simple infinite corridor model

provide a rough simulation of how the infra red sensors re-

spond in a T-maze environment.

20 cm

Figure 5.6: A look up table contains the

perpendicular distances to the walls of a

20cm wide corridor for all eight sensors

in ten possible orientations.

the values returned from this look up table were multiplied by the average wheel speed in cm per

second. The speed of each wheel was calculated directly from multiplying the motor signals by the

constant 0.8 cm per motor unit per second. The change in orientation at each iteration was equal

to the difference between the distances the two wheels moved divided by the radius of the robot

(about 5.2cm). There was no allowance for momentum and the noise inherent in the real-world

situation was not modelled.

Build a model of (enough of) the way in which the members of the base set affect

controller input (when the robot is performing the behaviour).

Figure 5.5 shows how the sensor values for the simulated robot were calculated in two separate

phases in the simulation. In the first phase, when the robot was travelling down the first arm of the

T-maze, the sensors were calculated as if the virtual robot was travelling down a simple infinite

corridor. When the robot reached the junction of the T-maze the way in which the sensors were

calculated suddenly changed for phase 2: as if the robot was suddenly popped out of the first

corridor, rotated through ninety degrees, and popped into the middle of a second corridor.

Now although the way in which the simulated sensors returned values in this twin-corridor

set-up varies significantly from the way in which the sensors return values in a real T-maze, the

simulation had enough in common that evolving control architectures which were prohibited from

relying on any of the differences were still able to sense enough of their environment to perform

the task successfully. In particular, the robot-environment interactions governing the way in which

the robot, travelling down a straight corridor, is confronted with a wall straight across its path and

a second corridor stretching off to either side were all modelled.

Calculating the infra-red values as if the Khepera was within an infinite corridor proceeded in

three stages. Firstly, the robot’s orientation was used to generate rough distance-to-wall metrics

for each sensor, as if the robot was in the centre of a 20cm wide infinite corridor. Secondly, these

values were scaled according to the actual width of the corridor in the simulation, and the distance

from the robot to each wall. And thirdly, the scaled distance-to-wall metrics were used to calculate
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infra red sensor values by way of a simple linear relationship. This process is described in more

detail below.

Figure 5.6 demonstrates what the values held in the infra-red look-up-table were based upon.

There were 10 sets of 8 values, each set corresponding to one of 10 different robot orientations

from facing straight down the corridor to perpendicularly facing one of the walls. The values

themselves were based on the distances from the centre of the robot (which is 10cm away from

each wall), along the lines of the corresponding sensors, to the walls of an infinitely long corridor.

However, they were in fact always slightly shorter than the line of sight distance to the wall in

order to account (in a very approximate way) for the fact that the infra-red sensors of a Khepera

are sensitive over a whole arc rather than just along the direct line of sight extending out from each

sensor (K-Team 1993). If the distance from the centre of the robot, along the line of a sensor, to

a wall of the corridor was d, then the warped distance value wdv stored in the look-up-table was

given by:

wdv � 10
� � d � 10 � �

3

The constant 3 in the denominator was decided upon fairly arbitrarily and without accurate

measurement purely on the basis that it gives the equation roughly the right properties.

The minimum possible value stored in the table, therefore, for a sensor directly facing the

wall, was 10cm. The maximum possible value, for a sensor directly facing down the corridor, was

infinity. Now although there were only 10 sets of values stored in the table (one set of 8 for each

multiple of 10 degrees between 0 and 90 degrees inclusive), it was a simple matter to calculate sets

of values for any other multiple of 10 degrees. This was done by taking the particular orientation

angle in question and rotating it by the appropriate multiple of 90 degrees until it lay in the correct

quadrant. The look-up-table was then used to ascertain a set of values and these were reflected

across the mid-line of the robot if necessary (i.e. if the angle was between 90 and 180 or between

270 and 360). If the robot was in the centre of a 20cm wide, infinitely long corridor, therefore,

warped distance values could be calculated for any sensor at any orientation.

In practice, the perpendicular distance from the centre of the robot to a particular wall of

the corridor was variable. Values were scaled appropriately, however, by multiplying all values

returned from the look-up-table (for sensors that pointed at that particular wall) by the fraction

attained by dividing the actual distance to the wall by 10cm. For example, if the distance from

the robot to a wall was actually 5cm instead of 10cm, then look-up-table values for sensors that

pointed at that wall were halved. In this way, the 80 values of the look-up-table were sufficient to

find the approximate distance, warped according to the equation given above, from the centre of

the robot in any position and any orientation, along the line of any sensor, to the wall of an infinite

corridor of any width.

Having ascertained warped distance values wdv for each sensor, the actual value that each

simulated sensor returned, V , was given by a simple linear function:

V �����
��

0 wdv 	 a

1024 � � 7 � wdv � �
2 a 	 wdv 	 b

1024 b 	 wdv

(5.1)
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where a and b were the maximum and minimum extent, respectively, of the linear part of

the response function. This meant that a sensor would saturate at maximum value if its warped

distance value was less than b (randomly varied around an average of 5, see below on ensuring

controllers are base set robust), would return zero if its warped distance value was greater than a

(randomly varied around an average of 9, see below on ensuring controllers are base set robust),

and would respond linearly in between.

A simple multiplicative congruential random number generator (Press, Vetterling, Teukolsky,

and Flannery 1992) was used to generate uniformly distributed random deviates in the range
�

50.

These were added to returned sensor values at each iteration. In addition, the lowest value an

infra-red sensor could return was a random background value between 0 and 20. These noise

levels roughly approximate the levels observed in the real world, and as such were as much a part

of the robot-environment interaction model as any other aspect.

The way in which ambient light sensors respond to bright versus ambient light levels was

modelled by a single line of code. When the robot entered a particular section of the corridor

in phase 1 (that was randomly predefined in terms of length and position relative to the starting

point), the values returned by the ambient light sensors on one side of the robot dropped from their

normal background value of around 450 to a value of around 100, as if they had been illuminated

by a bright light. When the robot left the special light zone the values returned to their background

levels. Whether the right side of the robot or the left side was illuminated depended on which

side of the corridor the light source was placed, and which of the two directions directly down the

corridor the robot was closest to pointing. Random deviates in the range
�

50 were added to each

ambient light sensor value at each iteration.

Design a suitable fitness test.

The fitness function returned the average value scored by an individual in a total of ten fitness

trials, each lasting the equivalent of fifteen seconds. For half of these trials the light signal came

from the right hand side of the corridor and for the other half it came from the left. At the end of

each trial, the fitness value was calculated from the equation

T �
�

d1
�

d2
�

100 right way at lights

d1
�

d2 wrong way at lights

where d1 was the distance that the virtual robot had travelled down the first corridor during the

trial, d2 was the distance it had travelled down the second corridor, and the bonus it got for going

the right way at the T-junction was 100.

Ensure that evolving controllers are base set exclusive

The major differences between the simulation and the real world T-maze, as far as the sensors

were concerned, all occurred around the T-junction. When the virtual Khepera suddenly appeared

in the second corridor facing the wall at the start of phase 2, there was a continuous wall directly

behind it (see figure 5.5). In reality, when the Khepera was confronted with a wall across its path

and forced to make its decision on which way to turn, there was a complicated junction in the wall

behind it (see figure 5.3). Because of this, the simulated robot’s infra red sensor interactions with
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the simulated back wall, in an area corresponding to where the corridors meet in reality and about

5cm to either side, were regarded as implementation aspects. If this section of the wall fell within

range of the infra-red sensors then how these sensors reacted varied randomly from trial to trial -

sometimes they returned maximum values, sometimes low values, and sometimes totally random

values. In this way reliably fit controllers were forced to employ strategies that, at the decision

point, were oblivious to this difference between the simulation and reality, relying only on the fact

that there was a straight continuous wall in front of them and space to either side.

Ensure that evolving controllers are base set robust

To ensure that reliably fit controllers were base set robust many of the base set aspects of the

simulation were varied slightly from trial to trial. The amount by which each parameter was varied

was judged from a knowledge of the inaccuracy of the model to be large enough that controllers

would evolve to be base set robust, but not so large that controllers would fail to evolve to be

reliably fit in the first place. These included:

� The width of the two corridors: between 13cm and 23cm.

� The exact starting orientation of the robot: between
�

22 � 5 degrees of facing straight down
the corridor.

� The length of the illuminated section of the corridor: between 2cm and 12cm.

� The total length of the corridor in phase 1: between 40cm and 60cm

� Random offsets of between
�

1cm per second were generated at the beginning of each trial,
and added to wheel-speeds during position update calculations.

� The constants a and b of equation 5.1 were randomly set at the beginning of each trial, the
former in the range 7.1 to 10.1 and the latter in the range 4.1 to 6.1.

In this way reliably fit controllers were forced to employ non-brittle strategies that could per-

form the behaviour in a whole range of different shaped T-maze environments and from a whole

range of starting orientations. They were also forced to cope with robots with different motor and

sensor characteristics.

5.2 The evolutionary machinery

Having explained the minimal simulation and the evaluation process, this section describes all the

other components of the evolutionary machinery used to produce controllers that could success-

fully perform the T-maze task. It begins with a description of the type of neural networks that were

used, and goes on to explain the encoding scheme, genetic algorithm and genetic operators.

Neural networks

Evolving controllers were recurrent networks of 10 neurons. The number of links to a neuron

from other neurons, up to a maximum of 3, were genetically determined (see below). To update

the state of the network at each iteration, the input activity A j of each of the j � 1 to 10 neurons

in the network was calculated according to the simple weighted sum of equation 2.1

A j
� ∑Oiwi j

�
I j
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Figure 5.7: A typical evolved network. The solid arrows are excitatory links and the dashed arrows are

inhibitory links; exact weight values are not shown. Threshold values appear next to each neuron.

where Oi was the output from the ith neuron, wi j was the weight on the connection from the ith
neuron to the jth neuron, and I j was any external input to the jth neuron from outside the network.

After the input activity of every neuron in the network had been calculated, the output O j of each

of the j � 1 to 10 neurons in the network was calculated. If the jth unit was not a motor neuron

then its output O j was calculated according to equation 2.3

O j
�
�

0 A j � t j

1 A j � t j

and if the jth unit was a motor neuron then its output O j was calculated according to equation 2.4

O j
�����
��
� 1 A j � t j � 1

A j � t j t j � 1 � A j � t j
�

1

1 A j 	 t j
�

1

where, in both cases, t j was a threshold constant associated with the jth neuron. For all neurons,

threshold constants were real numbers in the range
�

1 � 0 and weights on links were real numbers

in the range
�

2 � 0.

Figure 5.7, a diagram of a typical evolved neural network, shows how sensor value inputs were

applied to networks, and how motor values were output. All sensor values were normalised in the

range 0 to 1 and motor outputs were multiplied by a factor of 10 to give motor signals in the range
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�
8cm per second. The network, sensor values and motor outputs (in fact the entire simulation)

were updated the equivalent of 10 times a second.

Encoding scheme

A direct encoding scheme was used with a simple one to one mapping between genotype and

phenotype. Since the task was bilaterally symmetrical, evolving networks were also forced to be

bilaterally symmetrical by encoding the parameters for only half of the network and reflecting it

across the midline1. Since each network contained ten neurons, therefore, each genotype consisted

of only 5 fields of 28 bits, one for each neuron of the left hand side of the network. The neurons on

the right hand side of the network were the exact mirror image of those on the left hand side. Each

gene was itself divided into fields. The first 4 bits of each gene, a binary number between 0 and 16,

defined the threshold of that neuron by normalising between
�

1. The next 3 sets of 8 bits defined

the three possible links to that neuron from other neurons in the network: the first 4 ascribing one

of 16 possible values for the weight of the link between
�

2 and the next 4 bits defining which of

16 neurons the link was from. Because there were only 10 neurons in total in the network, if a

link indexed a non-existent neuron, then it did not connect, thus placing the number of links to a

neuron under genetic control.

Genetic algorithm and genetic operators

The genetic algorithm was a steady-state distributed genetic algorithm (Collins and Jefferson

1991) with a population of 100 individuals arranged on a virtual 10 by 10 grid. At each iter-

ation, a random location was chosen on the grid and a breeding pool constructed from the nine

individuals of the 3 by 3 square centred on that location. Two probabilistically fit parents were cho-

sen from this breeding pool according to a linear rank-based selection procedure, and an offspring

constructed by a process of crossover and mutation. This offspring then replaced a probabilisti-

cally unfit member of the same breeding pool according to an inverse linear rank-based selection

procedure. Single point crossover was applied with probability 0.7 and the expected number of

mutations per genotype, according to a Poisson distribution, was 2. At each offspring event, not

only was the offspring’s fitness evaluated, but both parents were re-evaluated as well.

5.3 Experimental results

Figure 5.7 shows a typical example of the sort of neural network that consistently evolved within

around 1000 generations (where a generation was taken to be 100 offspring events). This is the

simulated equivalent of 300 � 15 � 10 � 100 � 45000000 seconds or over 17 months of continuous

real-world evolution, and takes around 4 hours to run as a single user on a SPARC Ultra. The

network reliably achieved near-optimal fitness within the simulation. In order to see whether it

would successfully transfer across the reality gap, the network was downloaded onto a Khepera

robot and tested as to its ability to perform the task in the real world. Sixty different trials were

performed one after another, twenty in each of three different widths of corridors, with the light on

the left for ten trials and the light on the right for the other ten. The consequent robot behaviours

1For a justification of why symmetry was enforced rather than allowed to evolve, see section 2.3.
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Figure 5.8: These six pictures together show the paths taken by a Khepera robot in sixty consecutive trials

of the control architecture shown in figure 5.7. These sixty trials were performed in consecutive batches of

ten, and each picture shows ten trials for a particular corridor width and torch orientation. The pictures

were created using an overhead camera, a videodisc, and simple computer vision techniques to find the

position of the robot in each frame.
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were filmed from above so that the exact path taken by the Khepera on each trial could be extracted

using basic image-processing techniques and overlayed upon aerial views of the set-up. The results

of this process are the six images of Figure 5.8.

In the top pair of images, the corridor is only 11cm wide and the paths taken by the Khepera

on all twenty occasions are tightly constrained. In the second pair of images, where the corridor

is 18cm wide, and especially in the bottom pair of images, where the corridor is 23cm wide, the

paths taken by the Khepera are less constrained. The Khepera still turns the correct way at the

T-junction, however, even though on several occasions it must turn through greater than ninety

degrees in order to do so. Note that the path taken in most cases was near-optimal, and that in

every case the task was performed satisfactorily: the criterion put forward in section 3.2 for a

control architecture to successfully transfer from simulation to reality.

5.4 Comments

The experiments reported in this chapter represented the first real test for the theory and method-

ology of minimal simulations laid out in chapter 3.3. As such the minimal simulation could, in

retrospect, have been made simpler. In particular, the model of how the infra-red sensors returned

values within an infinite corridor could have been made both faster-running and easier to construct

by using a few more look-up-tables in place of the somewhat arbitrary mathematical model.

The infra-red sensor model does, however, provide a convincing demonstration of a point first

made in section 3.4.1: when building a model of the base set aspects of real-world controller input,

it is not necessary to model these aspects for every possible position of the robot within its environ-

ment. Put simply, if the way in which robot sensors respond in some areas of the environment is

harder to model than in other areas, then we may treat sensor responses as implementation aspects

in the harder-to-model areas, and only allow evolving controllers to rely on how they respond in

the easy-to-model areas. This makes the job of building a simulation much easier since it can

vastly reduce the amount of complex modelling that needs to be done. However, it is important

to make sure that the base set aspects of controller input within the simulation are comprehensive

enough to allow reliably fit controllers to evolve. If we are not careful we may effectively ex-

clude so many real-world features from the simulation that what we are left with is insufficient for

successful behaviour.



Chapter 6

A minimal simulation of the gantry robot

Figure 6.1: The gantry arena, with obstacles. Figure 6.2: A close up of the gantry robot.

This section describes experiments in which neural network controllers were evolved for the gantry

robot. The gantry, shown in fig 6.1, was developed for research into the evolution of visually

guided behaviours, and has been specifically designed so that control architectures can be tested

automatically and safely in a highly controlled manner (Husbands, Harvey, Jakobi, Thompson,

and Cliff 1997). It is best thought of as a hardware simulation of a small wheeled mobile robot

with a camera placed on top.

Figure 6.2 shows a close-up of the robot. A camera points vertically downwards at a 45o

inclined mirror to return a view from the robot looking straight out horizontally at the environment.

The mirror is attached to a stepper motor that enables it to rotate around the vertical axis under

computer control and a dedicated vision PC then rotates the image array in software so that ‘down’

in the picture corresponds to ‘down’ in reality. The image array available for use by evolving

control architectures is therefore equivalent to that produced by a camera pointing outwards along

the horizontal component of the mirror’s orientation. The gantry frame from which the robot is

suspended is connected to two further stepper motors that together allow the entire robot assembly

to move in any horizontal direction within a rectangular arena (see figure 6.1).
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All three stepper motors are controlled by a single board computer (SBC) that is controlled,

in turn, by a dedicated brain PC running the control architecture software. The brain PC sends

commands to the SBC in the form of left and right wheel speeds, as if the gantry were a wheeled

mobile robot. The SBC then calculates and issues stepper motor pulses so that the gantry moves

in the appropriate fashion. From the point of view of control architectures running on the brain

PC, therefore, the gantry robot behaves exactly as a small wheeled mobile robot, controlled via

the SBC, with a camera on top whose image is accessed via the vision PC.

Harvey, Husbands, and Cliff (1994) report experiments in which both neural network control

architectures and the visual morphologies of their inputs were evolved side by side to perform

a simple shape recognition task: discriminating a triangle from a square and guiding the robot

towards it. After several generations, which took approximately 36 hours to perform in the real

world, control architectures evolved that were able to perform the task. These controllers were

around 80% reliable within certain constrained sets of lighting conditions (Husbands 1997): if the

blinds of the laboratory were opened during the day, or if the overhead lighting was not on in the

right way, they failed. In order to remedy this sensitivity to differing lighting conditions a set of

lamps were strung up above the gantry, each turning on and off at different frequencies, to provide

extreme real-world noise for evolving controllers to cope with. The previously fit controllers failed

completely when the ‘disco lights’, as they are known at Sussex, were switched on. As yet, no

new controllers have been evolved on the gantry using real-world evolution that are able to cope

with the extra uncertainty that these lights provide. Evolving reliably fit control architectures in a

minimal simulation, therefore, and seeing whether they were able to perform the task satisfactorily

in the real world environment with the ‘disco lights’ switched on, provides a good test of the theory

and methodology put forward in chapter 3.

6.1 The minimal simulation

In the experiments reported in (Harvey, Husbands, and Cliff 1994) both the neural network control

architectures and the morphology of their visual inputs were genetically determined. In the sim-

ulation experiments reported here, a different type of control architecture was used (see below),

although both neural networks and the visual morphology of their inputs were again genetically

determined. The main difference between the two, as far as a simulation was concerned, is that in

(Harvey, Husbands, and Cliff 1994), each visual input to the neural network consisted of the av-

erage grey-level value of a genetically specified circular sub-region of the camera image, whereas

in the experiments reported here, each visual input consisted of the grey-level value of exactly one

genetically specified pixel of the camera image (Figure 6.4). In fact, these are not so different with

respect to a simulation, since the average value of each circular visual field in (Harvey, Husbands,

and Cliff 1994) was just the average value of 25 randomly sampled pixels from within the field. A

simulation of either, therefore, must contain a model of how specific pixels of the camera image

acquired values in response to the orientation and position of the robot within its environment.

Below, the step-by-step framework of section 3.5 is used to explain how the minimal simulation

was constructed.
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Figure 6.3: A diagrammatic view of the gantry arena from above showing the four possible starting posi-

tions of the gantry robot. The dashed line in front of the triangle marks the area that the gantry must reach

in order for a trial to count as a success for testing purposes.

Precisely define the behaviour

The environment consisted of a rectangular arena, 150cm by 100cm, with 22.5cm high walls

painted black. Stuck onto one of the long walls were a near-square (20cm wide by 22.5cm high)

and an equilateral triangle (20cm wide by 22.5cm high), both of which were cut from white paper.

Starting from each of four different positions and orientations (see figure 6.3), evolving individuals

had to steer the gantry robot towards the triangle while ignoring the square.

Identify the real-world base set

Whether or not the controller performs the behaviour is a function of the robots path within the

arena and with respect to the triangle. The features of the world that can affect this path are

those that make up the causal pathway from controller output to movement of the robot within

its environment. These include the way in which controller output affects the movement of the

wheels, and the way in which wheel motion affects the position of the robot within the rectangular

arena and with respect to the triangle.

Build a model of the way in which the members of the base set interact with each other and

react to controller output (when the robot is performing the behaviour).

The model of the way in which the gantry robot moves in response to motor signals was adapted

from the movement model for the Khepera robot explained in Chapter 5. The simulation was

again updated at a rate equivalent to ten times a second and the same look-up-table was used but

with different constants to update speed, orientation and position variables at each iteration of the

simulation. The radius of the virtual robot (that the gantry robot is a hardware simulation of) is

15cm and the constant multiplied by the motor signals to give the current speed of the robot is

4.17 cm per motor unit per second. In addition there was also a momentum term, m, such that at
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a

c

b

Figure 6.4: A typical image returned by the camera of the gantry robot. The robot is facing the corner of

the arena and the triangle can be seen on the left. The white circles labelled a, b and c are examples of

pixels that project onto the triangle, ceiling and wall respectively. Pixel a will return a value between 14

and 15, pixel b will return a value between 0 and 15 and pixel c will return a value between 0 and 13. In the

experiments reported below, each visual input was made up of exactly one pixel whose coordinates within

the camera image was genetically determined.

each iteration, the increment δv to each wheel speed v in terms of the required wheel speed u was:

δv � u � v
m

(6.1)

This momentum term was added for the simple reason that in the case of the gantry, momentum

plays a significant role since it is a heavy robot which takes time to slow down and speed up. In

the case of the Khepera, the robot is small enough and light enough that momentum effects can

be regarded as modelling inaccuracies, and can be coped with by reliably fit control architectures

that are base set robust (see 3.4.2). At every iteration, a random deviate in the range
�

0 � 2 cm per

second was added to each wheel speed to approximate the noise inherent in the way the gantry

robot moves.

Build a model of (enough of) the way in which the members of the base set affect

controller input (when the robot is performing the behaviour).

Under the ‘disco lights’ suspended above the gantry, the values returned by pixels of the camera-

image vary widely both with respect to time, and with respect to the direction of the camera. Even

if we know the exact location within the arena that a particular pixel projects onto, there is not that

much that can be said about exactly what the value of that pixel will be. However, there are a few

general things that hold true except in exceptional circumstances: if a pixel projects onto a wall

but not onto a shape then it returns a value within the range 0 to 13, if a pixel projects onto either

the triangle or the square then it returns a value between 14 and 15, and if a pixel projects onto

either the floor or the ceiling of the arena it returns a value between 0 and 15. Since these facts



Chapter 6. A minimal simulation of the gantry robot 76

path of pixel 
projection

Pzd

mirror

floor

wall

100cm

y

x

d

Px

mirror
projection

path of pixel 

arena walls

θ
ψ19.5cm

Figure 6.5: The left-hand picture shows the gantry arena as seen from above; if the horizontal angle at

which a pixel projects from the mirror onto the back wall is θ, then Px � x
� 100 � y

tanθ and d � 100 � y
sinθ . The

right-hand picture shows a cross-section of the gantry arena; if the vertical angle at which a pixel projects

from the mirror onto a wall is ψ, then Py � d � tanψ �
19 � 5.

about pixel values within the ‘disco light’ environment are almost always the case, and since they

are enough to distinguish the white triangle and square from the black walls of the arena (for those

pixels that project onto a wall of the arena), they were all we needed to model.

To work out the location in the arena that a particular genetically specified pixel projected onto

was done using simple trigonometry. Look-up-tables were employed in place of the computation-

ally expensive standard C library functions of cos, sin and tan. Each table contained 360 values

covering 360o. In addition there was a finer-grained look-up-table for tan containing 200 values,

one for every 0 � 1o between 0o and 20o.

After rotation by the vision PC, the image available to evolving control architectures on the

gantry robot is a circular portion of a two dimensional pixel array, 40 pixels in diameter and with an

angle of acceptance of around 50o (see Figure 6.4). The horizontal and vertical angular offsets of

any particular pixel from the orientation of the robot were calculated from its x and y coordinates

within the image, and were then used to work out the horizontal and vertical angles at which the

pixel projected out from the gantry robot’s mirror relative to the fixed arena environment. Since

the coordinates of the robot’s position within the arena were always known, and the height of the

mirror above the floor of the arena was fixed (around 19.5cm), the exact horizontal and vertical

coordinates of the spot that any particular pixel projected onto could be easily worked out. Firstly,

the simulation established which of the four walls of the arena a particular pixel would project

onto if the vertical angle was in the correct range, and calculated the horizontal coordinate of the

pixel projection onto that wall. Secondly, the vertical coordinate of the pixel projection onto the

wall was calculated. The way this was achieved is demonstrated in figure 6.5. For calculations

of Px (the horizontal coordinate of the point a pixel projects onto), the course-grained tan look-

up-table was used, and for calculations of Pz (the vertical coordinate of the point a pixel projects

onto), the fine-grained tan look-up-table was used. This is because ψ will always be a small angle

somewhere between 0o and 25o whereas θ can be anything between 0o and 360o.

Having worked out Px, Pz, and the relevant arena wall, the actual value attributed to a particular

pixel depended on one of three possible scenarios. Either the pixel projected onto the floor or

ceiling, in which case it returned a value between 0 and 15, or it projected onto a wall but not

onto the triangle or square, in which case it returned a value between 0 and 13, or it projected onto

the triangle or square, in which case it returned a value between 14 and 15. The ways in which
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values were returned from within these intervals are described below (in the section on ensuring

that controllers are bas set robust). If Pz was less than 0cm or Pz was greater than 22.5cm then the

pixel was judged to have projected onto either the ceiling or the floor. If Pz was between 0cm and

22.5cm it was judged to have projected onto a wall. If the wall in question was the one with the

triangle and the square on it, then simple geometric relationships between the coordinates of the

pixel projection point and the vertices of the two shapes were used to find if the pixel projection

point lay inside either of the shapes. At every iteration, random deviates (generated by a simple

multiplicative congruential random number generator (Press, Vetterling, Teukolsky, and Flannery

1992)) in the range
�

1 � 2 grey-scale units were added to each pixel value. This corresponds roughly

to the noise present in the real world over and above that produced by the disco lights.

Design a suitable fitness Test

The fitness function returned the average value scored by an individual in a total of eight fitness

trials, each trial lasting a maximum of twenty simulated seconds. For the first set of four trials, the

triangle was on the left and the square was on the right, and for the second set of four trials, the

triangle was on the right and the square was on the left. For both sets, the robot was started at each

one of the four starting positions shown in Figure 6.3 in turn. At the end of each trial, when either

the time had run out or the robot had hit a wall, the fitness function returned 100 � d as the fitness

score, where d was the distance from the centre of the robot to the centre of the triangle.

Ensure that evolving controllers are base set exclusive

As reported above, the way in which pixel values were returned within the relevant intervals was

treated as an implementation aspect of the simulation and varied from trial to trial according to the

methodology outlined in Chapter 3.3. This ensured that control architectures that had evolved to

be reliably fit within the simulation worked independently of the way in which actual pixel values

arose - as long as they arose within the specified intervals - and therefore that they were robust to

the ‘disco lights’.

At the beginning of each trial, one of three ways of generating pixel values within the appro-

priate intervals was chosen:

1. Each pixel returned a different random value within the appropriate interval and values
varied randomly over time. This meant that whatever the behaviour of the robot, values
could change. The average time interval between changes in value for any particular pixel
was taken from a Poisson distribution with an average length of 2 simulated seconds.

2. Each pixel returned a different random value within the appropriate interval and values only
varied in response to changes in robot-orientation. This meant that if the robot proceeded
in a straight line, or remained still, then pixel values remained steady. If the robot turned,
then pixel values could change to new random values: angular distances between changes
in value for any particular pixel averaged 25o and were uniformly distributed between 0o

and 50o.

3. Each pixel returned the same random value within the appropriate interval. Values for each
interval were kept constant throughout the trial.

In this way, reliably fit controllers were forced to employ strategies that depended solely on

the intervals that pixel values fell into and not on the specific values themselves.
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Ensure that evolving controllers are base set robust

Using a knowledge of the inaccuracy of the model, various aspects were varied from trial to trial in

order to ensure that reliably fit control architectures were base set robust (see Section 3.4.2). This

was especially important with a robot such as the gantry which is extremely noisy and imprecise in

its operation. In particular, the mirror that reflects the horizontal image up into the camera was not

set at exactly 45o and was slightly warped. This meant that objects appeared differently depending

on where they were in the camera image, and that as the robot approached an object its image

would deform and distort, appearing to move upwards. Because of this:

� A vertical angular offset of between � 1o and � 8o was produced at the beginning of each
trial. This was then added to the vertical angle of projection of every pixel throughout the
trial.

� A horizontal angular offset of between
�

3o was produced at the beginning of each trial.
This was then added to the horizontal angle of projection of every pixel throughout the trial.

� The horizontal coordinates (with respect to the wall) of the four corners of the square and
the three corners of the triangle were offset by a random amount within the range

�
5cm

throughout each trial.

The stepper motors moved the gantry robot along rollers using drive-chains. These rollers slid

rather than rolled along their rails (due to a design fault), with more friction in some places than

others, and the drive belts were loose so that rapid sequences of motor commands could get lost in

the extra ‘slop’. Because of this, the robot could only approximate travelling at a constant speed,

and neither accelerated nor braked evenly in response to motor commands. It would often seize

completely half way through a run. In order that reliably fit individuals evolved to cope with these

problems:

� The momentum term, m, of equation 6.1 was randomly set at the beginning of each trial to
a value between 1 and 4.

� Random offsets of between
�

0 � 5cm per second were generated at the beginning of each
trial, and added to required wheel-speeds during position update calculations.

Together these random variations ensured that reliably fit control architectures were able to

cope with a wide variety of slightly different robot-environment interaction models. Included in

this range were models that involved misshapen and mal-aligned mirrors as well as noisy and

unpredictable motors - such as the model instantiated by the real gantry robot.

6.2 The evolutionary machinery

Although the evolutionary machinery (controllers, encoding scheme, genetic algorithm and ge-

netic operators) used in (Harvey, Husbands, and Cliff 1994) was initially reimplemented for the

experiments described here in order to provide a direct comparison, it was later abandoned; re-

liably fit individuals failed to evolve run after run. In the simulation, evolving controllers had to

cope with a whole variety of slightly different base set aspects, rather than just the one base set

present in the real-world situation. The implication was that the evolutionary machinery used in

the original experiments was just not capable of producing the level of robustness necessary to
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Figure 6.6: An example of a typical neural network evolved for the triangle/square discrimination task.

On the left, the circular camera image, eight pixels of which have been genetically specified as inputs to

the neural network. On the right, the square box contains the neural network itself. Solid lines denote

excitatory connections and dashed lines denote inhibitory connections. The slightly larger units in each of

the four corners are motor neurons.

cope with this extra uncertainty. The neural networks, encoding scheme, genetic algorithm and

genetic operators that were used instead are described below.

Neural networks

Functionally, the neural networks used in the experiments reported here were very similar to those

used in the T-maze experiments of chapter 5. To update the state of the network at each itera-

tion, the input activity A j of each of the j � 1 to N neurons in the network was again calculated

according to the simple weighted sum of equation 2.1

A j
� ∑Oiwi j

�
I j

where Oi was the output from the ith neuron, wi j was the weight on the connection from the ith
neuron to the jth neuron, and I j was any external input to the jth neuron from outside the network.

After the input activity of every neuron in the network had been calculated, the output O j of all

(including the motor neurons) of the j � 1 to N neurons in the network was calculated according

to a version of equation 2.3

O j
�
�

0 � 05 A j � t j

1 A j � t j

where t j was a threshold constant associated with the jth neuron. The value of 0 � 05 replaced 0 as

the ‘off’ state of each neuron so that self-excitatory feedback loops would be forced to saturate.

Weights on links were in the range
�

2 and thresholds were in the range 0 to 1.

All sensor input values were normalised in the range 0 to 1. Motor signals were calculated

from the output values of the four larger corner neurons (see figure 6.6) according to the relation
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signal � 2 � � O1 � O2
� , where O1 and O2 were the output values of the appropriate forwards and

backwards neurons. The whole network, including inputs and outputs, was updated at a speed of

10 times per second (or the simulated equivalent of a second).

Encoding scheme

The encoding scheme was a version of the spatially determined encoding scheme described in

section 2.3 which allows genotypes to grow under genetic control with a minimum amount of

phenotypic disruption. Figure 6.6 shows the two dimensional space in which development took

place. Apart from the position of the four motor neurons which were fixed (see figure), the position

of each neuron within the space was genetically determined. The links to each neuron in the

network were genetically specified by way of target positions that the links ideally originated

from. The nearest neuron to each link’s target position, within a radius of 1/10th of the width of

the space, was alloted as the originator of the link. If no neurons lay within this radius then the link

failed to connect. In addition, every neuron in the network could potentially receive input from a

genetically specified pixel of the camera image.

Each gene was 15 integers long, each integer lying between 0 and 99 and specifying its cor-

responding parameter through a simple linear mapping. Apart from the first four genes, which

specified the characteristics of the four positionally fixed motor neurons, the first two numbers

of each gene specified the x and y coordinates of the corresponding neuron’s position within the

developmental space. The next number specified whether a neuron received input from a pixel

of the camera image or not, with a probability of 1 in 4, and the next two numbers specified the

x and y coordinates within the camera image of any pixel input. The sixth number of each gene

specified the threshold, between 0 and 1, of the corresponding neuron. The last nine numbers

specified the characteristics of up to three possible links to the relevant neuron from other neurons

in the network: three number per link. The first two of these three numbers encoded the link’s

target position within the developmental space, and the third number specified the weight.

Genetic algorithm and genetic operators

The genetic algorithm used in the experiments was extremely simple. After testing every member

of a population of 100 individuals, the fittest 25 were used to produce the next generation by

randomly picking parents from within this 25 and producing offspring until the new population

was full. Single-point crossover was applied with a frequency of 0.7 and the expected number of

mutations per genotype, according to a Poisson distribution, was 1. There was a probability of

0.02 at each offspring event that a random gene would be introduced into the offspring genotype,

as well as a probability of 0.02 that an already existing gene would be deleted.

6.3 Experimental results

Figure 6.6 shows a typical example of the sort of network that evolves to be reliably fit within

the simulation. This particular network is the result of around 6000 generations of the genetic

algorithm (around 12 hours as a single user on a SPARC Ultra), which is the simulated equivalent

of 6000 � 100 � 8 � 20 � 96000000 seconds, or over 3 years worth of real-world evolution. When

placed in one of the four starting positions in the arena, the network initially causes the robot to
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Figure 6.7: Position data taken twice a second from the gantry robot during sixteen consecutive trials with

the triangle on the right and the square on the left. Each set of position coordinates is displayed as a black

dot with a small black line projecting along the forward orientation of the robot.

turn in a tight circle clockwise. If the square comes into the view of the camera, the rotational

speed of the robot actually increases until the square is out of view. When the triangle hoves into

view, the robot ‘locks on’ and precedes directly towards it, adjusting its course as it goes.

In order to see whether it would cross the reality gap, the network was downloaded onto

the gantry, and tested continuously1 and automatically on the triangle/square task in the real world

under full disco lighting. In total, 200 trials were performed: 100 for the triangle on the left and the

square on the right, and 100 for the triangle on the right and the square on the left. At the beginning

of each trial the robot was started in one of four different starting positions, corresponding to those

of the simulation, and these were run through in cycle from trial to trial. On each trial, the robot

was automatically judged to have successfully achieved the task if, by the end of the trial, it was

stationed within a rectangular area extending about 10cm either side of the triangle and 15cm out

into the arena (see Figure 6.3). Inspection revealed that this automatable criterion corresponded

well with more subjective notions of success and failure on the task.

In total, the robot successfully navigated its way towards the triangle while avoiding the square

195 times out of 200. With the triangle on the right and the square on the left the robot performed

the task successfully 98 times out of 100. With the triangle on the left and the square on the right,

the robot performed the task successfully 97 times out of 100. Figure 6.7 plots position data taken

twice a second from the gantry robot during sixteen consecutive trials, four from each of the four

starting positions.

1In practice, because of the propensity of the mechanics of the gantry robot to cease and the software controlling it
to crash, the testing procedure had to be watched continuously, and restarted (from where it had crashed) on a number
of occasions.
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Of the two failures with the triangle on the right, one occurred when the gantry rails were being

polished (to try and prevent the motors from jamming) and the lights were temporarily obscured

by the author’s body. The other failure is harder to account for, since the gantry robot just headed

off into a wall under otherwise unremarkable circumstances. This may have been due to freak

noise, but may also have been due to a mechanical or software error. All three failures with the

triangle on the left occurred from the same starting position furthest from the triangle and in each

case the circumstances were similar. Having turned away from the wall, the robot failed to lock on

to the triangle but continued spinning on the spot. It would spin past the square, past its original

starting orientation, and back round to face the triangle. In two out of three of the cases it then

locked onto the triangle, and started to move directly towards it, running out of time before it

reached the success zone. In the third case it failed to lock on again, and ran out of time before it

could spin right round to face the triangle for a third attempt. In all three cases, if more time had

been allowed, the robot would almost certainly have reached the target.

6.4 Comments

The minimal simulation of chapter 5 demonstrated one of the two main points of section 3.4.1:

when building a model of the base set aspects of real-world controller input, it is not necessary to

model these aspects for every possible position of the robot within its environment. The minimal

simulation used in this chapter demonstrates the other main point: it is not actually necessary

to model all of the base set aspects of real-world controller input for any position of the robot

within its environment. Provided sufficient base set aspects are modelled, the rest can be treated

as implementation aspects and varied from trial to trial. Thus the minimal simulation described

above only modelled the intervals that real-world pixel values could fall within. The ways in

which values fell within these intervals in the real world were treated as implementation aspects

and varied from trial to trial. This vastly reduced the amount of modelling necessary to create a

simulation capable of evolving controllers that could cross the reality gap.
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A minimal simulation for a complex motor behaviour

Figure 7.1: The Octopod robot.

This chapter describes experiments in which neural network control architectures were evolved for

an octopod robot. The robot, shown in figure 7.1 is around 30cm long and has 4 infra red sensors

that point ahead and to the side, various bumpers and whiskers, and ten ambient light sensors

positioned strategically around the body. Each of the robot’s eight legs is controlled by two servo

motors, one for movement in the horizontal plane, and one for movement in the vertical plane,

which means that the robots motors have a total of sixteen degrees of freedom.

The aim of the experiments was to evolve neural network control architectures that would

allow the robot to wander around its environment avoiding objects using its infra-red sensors

and backing away from objects that it hits with its bumpers. This is a hard behaviour to evolve

when one considers that in order to achieve any sort of coherent movement the controller has to

control not just one or two motors in a coordinated fashion but sixteen. Moreover it is an extremely

difficult set-up to simulate using traditional techniques since the physical outcome of sixteen motor
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movements is rarely predictable in all but the simplest cases. The evolution of this behaviour in a

minimal simulation, therefore, provides essential evidence that complex motor behaviours can be

evolved in simulations built according to the theory and methodology put forward in Chapter 3.3.

The minimal simulation used to evolve controllers for the octopod is described in Section 7.1.

The rest of the evolutionary machinery, including the neural networks, the encoding scheme, the

genetic algorithm and genetic operators is described in section 7.2. Experimental results are put

forward in section 7.3 and finally, in section 7.4, some comments are offered on the chapter as a

whole.

7.1 The minimal simulation

According to received wisdom, simulating something as complex from an actuator point of view

as an eight-legged robot is hard. The problems arise from the fact that sixteen motors all moving

at the same time and interacting with each other in the real world rarely induce movement in the

robot that is easy to model and often produce completely unpredictable movement that is best

looked at as stochastic. What happens when two legs clash, for instance? Or when the belly of

the robot is on the ground but the legs attempt to push the robot forwards? Or when 4 of the legs

attempt to push the robot forwards and 4 of the legs attempt to push the robot backwards? Clearly

any simulation that sets out to model all of the dynamics of the system will involve vast quantities

of pain-staking empirical measurement and research into friction-coefficients, the power of each

motor, the range of possible movement of the robot and so on. If the only simulation in which we

could evolve autonomous walking behaviour for the real robot was of this type then the simulation

would be so complicated that it might indeed be simpler to evolve controllers on the real thing.

Happily we do not need to come close to modelling all of the possible dynamics of the robot

in order to build a satisfactory minimal simulation. The key is to realise that those portions of the

possible dynamics of an octopod robot which are difficult and complicated to model (the vast ma-

jority) are precisely those that are not involved in successful walking behaviour. When the octopod

robot walks around its environment in an acceptable manner, its legs do not clash and its belly does

not drag along the ground and its legs do not pull in different directions. The minimal simulation

described below takes full advantage of this fact. The dynamics of the simulated robot match the

dynamics of the real robot only when the controller is inducing acceptable, successful walking and

obstacle-avoiding behaviour. If a controller does anything else but acceptable, successful walking

and obstacle-avoiding behaviour then the simulation falls woefully short of modelling what would

actually happen in the real world. Since a controller that performs the behaviour will never take

the robot into this region of the dynamics, we do not need to model it.

Precisely define the behaviour.

The aim of the experiments was to evolve octopod-controllers that could walk around the envi-

ronment, turning away from objects that fell within range of the IR sensors and backing away

from objects that touched the front bumpers and whiskers. At the very least, this requires that

controllers are able to perform 4 sub-behaviours, each relevant to a particular sensory scenario:

� If an object falls within range of the left-hand IR sensors then the robot must turn on the
spot to the right.
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� If an object falls within range of the right-hand IR sensors then the robot must turn on the
spot to the left.

� If an object hits the front bumpers or whiskers then the robot must walk backwards as fast
as possible.

� In the absence of any objects falling within infra-red range or touching the robot’s front
bumpers or whiskers, the robot must walk forwards in a straight line as fast as possible.

In a cluttered environment there are occasions in which other sensory combinations may occur

e.g. objects may fall within range of the left and right IR sensors at the same time. However,

these occasions are rare enough in simple environments to grant that controllers which are able

to perform each of these 4 simple sub-behaviours are also capable of wandering around their

environment satisfactorily without bumping into anything or becoming stuck.

One reason for making this behavioural reduction is that constructing a fitness test that specif-

ically checks for each of the 4 sub-behaviours, one after the other, is actually much easier than

constructing a fitness test that checks directly for the more complex global behaviour. We do not

need to simulate, for example, the way in which the robot’s position within a complex environment

gives rise to sensor values. Instead we may test directly for each of the 4 sub-behaviours in turn

by clamping the sensor values to fit each of the 4 sensory scenarios and observing the movement

of the robot in response. The fitness function was therefore divided into 4 phases: each testing

for one of the 4 behaviours outlined above. The order in which each of the 4 phases occurred

was random and evolving neural network controllers were not reset in between. This ensured that

reliably fit controllers would be able to perform each of the 4 sub-behaviours independently.

Identify the real-world base set

Whether or not the robot satisfactorily performs each of the 4 sub-behaviours is a function of the

movement of the robot body in each of the 4 different sensory scenarios. The members of the base

set, therefore, are those features of the world that make up the causal pathway from controller

output to how the body as a whole moves in response. These include the way in which controller

output affects how the legs move, and the way in which the movement of the legs affects the

movement of the body as a whole.

Build a model of the way in which the members of the base set interact with each other and

react to controller output (when the robot is performing the behaviour).

The overall movement of the robot was described by two variables: one for the speed of the left-

hand side of the robot and one for the speed of the right-hand side of the robot. Thus if both sides

of the robot moved straight ahead at the same speed then the overall movement of the robot was

deemed to be straight ahead, if they moved in different directions but with equal velocity then the

robot was deemed to be turning on the spot, and if both sides moved backwards at the same speed

then the overall movement of the robot was deemed to be straight backwards.

To model the way in which the robot as a whole moved in response to controller output,

therefore, necessitated a model of the way in which each leg responded to controller output, and

the way in which the movement of each leg contributed to the overall movement of each side of
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Figure 7.2: This figure shows diagrammatically how the speeds of the left-hand and right-hand sides of the

robot were calculated from the vertical and horizontal positions of the eight legs. For explanatory purposes

the length of each leg in the diagram is inversely proportional to its height above the ground so that the

long legs are 0.8 as low as they can go and the short legs are 0.2 as low as they can go. Adding up the

contributions that each leg makes to the speed of its side we see that the speeds of both the left and the right

hand side of the robot work out at 0 � 1 � 0 � 8 � 0 � 1 � 0 � 2 �
0 � 1 � 0 � 8 � 0 � 1 � 0 � 2 � 0 � 12 forwards

the robot. However, because of the arguments put forwards in section 3.3.2, it was not necessary

to accurately model the way in which every motor signal could affect the movement of the robot

as a whole, but only those motor signals involved in satisfactory walking forwards, backwards

and turning on the spot. The dynamics of the model, therefore, matched those of reality only for

those controllers that prevented the body from touching the ground, moved all the legs supporting

the robot on each side in the same direction (either all forwards or all backwards depending on

whether the robot was supposed to be walking forwards, backwards or turning on the spot), and

kept those legs that were not touching the ground as high in the air as possible.

The motor signals to the servo-motors controlling the legs of the octopod robot specify abso-

lute angular positions (relative to the body) that the servo-motors are required to move the legs to.

Thus when a new signal is sent to the servo-motor controlling the horizontal or vertical angle of

a particular leg, it will move as fast as possible to the new location. In the absence of any new

signal, the leg will remain rigid. This process was modelled in the simulation by calculating, on

every iteration, horizontal and vertical angular displacements for each leg based on the differences

between the angular positions specified by the motor signals and the actual angular positions of

the simulated legs. The maximum possible angular speed of each leg was measured very roughly

and set in the simulation to be 2π radians per second. Using the horizontal and vertical angles of

each leg, a simple look up table provided the approximate position, relative to the robot, that each

leg projected onto the ground, and the 4 legs in the lowest positions were assigned as the sup-

porting legs. A simple calculation was then made to see whether the robot’s centre of gravity was

contained within the polygon subtended by the floor-contact positions of these 4 legs, in which

case the robot was deemed to be stable. If it was not, then the robot was deemed to be unstable.

Also the average height of these 4 legs relative to the robot body was calculated. If they were low
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enough then the robot was deemed to be standing, otherwise it was deemed to be dragging its belly

on the ground.

Figure 7.2 shows diagrammatically how the speeds of the left and right-hand sides of the robot,

and thus the overall movement of the robot, were calculated from the controller’s motor signals.

On each iteration, the contribution each leg made to the forwards or backwards movement of its

side of the robot was worked out according to a simple calculation. The distance moved by the

leg (either forwards or backwards) was multiplied by a figure between 0 and 1 that was inversely

proportional to how high in the air the leg was. Thus the higher in the air a leg was, the smaller

the contribution its horizontal movement made to the total movement of its side of the robot. The

nearer to the ground the leg was, the larger the contribution its horizontal movement made to the

total movement of its side of the robot. The contributions that each leg makes were then added

up to arrive at a figure for the total movement (either forwards or backwards) of that side of the

robot. If both the left and the right side of the robot moved forwards then the robot was deemed to

have moved forwards, if both sides moved backwards then the robot was deemed to have moved

backwards, if each side moved in different directions then the robot was deemed to be turning on

the spot.

Now although this simple model seems to bear no relationship to reality (how can a leg that

is in the air contribute to the speed of its side of the robot?), a controller that made maximum

use of the dynamics of the model to move the robot around as fast as possible would keep all of

the legs that were moving in the wrong direction at any one time as high in the air as possible

and all the legs that were moving in the appropriate direction as firmly on the ground as possible.

Since penalty terms for both instability and belly-dragging were included in the fitness function

(see below), maximally fit controllers remained stable and stood upright at all times, moving all

the legs that were supporting the robot on each side in the same direction (either all forwards or

all backwards depending on whether the robot was walking forwards, backwards or turning on the

spot) and keeping those legs that were not supporting the robot as high in the air as possible.

Build a model of (enough of) the way in which the members of the base set affect

controller input (when the robot is performing the behaviour).

The sensor model employed was so simple as to be almost non-existent. The sensors were divided

into three groups: the front left and back left IR sensors forming one group, the front right and

back right IR sensors forming another group, and the front whiskers and bumpers forming another.

In the phase of each fitness test in which there were no objects within sensor range, all sensors

were set to background levels for the duration of the phase: 0 for the bumpers and whiskers and

255 for the IR sensors. In the phases during which an object fell within IR range on either the

left or right-hand side of the robot, the IR sensor on the appropriate side was set to high (200)

for the duration of the phase. In the phase during which an object hit the touch sensors, the front

whiskers and bumper were set to high (1), but only for the first second of the phase. This simple

sensor model provided evolving controllers with enough information about the world to perform

the behaviour satisfactorily.
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Design a suitable fitness Test

As explained above, each fitness evaluation was divided into 4 phases: one for each of the 4

sensory scenarios. Each of these phases lasted five simulated seconds. At the end of every iteration

of the simulation, the fitness of the controller being tested was incremented by a value δ derived

from the overall movement of the robot. How this value was calculated depended on the sensory

scenario the robot was in at the time:

� If there were no objects within sensor range then δ was the speed of the left-hand side of the
robot plus the speed of the right-hand side of the robot.

� If there was an object within infra-red sensor range on the right-hand side of the robot then
δ was the speed of the right-hand side of the robot minus the speed of the left-hand side of
the robot.

� If there was an object within infra-red sensor range on the left-hand side of the robot then δ
was the speed of the left-hand side of the robot minus the speed of the right-hand side of the
robot.

� If an object hit the bumpers then δ (for the duration of this phase of the fitness evaluation)
was minus the speed of the left-hand side of the robot minus the speed of the right-hand side
of the robot.

Also on each iteration, if the robot was deemed to be unstable then a small penalty was sub-

tracted from the fitness, and if the robot was deemed to be touching the ground with its belly then

a small penalty was subtracted from the fitness.

Ensure that evolving controllers are base set robust and base set exclusive

The fitness test described above was carefully designed so that controllers that evolved to be re-

liably fit would use only those portions of the simulation dynamics that corresponded closely to

the dynamics of the real robot. In fact, these dynamics turned out to be close enough that there

was no need to vary the simulation at all in order to ensure that evolved controllers were base set

robust. Any differences between simulation and reality were easily accommodated by slop in the

definition of satisfactory walking and obstacle-avoiding behaviour. Thus walking behaviour on

the real robot might be a little jerkier or quicker than in the simulation, but it was still perfectly

adequate walking behaviour.

Likewise, nothing extra was added to the simulation in order to ensure that evolving controllers

were base set exclusive. This was for the simple reason that the model of the way in which sensor

values arose from the base set was so simple that there was nothing else in the simulation that

evolving controllers could come to rely upon.

7.2 The evolutionary machinery

In this section we describe the evolutionary machinery that, together with the minimal simulation

described above, was responsible for evolving neural network control architectures that could

perform the behaviour satisfactorily in reality.
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Figure 7.3: Each leg controller consisted of six fully connected neurons. The activity of neuron 1 and

neuron 2 controlled the horizontal and vertical leg angles respectively.

Neural networks

While network parameters (connection weights, time constants, thresholds and so on) were under

evolutionary control in the experiments described in this section, the overall shape of the net-

work architecture was fixed to be the same for every member of the population. The repetitive

movements characteristic of multi-legged walking behaviours were produced by a main oscilla-

tory network of 8 coupled sub-networks, each responsible for the direct control of a single leg.

The properties of this oscillatory network were then modulated by the output from three sensory

neurons (one each for left and right infra red and one for the bumpers) and one permanently satu-

rated bias neuron to produce the different movement patterns for walking forwards, backwards and

turning. This architecture is very similar to, and was based upon, that used by Beer and Gallagher

(1992). The components of this architecture will now be explained in detail.

Figure 7.3 shows one of the basic sub-networks responsible for the control of each leg. All

eight sub-networks were identical in that only one set of sub-network parameters (threshold con-

stants, connection weights and so on) was encoded on the genome and repeated eight times. These

sub-networks consisted of six fully interconnected neurons, numbered 1 to 6 in the diagram, of

the same type as those used by Beer and Gallagher (1992) and previously described in section

2.2.1. At each iteration, the input activity A j of each of the j � 1 to 6 neurons in each of the 8

sub-networks was calculated according to equation 2.5

τ jȦ j
� � A j

� ∑wi jOi
�

I j

where τ j was a time constant that affected the rate and extent to which the jth neuron responded

to input, Oi was the output from the ith neuron, wi j was the weight on the connection from the ith
neuron to the jth neuron, and I j was any external input to the jth neuron from outside the network.

Once the input activity of each neuron had been calculated, the output O j of each of the j � 1 to 6

neurons in each of the 8 sub-networks was calculated from the input activity A j according to the

sigmoid function of equation 2.2

O j
��� 1 � e � t j � A j ���	� 1

where t j was a threshold constant associated with the jth neuron. The range of possible values of

each of these genetically specified constants is listed below.
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Figure 7.4: This diagram shows how each leg-controller sub-network was coupled to the sub-network

opposite it on the body and to the sub-network either side of it with wraparound.

The output of neuron 1 in each sub-network was responsible for the signal to the servo-motor

controlling the horizontal motion of the leg in question, and the output of neuron 2 was responsible

for the signal to the servo-motor that controlled the vertical angle of the leg (see figure 7.3).

For neuron 1, an output of 0 mapped onto a signal to the horizontal servo motor to point as far

backwards as it could go, and an output of 1.0 mapped onto a signal to the the servo motor to point

the leg as far forward as it could go. For neuron 2, outputs of 1 and 0 mapped onto signals to the

vertical servo motor to position the leg in the fully up and down positions respectively.

Each sub-network was coupled to the sub-network directly opposite it and to the network on

either side of it (with wraparound) as in figure 7.4. Each sub-network to sub-network coupling

involved six symmetrical connections: from neuron 1 in one network to neuron 1 in the other,

from neuron 2 to neuron 2, neuron 3 to neuron 3 and so on. All 4 cross-body couplings were

identical in the sense that only six connection strengths were encoded on the genome and this set

of six was repeated 4 times. All 8 along-body couplings were identical in the same way.

Figure 7.5 shows an example of how the connections between the neurons that made up the

leg-controller sub-networks could be modulated by the sensor neurons and the bias neuron. Each

connection between leg-controller neurons can be thought of as having had a synapse half way

down its length that acted as a gate: open and the connection was unaffected, closed and the con-

nection was switched off, effectively reducing the weight on the connection to zero. The synapse

itself received input from sensor neurons and the bias neuron by way of weighted connections.

If the total input to the synapse was greater than zero then the synapse gate was open and the

connection between the leg-controller neurons was unaffected. If the total input to the synapse

was less than zero then the synapse gate was closed and the weight on the connection between the

leg-controller neurons dropped to zero.

Figure 7.6 shows how the three sensor neurons and the bias neuron were connected up to

the synapses of the leg-controller sub-networks. Each of the thick black arrows represents 36

connections, one for each of the 36 synapses of a leg-controller sub-network. In total, three sets of
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Figure 7.5: This diagram shows how each connection between leg-controller neurons contains a synapse

‘gate’ that can be turned on or off by sensor neurons and the bias neuron. For the sake of diagrammatic

simplicity only one connection is shown, whereas in reality every connection in every leg controller sub-

network (36 � 8 � 288 connections in total) contains a synapse that can be modulated in this way.

36 connection weights were encoded on the genome: one set for the infra-red sensor neurons, one

for the bumper sensor neuron and one for the bias neuron. Thus each of the two infra-red sensor

neurons were connected to the synapses of the leg-controller sub-networks on the appropriate

side by way of four identical sets of 36 connections (both sets of four were also identical to each

other), and both the bumper sensor neuron and the bias neuron were connected up to all eight

leg-controller sub-networks by way of eight identical sets of connections each.

A weighted input connection was associated with each of the three sensor neurons and the bias

neuron. The signals from the infra-red sensors and bumper sensors that fed into these connections

were normalised to lie within the range 0 to 1. In the case of the bias neuron, the signal that fed

into its weighted input connection was permanently set at 1.

The network was updated iteratively using time-slicing techniques at a rate of 16 updates

per second (or the simulated equivalent of a second). Also, in order to reduce computational

overheads, a 200 place look-up-table was provided for the sigmoid function in place of the standard

C-library maths functions.

Encoding scheme

Since the layout of the neural network architecture was fixed and predefined for every individual, a

simple direct encoding scheme was employed. Every parameter was encoded on the genotype by

a real number in the range 0 to 99, and this was mapped onto the relevant range during decoding.

The parameters that were encoded and the ranges onto which they were mapped are as follows:

� 36 connection weights for the leg-controller sub-networks mapped onto the range
�

16.

� 12 cross-body and along-body coupling connection weights mapped onto the range
�

16.

� 36 infra-red sensor neuron to synapse connection weights mapped onto the range � 6 � 5 to
25 � 5.

� 36 bumper sensor neuron to synapse connection weights mapped onto the range � 6 � 5 to
25 � 5.
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Figure 7.6: This diagram shows how the sensory neurons and the always-on bias neuron were connected to

the synapses of the leg controller sub-networks. Each of the thick black arrows represents 36 connections,

one to each synapse in the leg controller. The cross-body and along-body couplings between leg-controller

sub-networks have not been shown in this diagram.

� 36 bias neuron to synapse connection weights mapped onto the range � 6 � 5 to 25 � 5.

� 9 unit threshold constants mapped onto the range
�

4: 6 for the leg-controller sub-network
neurons, 1 for the infra-red sensor neurons, 1 for the bumper sensor neuron and 1 for the
bias neuron.

� 9 unit time constants mapped onto the range 0 � 5 to 5 � 0: 6 for the leg-controller sub-network
neurons, 1 for the infra-red sensor neurons, 1 for the bumper sensor neuron and 1 for the
bias neuron.

� 3 input connection weights mapped onto the range
�

16: 1 for the infra-red sensor neurons,
1 for the bumper sensor neuron and one for the bias neuron.

which makes a total of 177 parameters. Thus genotypes were strings of 177 numbers in the range

0 to 99.

Genetic algorithm and genetic operators

The genetic algorithm was an extremely simple generational model with tournament selection and

elitism. After evaluating every member of the population, offspring genotypes were repeatedly

produced until the next generation was full. To make a new offspring, two pairs of individuals were

picked at random from the population and the fittest individuals from each pair (i.e. the winners

of the tournaments) were chosen to act as parents. The offspring genotype was then formed from

these two parents through a process of crossover and mutation: single point crossover was applied

with a probability of 1, and every one of the 177 numbers that made up the offspring had a 0.02

chance of being mutated. A mutation involved changing the number in question by a random
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amount taken from a roughly normal distribution with a standard deviation of around 18. If the

new value was greater than 99 or less that 0 then it was clipped to lie within this range.

7.3 Experimental results

After removing some initial bugs from the code1, reliably fit controllers evolved on practically

every run within around 3500 generations. This took around 14 hours to run on a Sun Ultra

SPARC and simulated over 11 weeks worth of real world evolution. When downloaded onto the

real octopod, reliably fit controllers made the robot walk around its environment in a satisfactory

manner, turning away from objects that fell within infra red range on both the right and the left

hand side and backing away from objects that it hit with its bumpers.

Unfortunately, in this chapter we must make do with the bald statement of fact that evolved

controllers successfully crossed the reality gap. In chapters 5, 6 and 8, demonstrations are provided

of this fact, but this is not possible here due to both the nature of the octopod robot itself and the

format of the thesis. If the robot was equipped with position sensors on each of the legs then data

recorded from these sensors as the robot moved around a real-world environment could be used

to provide such a demonstration. The robot, however, is not equipped with sensors of this type

and data of the required type is not available. The other form such a demonstration could take,

and probably the most natural, is the evidence provided by video footage of the robot wandering

around its environment. This cannot, however, be profitably presented as part of a text and pictures

document; even if a sequence of stills taken at short and regular time intervals were displayed, this

would not be all that informative as to how the legs of the robot moved in the real world unless

there were an impractically large number of them.

In lieu of any method of demonstrating how the legs of the real robot moved as it wandered

around its environment, the best we can do is to provide a demonstration of how the motor signal

patterns to these legs change in response to each of the four sensory scenarios. Figure 7.7 offers

such a demonstration for a typical reliably fit controller that evolved after 3200 generations. From

top to bottom, the first eight traces provide a novel representation of the motor signals issued to

each leg over the course of an average fitness trial, and the bottom two traces show the resultant

velocities of the left and right side of the simulated robot respectively. The best way of explaining

how to read the slightly bizarre looking motor traces is to describe how they were generated. At

each iteration of the simulation, a short line representing the current motor signal was added to

the right hand side of each motor signal trace. As can be seen from the figure, these lines were of

various thicknesses and were always drawn from the horizontal centre line of the trace either up

and to the left or down and to the left with various different gradients. The thickness of each line

represented the vertical angle of the leg relative to the ground as specified by the motor signal in

question: the thicker the line, the lower the leg, and the thinner the line the higher the leg. The

gradient of the line represented the horizontal angle of the leg relative to the body as specified

by the motor signal in question: the further up and to the left, the further forwards relative to

the body, and the further down and to the left, the further backwards relative to the body. In this

1One such bug, spotted by Jerome Kodjabachian, meant that the penalty due to robot instability was effectively
applied at random. Surprisingly, even with such a fundamental error in the code, controllers evolved that were able to
perform the task perfectly satisfactorily when downloaded onto the robot.
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Figure 7.7: Each leg controller consisted of six fully connected neurons. The activity of neuron 1 and

neuron 2 controlled the horizontal and vertical leg angles respectively.

way, although they are perhaps harder to read than other less informative types of trace devised to

convey similar information (see (Beer and Gallagher 1992) for example), each of the motor signal

traces of figure 7.7 represents both the vertical and horizontal components of the relevant signal

over the course of a fitness test.

From the left and right velocity traces in figure 7.7 it is evident that the octopod moved for-

wards, then turned on the spot to the right, then backed up for a period and then rotated on the

spot to the left. This corresponds to the order in which the four sensory scenarios arose during

the fitness test that gave rise to this figure: no sensors active, left IR sensor active, bumpers and

whiskers active, right IR active. Close inspection of the eight motor signal traces reveals:

� In the absence of any sensory activity the robot proceeded forwards using the classic tripod
gate. Note that each leg is perfectly out of sync with the leg directly opposite it on the other
side of the body.

� In response to activity from either of the two IR sensors, the motor signals sent to each of the
legs on the side of the robot furthest from the sensor suddenly became the exact opposite of
the signals sent to each of the corresponding legs on the side of the robot nearest the sensor.
This made the side nearest the sensor signal go forwards and the one furthest away move
backwards.

� In response to activity from the bumpers and whiskers, the robot proceeded backwards using
a backwards tripod gate. Note that just before this phase of the simulation was finished, but
well after the short-lived inputs to bumpers and whiskers had ceased, the robot paused with
all legs down and back for a moment.

When downloaded onto the real robot, these motor patterns and walking gates were clearly

and reliably recognizable.
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7.4 Comments

The minimal simulation used in this chapter makes full use of the arguments put forward in section

3.3.2 to evolve controllers for the octopod robot. Simply put, these arguments state that a minimal

simulation need only model the real-world dynamics involved in successful behaviour and no

others. This is because the only controllers that must cross the reality gap, if the simulation is to

be a success, are precisely those that use these dynamics (i.e. perform the behaviour) and no others.

For many robotics setups and behaviours this may not be of any use since the dynamics involved in

successful behaviour may be neither obvious ahead of time nor qualitatively different to the rest of

the dynamics of the system. For the experiments reported in this chapter, however, the dynamics of

the octopod robot during successful walking and obstacle avoiding behaviour were both relatively

easy to identify and much easier to model than the dynamics of the octopod robot as a whole. A

minimal simulation that modelled these dynamics alone was therefore easy to construct and ran

extremely fast when compared to the simulation that would result from attempting to model all of

the dynamics of the octopod robot within its environment.



Chapter 8

A minimal simulation for a complex sensor behaviour

Figure 8.1: The tracking camera head.

In this chapter we report on experiments in which neural network controllers were evolved for a

real-world robotics task that necessitated the non-trivial use of complex sensors. Figure 8.1 shows

the robotic set-up used in these experiments. A small camera, connected to a frame-grabber, was

mounted on a platform whose rotational velocity was under computer-control. The aim of the

experiments was to evolve networks that would cause the camera to visually lock onto and track

arbitrarily patterned rigid objects as they moved against an arbitrarily patterned static background.

Previous attempts to artificially evolve ‘movement tracking’ behaviours (Harvey, Husbands,

and Cliff 1994; Miller and Cliff 1994; Floreano and Nolfi 1997) have allowed evolution to employ
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some incidental property of the target object such as its colour or pattern to distinguish it from

a background which has a different colour or pattern. Simple strategies can be very effective in

these sorts of scenarios. For example, if the target object is black and the background is white then

a strategy such as ‘always turn towards the darkest part of the image’ can be sufficient to track the

object as it moves against its background. In the experiments reported here, however, the target

object and background were both arbitrarily patterned. This means two things, firstly that evolving

networks could only use the fact that the object was moving to pick it out from the background,

and secondly that if the camera started to track the moving object, the camera’s motion caused

the background to move in the opposite direction within the image. Thus the evolutionary process

not only had to locate and track movement caused by the object within the image, it also had to

find some way of compensating for the movement within the image caused by the ego-motion

of tracking itself. The mechanisms necessary for performing this sort of behaviour are far more

complex than those needed for strategies like ‘always turn towards the darkest part of the image’.

In order to make the problem tractable, only a sub-sampled region of the camera image was

used in the experiments reported below. This region was a horizontal strip, three pixels wide

and crossing the centre of the camera image, which was further sub-divided into 32 segments of

equal length. The 32 average pixel values of these segments provided input to the controllers.

Pre-processing the input in this way did not change the nature of the behaviour to be evolved,

it just meant that controllers were evolved to perform motion-tracking using a 32 by 1 visual

array as opposed to the 256 by 192 visual array provided by the raw camera image. However,

preprocessing vastly reduced the computational overheads of both the controllers, which would

otherwise have had to process many thousands of inputs, and the minimal simulation described

below, which would otherwise have had to produce values for many thousands of inputs.

The minimal simulation used to evolve motion-tracking controllers is described in Section 8.1.

The rest of the evolutionary machinery, including the neural networks, the encoding scheme, the

genetic algorithm and genetic operators is described in section 8.2. Experimental results are put

forward in section 8.3 and finally, in section 8.4, some comments are offered on the chapter as a

whole.

8.1 The minimal simulation

A conventional approach to building a simulation for the evolution of visual behaviours (such as

motion tracking) would most probably involve a model of how objects appear within the cam-

era image that was as accurate as possible. The rationale being that if the simulated image was

accurate enough, then from the point of view of evolving controllers, there would be no differ-

ence between simulation and reality. Accurately modelling how objects appear within a camera

image, however, is an extremely computationally expensive and labour intensive activity. Even

if the camera image is sub-sampled, as in the experiments reported here, it would still require

ray-tracing algorithms, knowledge of the object’s light-reflection properties and so on. If con-

structing a successful minimal simulation required accurately modelling how objects appeared in

the camera image, evolving in the real world would probably be preferable.

Fortunately, the theory and methodology of minimal simulation put forward in chapter 3.3 does

not advocate that the base set aspects of a minimal simulation should necessarily be as accurate as
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possible. Instead, section 3.4.2 proposes that the base set aspects of a minimal simulation should

be sufficiently varied, from trial to trial, so that controllers which evolve to be reliably fit are base

set robust i.e. robust to the differences between the simulation and the real world. The minimal

simulation described below depends fundamentally on this fact for its success. The model of how

objects in the camera’s field of view affect controller input is so simple as to be almost naive, yet

the model is sufficiently varied from trial to trial that controllers which evolve to be reliably fit

within the simulation satisfactorily track randomly patterned objects against similarly randomly

patterned backgrounds in reality. Below, the step-by-step framework of section 3.5 is used to

explain how the minimal simulation was constructed.

Precisely define the behaviour

The aim of the experiments was to evolve controllers that made the camera-head track randomly

patterned objects of a range of sizes as they moved against a similarly randomly patterned back-

ground in a random fashion. This is a behaviour with many possible permutations of arbitrary

properties, and to test enough of these to gain a reliable idea of a controller’s fitness requires a

fitness evaluation of many hundreds of trials. Because of this, steps were taken to reduce the

amount of possible variation between trials. Within the simulation, evolving controllers were only

tested on target objects that moved according to a particular pattern: across the field of view in a

random direction, then stopping for a period, then moving again in either the same or a different

direction. Although there was nothing special about this movement pattern in particular, it was

complex enough that controllers which evolved to successfully track objects that moved in this

fashion would also track objects that moved according to a large range of other movement pat-

terns, and would, most probably, satisfactorily track objects that moved in a random fashion. It

should be kept in mind, therefore, that in the experiments reported in this chapter, the behaviour

that controllers were actually evolved to perform was to track objects that moved according to the

specific movement pattern described above - not objects that moved arbitrarily. At any particular

time, controllers were deemed to be successfully tracking an object if any part of the object fell

within the field of view of the camera.

Identify the real-world base set

Since the criterion for behavioural success was concerned with the position of the object within the

field of view of the camera, the base set consisted of all the features of the world that could affect

this position. These included the way in which the target object moved relative to the background

and the way in which the camera moved relative to the background in response to signals from the

controller.

Build a model of the way in which the members of the base set interact with each other and

react to controller output (when the robot is performing the behaviour)

In the simulation there was no model of the way in which the camera turned on the spot in order to

track the target object, rotation was instead treated as a horizontal translation (as shown in figure

8.2). One variable held the horizontal position of the centre of the target, and another variable held

the horizontal position of the centre of the camera’s field of view. Rotation of the camera to the
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Figure 8.2: This figure shows how a rotating camera tracking an object moving at a constant distance

from the camera may be modelled by a translating camera that is tracking an object that is translating at a

constant distance from the camera.

right and left was modelled as a horizontal translation to the right and left. In order to track the

target, therefore, the horizontal positions of the left and right edges of the camera’s field of view

had to contain the horizontal position of at least part of the target object, and the camera had to

move horizontally in such a way that the target object never escaped these boundaries.

Build a model of (enough of) the way in which the members of the base set affect

controller input (when the robot is performing the behaviour)

As explained above, a central horizontal strip of the camera image was divided up into 32 equal

segments, and the 32 values formed by taking the average pixel value of each of these segments

provided controllers with input. The way in which the background and target object affected the

32 values of the input array was modelled in an extremely simple fashion, and is shown diagram-

matically in figure 8.3. At the start of each run an array of 10000 numbers between 0 and 255

(minimum and maximum grey-level pixel values) was initialized to act as the background. Also,

at the start of every fitness trial, a small array of between 6 and 16 random numbers between 0

and 255 was initialized to act as the target object. At each iteration the horizontal position of the

left-hand-side of the target object was used as an index into the background array and the target

array was superimposed upon the background array at this point. The horizontal position of the

left-hand-side of the camera image was then used as an index into the background array and the

32 following values were assigned as the 32 values of the input array. On each iteration, random

deviates (generated by a simple multiplicative congruential random number generator (Press, Vet-

terling, Teukolsky, and Flannery 1992)) in the range
�

5 were added to each value in the image

array. This corresponded roughly to the noise levels observed in reality.

Design a suitable fitness function

Each fitness trial consisted of the following three phases:
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background array

target array

image array

Figure 8.3: This figure shows how the image array derived in the simulation from the target array super-

imposed on top of the background array.

1. From a starting position just to the side of the field of view, an object moved towards (and
across) the visual field for 10 seconds.

2. The object stopped moving completely for 5 seconds.

3. The object started moving again at the same speed as before but in a random direction. This
phase also lasted 10 simulated seconds.

At each iteration δ f was calculated from the difference between the horizontal position of

the centre of the target array XT and the horizontal position of the centre of the image array XI

according to the expression:

δ f �
�

0
�
XI � XT

� 	 16

16 � �XI � XT
���

XI � XT
� � 16

�

At the end of each trial, the fitness function returned the final sum of the δ f s. If the target

object ever completely left the field of view at any point during a fitness trial then the trial was

halted at that point, and the sum achieved thus far was returned as the fitness. Because of the

inherently noisy nature of the task, each complete fitness evaluation returned the average value

scored by an individual in a total of 40 different fitness trials. Each fitness trial was a maximum of

25 simulated seconds in length.

Ensure that evolving controllers are base set robust

Several parameters of the model of the base set were varied from trial to trial in order that reliably

fit controllers were base set robust. Some of these parameters, such as the size of the target array,

were varied widely so that controllers would evolve to track a whole range of different sizes of

objects. Others, such as the momentum of the camera, were varied just enough to ensure that

controllers would be robust to modelling inaccuracies. In particular:

� The size of the target array was varied between 6 and 16 input elements wide.

� The speed of the target object was randomly set between 0.5 and 1.5 input elements per
simulation update.

� The initial direction of the target object, and whether, after the pause stage, it would continue
in the same or the opposite direction was randomly determined at the start of each trial.
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� The momentum of the camera was randomly set between 1 and 4.

In this way reliably fit controllers were forced to employ non-brittle strategies that could cope

with objects of different sizes travelling at different speeds and in different directions. They were

also forced to cope with cameras with different panning motor characteristics.

Ensure that evolving controllers are base set exclusive

The patterns of the target array and the background array were both treated as implementation

aspects and varied from trial to trial in order that reliably fit controllers would be base set exclusive.

� The values that made up the target array were randomly set at the start of each trial in one
of two different ways (picked at random): either they were all set to the same random value,
or they were all set to different random values.

� The starting positions of the camera image and target object relative to the background array
were randomly varied between 0 and 10000.

In this way, evolving controllers could only be reliably fit if they came up with a strategy that

depended solely on movement in the image, and not on the shape or colour of the object or the

background.

8.2 The evolutionary machinery

In this section we describe the evolutionary machinery that, together with the minimal simulation

described above, was responsible for evolving neural network control architectures that could

perform the behaviour satisfactorily in reality.

Neural networks

After trying several different types, the neural networks described below were found to be the

most successful. However, in order to get this type of network to work satisfactorily, further

preprocessing of the 32 input values was necessary. If the value of input i at time t was Ii
� t � , then

the corresponding value Ji
� t � made available to the neural networks was calculated according to

the expression

Ji
� t � �
�

0
�
Ii
� t � � Ii

� t � 1 � � � 15

255
�
Ii
� t � � Ii

� t � 1 � � � 15

�

This meant that high network input could only be caused by sudden changes in the image, such as

that resulting from image motion.

Apart from this extra preprocessing stage, the networks used in the experiments reported here

were made from binary-valued neurons (either ‘on’ or ‘off’) with evolved weights and thresholds.

In addition, a time constant was associated with each neuron that specified a period of time that

the neuron would remain ‘on’ after the stimulus that caused it to turn ‘on’ in the first place had

decayed. To update the state of the network at each iteration, the input activity A j of each of the

j � 1 to N neurons in the network was again calculated according to the simple weighted sum of

equation

A j
� ∑Oiwi j

�
J j � Amin
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Figure 8.4: The tracking network.

where Oi was the output from the ith neuron, wi j was the weight on the connection from the ith
neuron to the jth neuron, and J j was any preprocessed external input to the jth neuron. Each input

activity A j was then normalized to lie between 0 and 1 by reference to its maximum and minimum

possible values. Using this normalized value Ā j to calculate the output from each neuron increased

the chance of the threshold lying within the dynamic range of the inputs, and thus increased the

chance of random networks doing something rather than nothing (see section 2.2.1). After the

normalized input activity of every neuron in the network had been calculated, the output O j of all

of the j � 1 to N neurons in the network was calculated according to a version of equation 2.6

O j
�
�

0 Ā j � t j

1 Ā j � t j or TĀ j
�

t j � τ j

where TĀ j
�

t j
was the elapsed time since Ā j � t j was last true, τ j was a time constant associated

with the jth neuron and t j was a threshold constant associated with the jth neuron.

Connection weights were in the range
�

2, thresholds were in the range 0 to 1, and time delays

were in the range 0 to 16 network updates. The state of the network was updated at the rate of 32

times a second (or the simulated equivalent of a second): twice for each update of the inputs and

outputs which were undertaken at the rate of 16 times a second (or the simulated equivalent of a

second).

The encoding scheme

The encoding scheme was again a version of the spatially determined encoding scheme described

in section 2.3. This type of scheme, although simple, allows genotypes to grow under genetic

control with a minimum amount of phenotypic disruption.
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Figure 8.4 shows an evolved network and the two dimensional space in which development

took place. The location of each neuron within the space was genetically specified and determined

its function within the network: a location within either of the two circular regions at the top

of the developmental space meant a motor neuron, a location within the large rectangular region

at the bottom of the developmental space meant an input neuron, and a location anywhere else

meant a hidden neuron. The output signal to the motors was calculated according to the relation

signal � k � � Ol � Or
� , where Ol and Or were the average output values of the neurons in the left

and right motor regions respectively and k was a constant equivalent to around 180
�

per second.

As explained in section 8.1 above, there were a total of 32 inputs made available to evolving

networks, each corresponding to a certain number of pixels situated on the horizontal line drawn

through the middle of the camera image. To determine which of these 32 inputs each input neuron

corresponded to, the rectangular input region of the developmental space (see figure 8.4) was

itself divided up into 32 rectangular input sub-regions running horizontally from left to right, each

corresponding (in order) to one of the 32 inputs. Input values were normalised to lie within the

range 0 to 1. Inputs and outputs were updated at a speed of 16 times per second (or the simulated

equivalent of a second).

Genotypes consisted of a variable number of genes, each encoding the necessary parameters

for a neuron. In fact, since bilateral symmetry was imposed on evolving networks by reflecting

each neuron across the midline of the developmental space, each gene actually coded the parame-

ters for not one but two neurons. Each gene was 17 integers long, and each integer lay between 0

and 99. The first number of each gene stored the gene’s ‘age’ for mutation locking purposes and

played no role in determining the structure of the phenotype (see section 2.4.2 and the explanation

given below of the genetic operators used). The next two numbers of each gene specified the x

and y coordinates of the corresponding neuron’s position within the developmental space. The

fourth number specified the neuron’s threshold, and the fifth number specified the neuron’s decay

constant. The next six numbers specified the target positions and weights for two connections to

other neurons from the neuron in question, and the next two numbers specified the target positions

and weights for two connections from other neurons to the neuron in question.

Genetic algorithm and genetic operators

The genetic algorithm was a simple generational model with truncation selection and elitism.

Mutation locking (see section 2.4.2) was also implemented. After evaluating every member of

the population, the next generation was formed by asexually producing the required number of

offspring. At each offspring event, a parent genotype was selected at random from the fittest

50% of the population and subjected to a number of different forms of mutation to produce an

offspring. First of all, every unlocked gene on the genotype had a 0.05 chance of undergoing a

major ‘innovative’ mutation which involved being completely randomized and having its age reset

to zero. Secondly, every parameter on the genotype, including those of genes that were mutation

locked had a small chance of undergoing a ‘tuning’ mutation: the adding of a random offset in the

range
�

5%. The number of tuning mutations per genotype was picked from a Poisson distribution

with an expected number of 5. Finally, there was a chance of 0.01 of both adding a completely

random gene aged zero or deleting a randomly selected unlocked gene entirely. After enough
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Figure 8.5: A view of the gantry robot taken di-

rectly from the panning camera head. The gantry,

visible on the left of the image, has had a large dark

cylinder of paper with vertical white wavy lines

wrapped around it.

Figure 8.6: A view of the gantry robot taken di-

rectly from the panning camera head. The gantry,

visible on the right of the image, has had a small

white cylinder of paper attached to the side of the

gantry facing the camera.

offspring had been generated, the age of every gene of every individual in the population was

increased by 1. Those genes that passed the age of 200 were regarded as mutation-locked and

made immune from both innovative mutations and deletion.

8.3 Experimental results

Out of a total of five runs with the parameter settings given above, only one run evolved networks

that could reliably track objects within the simulation, consistently achieving near-optimal fitness

on every fitness trial. Of the other four runs, two evolved networks that performed reasonably

satisfactory motion-tracking within the simulation, achieving an average of around 80% of max-

imum fitness on each complete fitness evaluation, and the other two evolved networks that were

only capable of reliably achieving around 50% of maximum fitness.

Figure 8.4 shows one of the networks that evolved to reliably perform motion-tracking behav-

ior within the simulation. The 1300 generations that this network took to evolve required around

24 hours to run on a Sun SPARC Ultra and simulated over 5 years’ worth of real world evolution.

The network employs a saccading strategy (Carpenter 1977) that tracks moving objects through

a series of jumps and pauses instead of moving smoothly and at the same speed as the object.

Furthermore, the strategy is directionally sensitive in that the network will only saccade to track

an object if it is moving away from the centre of the image towards the image boundary, and not if

it is moving towards the centre of the image from the image boundary. This directional sensitivity

means that the simulated camera only saccades in the direction of motion of the object.

In order to provide some objective evidence of its ability to transfer across the reality gap, the

network was downloaded onto the panning camera head set-up described at the beginning of this

chapter and subjected to a specially devised real-world tracking task involving the gantry robot

described in chapter 6. For this task, one of the long walls of the gantry arena was removed and

the remaining three walls were decorated in as random-looking a fashion as possible with pieces

of black, white and grey card. The head of the gantry robot was also decorated, and a short
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angle

time

angle

Figure 8.7: Each of these two traces derive from a continuous fifteen minute test of the ability of the neural

network of figure 8.4 to track moving objects in the real world. The left-hand trace resulted from testing on

the large dark object pattern of figure 8.5 and the right-hand trace resulted from testing on the small white

object pattern of figure 8.6. The thick light grey line in each of these traces plots the angular position of the

panning camera head’s field of view over time. The thin black line plots the relative angular position of the

centre of the moving object (i.e. the gantry robot) over time.

computer program was written that made it parade up and down the arena, parallel to the missing

wall, and changing speed and direction at random. The panning camera head was then positioned

half way down the length of the missing wall, just outside the arena and facing inwards. The task

was to track the randomly patterned object, provided by the gantry robot, as it moved against the

randomly patterned background, provided by the remaining three walls of the gantry arena.

Figures 8.5 and 8.6 show images (taken directly from the panning camera head) of the gantry

robot decorated as two different patterned objects and viewed against the randomly patterned

background provided by the walls of the arena. The network was tested continuously for fifteen

minutes on each of these two object patterns and the angular position of both the panning camera

head and the gantry robot relative to the panning camera head were automatically and continuously

recorded during each test. Figure 8.7 shows two traces, one for each fifteen minute test, of these

angular positions plotted over time. The thick light grey line in each of these traces plots the

angular position of the panning camera head’s field of view over time. The thin black line plots

the relative angular position of the centre of the moving object (i.e. the gantry robot) over time.

In total, the network kept the large dark object pattern of figure 8.5 within the field of view of the
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tracking camera for 91% of the fifteen minute test period. It kept the small white object pattern of

figure 8.6 within the field of view of the tracking camera for 92% of the fifteen minute test period.

8.4 Comments

The minimal simulation used in these experiments relied heavily on the fact that reliably fit con-

trollers, evolved in a simulation with very inaccurate base set aspects and lots of implementation

aspects, are just as likely as any others to cross the reality gap provided that the right amount of

random variation is included in the simulation in the right way according to the methodology laid

out in section 3.4. This meant that a fast-running, easy to implement model of how objects affected

controller input could be used to successfully evolve real-world tracking behaviours even though

it was inaccurate to the point of naivety. The savings in both construction time and running time

due to the simplicity of this model are both especially apparent when one considers the computa-

tionally intensive ray-tracing algorithms, empirically derived reflection coefficients and so on that

are part and parcel of more conventional visual simulations.

The novel neural networks used in these experiments seemed to work well, but only after an

extra preprocessing stage had been implemented. This extra stage meant that neurons responded

to sudden changes in the values of the 32 pixel fields rather than the values themselves. With

all else being equal, therefore, neuronal input was a direct consequence of image motion. The

experimental results should be viewed with this in mind, since this preprocessing stage greatly

simplified one crucial aspect of the motion-tracking task: that of reacting to image motion in

the first place. However, this should not detract from the fact that the evolved motion-tracing

networks performed a complicated real-world behaviour. Even given image motion for free, they

discriminated image motion due to the target object from image motion due to the movement of

the camera, executed well-timed saccades to track the target object, and executed these saccades

only in the direction of movement of the target object to minimize the risk of losing it from the

field of view.



Chapter 9

Conclusions

The fact that this thesis tackles one of the most pressing challenges for Evolutionary Robotics at the

moment opens the door for research into how to tackle many of the others. At the time of writing,

in the EASY group at Sussex University and elsewhere, researchers are using minimal simulations

to investigate various issues including: the evolution of diffusing gas networks for robot control

(Husbands 1998), the effects of noise on the evolution of complexity (Seth 1998), robot football

(Smith 1998), encoding schemes for evolving repeated structure, and even whether evolution is

the best search strategy for automatically designing robot controllers in the first place. The point

is that all of these people are doing real Evolutionary Robotics research into non-trivial problems

without having to work with real robots, and without having to spend too much time actually

evolving. In that it allows researchers to focus their attention on issues that would otherwise not

be practical to explore, this thesis pushes Evolutionary Robotics one step further towards seriously

competing with more traditional techniques for the design of robot controllers. Below the major

contributions of the thesis are examined in turn and directions for future work are highlighted in

each case.

The arguments of chapter 3 that led finally to a step by step guide to building a minimal

simulation for Evolutionary Robotics proceeded in three stages:

1. The inevitable differences between simulation and reality were examined, and the reasons
why some controllers can overcome these differences to successfully transfer into reality
while others cannot were identified. This lead to the development of two conditions that
controllers must fulfill if they are to cross from simulation into reality.

2. In order for it to be possible that controllers can fulfill these conditions, a simulation must
model certain real-world features and processes, and these were identified. A simulation
that models no more than the minimum necessary was labelled a minimal simulation.

3. By no means every controller evolved in a minimal simulation will fulfill the conditions for
successful transfer, and techniques were proposed for using the evolutionary process itself
to force evolving controllers to meet them. Controllers are not only evolved to perform a
specific behaviour within a minimal simulation, therefore, they are also evolved to fulfill the
conditions for successful transfer into reality.

One very important point to notice in terms of directions for future work is that only the last of
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these three stages actually refers to the evolutionary process itself, and although the minimal sim-

ulation approach was developed for use in Evolutionary Robotics, there are many other branches

of adaptive robotics that could also benefit from fast-running easy-to-build simulations. The first

stage identifies conditions that controllers must fulfill if they are to cross into reality and the sec-

ond stage identifies the minimal simulations in which such conditions can be met: both of which

remain true no matter how controllers come about. Only the third stage refers to the evolution-

ary process (by proposing techniques for forcing controllers that evolve to perform a particular

behaviour to also fulfill the conditions for successful transfer), and we can imagine similar third

stages for adaptive processes other than evolution. For example, very similar techniques might

be used to force controllers which learn to perform a particular behaviour over a number of tri-

als within a minimal simulation to also fulfill the conditions for successful transfer. In this way,

minimal simulations may turn out to have far-reaching consequences for the adaptive robotics

community as a whole, and not just for those interested in evolutionary approaches.

Chapter 4 presented a formal treatment of the theory behind minimal simulations. It intro-

duced a logical formalism for reasoning about controllers performing behaviours in environments

and derived a minimal set of conditions for successfully crossing the reality gap from the same set

of assumptions as those made in chapter 3. The fact that these conditions corresponded closely to

those put forward in chapter 3 provides good evidence for the logical soundness of the arguments

underlying the minimal simulation approach. The fact that they did not correspond exactly, how-

ever, highlights the fact that it is never possible to be 100% certain that an evolved controller will

successfully transfer from a minimal simulation into reality, only extremely confident. In practice,

it was argued, this is all we need. The formalism introduced in this chapter should be seen as part

of the ongoing research effort being undertaken by several researchers to find general techniques

for reasoning in principled ways about agents performing behaviours in environments (Smithers

1994; Beer 1995a; Pfeifer and Scheier 1998). Future successes in this area may help us to both

understand existing robot behaviours and design new ones.

Using minimal simulations built according to the methodology of chapter 3, in conjunction

with many of the techniques described in chapter 2, controllers were evolved that could perform

the following behaviours:

� T-maze solving behaviour for a Khepera robot. A T-maze environment was constructed
in which a beam of light could be shone across the the first corridor from either side. Con-
trollers were evolved to guide a Khepera robot through the T-maze, ‘remembering’ from
which side the beam of light was shone and turning down the corresponding corridor arm at
the junction.

� Shape-discrimination behaviour for the gantry robot. An equilateral triangle and a
square of white paper were both stuck onto a long wall of an otherwise black arena. Starting
from different positions and orientations, controllers were evolved to steer the gantry robot
towards the triangle while ignoring the square.

� Walking and obstacle-avoiding behaviour for an octopod robot. Controllers were evolved
to make the octopod robot walk around its environment, turning away from objects that fall
within range of the IR sensors and backing away from objects that touch the front bumpers
and whiskers.

� Motion-tracking behaviour for a panning camera-head. Controllers were evolved to
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make a simple panning camera-head track arbitrarily patterned objects as they moved against
arbitrarily patterned backgrounds.

In each case, controllers were evolved in a matter of hours using minimal simulations that would

otherwise have taken months or even years to evolve in reality; they also successfully transfered

onto the real robots.

In (Mataric and Cliff), the authors suggest that as robots and the behaviours we want to evolve

for them become more and more complex, simulations will become either so computationally

expensive that all speed advantages over real-world evolution will be lost, or so hard to design that

the time taken in development will outweigh the time saved in reality. This thesis has demonstrated

that for certain types of behaviours and robots, at least, this will not be the case. The experiments

of chapters 6 and chapter 8, for instance, show that it is possible to create minimal simulations for

robots which employ complex sensory modalities such as vision, and the experiments of chapter

7 show that it is possible to create minimal simulations for robots that require complex motor

coordination. The experiments of chapter 5, while not involving the evolution of behaviours that

are particularly complicated in themselves, show that it is possible to create minimal simulations

for the evolution of behaviours that are. To illustrate this, consider a slightly extended version of

the minimal simulation used in these experiments in which the robot is not just presented with a

single junction at the end of the first corridor but a whole series of junctions that together add up to

a complex maze. In the first corridor, furthermore, the robot does not just pass a single light signal

but a whole series, placed one after another, some on the left and some on the right, that together

signal the correct path through the maze that follows. This is an extremely complex behaviour to

evolve by today’s standards of what can and cannot be evolved, and yet the necessary minimal

simulation remains simple and fast.

The point is that whether a minimal simulation is easy to construct and runs fast depends not

on the complexity of the behaviour we want to evolve using it, nor on the complexity of the robot

that it simulates, but only on the complexity of the base set of environmental features necessary

to underly the behaviour for that robot. Provided these are simple enough, then the behaviour

and/or robot can be arbitrarily complex. It is too early to say much about the complexity of the

robot-environment interactions employed by the robots and control architectures of the future, but

consider two points. Firstly, results in insect and invertebrate neuroscience suggest that many com-

plex behaviours are often accomplished by way of simple interactions with the environment rather

than complicated ones (Collett 1996; Wehner 1987; Horridge 1992). And secondly, control strate-

gies grounded in complex robot-environment interactions can lead to prohibitively heavy real-time

processing requirements (Brooks 1991b): a fact that has fuelled the trend in mobile robotics over

the last few years from the internal world model making robots of the seventies (Nilsson 1984) to

the current low level behaviour based robotics of the present day (Chiel, Beer, Quinn, and Espen-

schied 1992). Whether the Minimal Simulation approach will scale up, therefore, remains to be

seen.
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