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Abstract. We present a purely vision-based scheme for learning a topological representation of an open

environment. The system represents selected places by local views of the surrounding scene, and finds
traversable paths between them. The set of recorded views and their connections are combined into a

graph model of the environment. To navigate between views connected in the graph, we employ a homing

strategy inspired by findings of insect ethology. In robot experiments, we demonstrate that complex visual

exploration and navigation tasks can thus be performed without using metric information.

1. Introduction

To survive in unpredictable and sometimes hos-
tile environments animals have developed pow-
erful strategies to find back to their shelter or
to a previously visited food source. Successful
navigation behaviour can already be achieved us-
ing simple reactive mechanisms such as associa-
tion of landmarks with movements (Wehner et
al. 1996) or tracking of environmental features
(Collett 1996). However, for complex navigation
tasks extending beyond the current sensory hori-
zon, some form of spatial representation is nec-
essary. Higher vertebrates appear to construct
representations — sometimes referred to as cog-
nitive maps — which encode spatial relations be-
tween relevant locations in their environment (see
O’Keefe & Nadel, 1978, and Gallistel, 1990, for
reviews).

Under certain conditions, such maps can be
acquired visually without any metric informa-
tion. Humans, for instance, are able to nav-
igate in unknown environments after presenta-
tion of sequences of connected views (e.g. O’Neill,
1991; Gillner & Mallot, 1997). In classical Arti-
ficial Intelligence research, however, robotics ap-
proaches have focused on constructing accurate

global metric representations, based on a variety
of mostly non-visual sensors. Besides the high
computational costs, such geometric models tend
to contain a large amount of irrelevant information
while the cues that lead to their construction are
not specifically represented. Recently, researchers
have started to investigate more task-oriented rep-
resentations based on topological spatial relations
(e.g., Kuipers and Byun, 1991; Mataric, 1991;
Bachelder and Waxman, 1995).

Many of these systems rely primarily on lo-
cal sonar patterns for the identification of places
which often are not distinctive enough to discrim-
inate between similar locations. For this rea-
son, additional metric information has to be in-
cluded into the representation to facilitate the
disambiguation task (e.g. compass information in
Kuipers & Byun, 1991). In contrast, visual sen-
sors can provide enough information to allow for
a purely topological approach. Bachelder & Wax-
man (1995), for instance, have reported results
on a neural control architecture based on object
recognition techniques for landmark detection. In
the current implementation, however, their system
has to rely on artificially illuminated buildings and
a pre-programmed path during exploration of the
environment.
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Fig. 1. 118 X 102 cm size test arena with toy houses.

In this study, we will present a system that
explores its environment autonomously without
making use of artificial beacons or landmarks.
Based on a simple behavioural architecture, it ac-
quires a topological representation consisting of lo-
cal views and their spatial relations, termed view
graph. For magze-like environments, Scholkopf and
Mallot (1995) have shown that learning a graph of
views and movement decisions is sufficient to gen-
erate various forms of navigation behaviour known
from rodents. This includes finding previously vis-
ited locations, or updating spatial representations
with egomotion information to maintain knowl-
edge about one’s position even when visual infor-
mation is temporary unavailable. The scheme has
subsequently been implemented in a mobile robot
(Mallot et al., 1995). The present study under-
takes to extend this approach from simple mazes
to open environments. We will demonstrate its
feasability and investigate some of its properties

and limitations.

In the next section, we describe the experimen-
tal setup, followed by an introduction of the re-
quired basic mechanisms in Section 3, namely the
procedures for homing and for selecting represen-
tative views. The integration of these procedures
into a complete system will be the focus of Section
4. We conclude our study by discussing experi-
mental results and possible extensions of the view

graph approach.

Fig. 2. Khepera™ robot with camera module and cus-
tom made conical mirror, which permits sampling of the
environment over 360°, in a range of £10° about the hori-
zon.

2. Experimental setup

Robot experiments were conducted in an arena
sized 118 x 102 cm. Visual cues were provided
by model houses and landmarks surrounding the
arena (see Fig. 1). We used a modified Khepera
miniature robot (Fig. 2) connected to an SGI Indy
workstation via a serial and video transmission ca-
ble. Obstacles in a range between 0.5 cm and 2 cm
were detected with 8 infrared proximity detectors.

The imaging system on the robot comprises a
conical mirror mounted above a small video cam-
era which points up to the center of the cone
(Fig. 2). This configuration allows for a 360° hor-
izontal field of view extending from 10° below to
10° above the horizon. A similar imaging tech-
nique was used by Chahl and Srinivasan (1996)
and Yagi, Nishizawa, & Yachida (1995). The video
image was sampled on four rings along the horizon
with a resolution of 4.6° and averaged vertically
to provide robustness against inaccuracies in the
imaging system and tilt of the robot platform. In
a subsequent processing stage, a spatiotemporal
Wiener lowpass filter (e.g. Goldman, 1953) was
applied to the resulting one-dimensional array. To
remove changes in the illumination, the average
background component was subtracted and, in a
final step, the contrast of the array was enhanced
via histogram equalization. The movement com-
mands calculated from this data were transmitted
back to the robot using a serial data link with a
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Fig. 8. Sketch of a view manifold, consisting of all views
that can be seen by a continuously moving observer. The
manifold is embedded in a Euclidean space whose dimen-
sionality is the number of camera pixels. The actual struc-
ture of the manifold is much more complicated, with holes
caused by obstacles, and a tubular structure due to the
possibility to take snapshots at all orientations between 0°
and 360°. Point P marks a singularity of the coordinate
system inherited from position space: If one moves along
the dotted path, the same view occurs twice at different
spatial locations.

maximal transmission rate of 12 commands per
second.

The Khepera’s position was tracked with a cam-
era mounted above the arena. Position and image
data were recorded with a time stamp and syn-
chronized offline. Position information was not
available to the robot during the experiments.

Computer simulations were done in a two-
dimensional environment consisting of triangles
of random size and shading (Franz et al., 1997).
Views were computed with standard ray-tracing
techniques, while the control architecture was
identical to the one used in the real-world experi-
ments.

3. Basic Mechanisms for Navigating in

Open Environments
3.1. Discrete Representation of Continuous
Space

In view-based navigation tasks, visual informa-
tion is used to guide an agent through space.
The reason why this is feasible at all, is the fact
that there is a continuous mapping between po-
sition space (x- and y-coordinates, possibly sup-
plemented by gaze directions) and the space of all
possible views: for each spatial position, a certain
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view is perceived, and this view changes contin-
uously as the observer moves around in space.!
Unfortunately, this mapping can be singular, as
identical views can occur at different spatial loca-
tions, i.e. there is no guarantee for the existance of
a global coordinate system on the manifold of all
possible views (cf. Fig. 3). In principle, this prob-
lem can be dealt with using context information:
In points with identical views, we can use neigh-
bouring views to find the most likely associated
position.

Complete knowledge of this manifold would be
very useful to determine one’s spatial position.
Memory and computation requirements, however,
prohibit storing everything. Moreover, if we are
not interested in determining positions at arbi-
trary times but rather in carrying out specific nav-
igation tasks, as for instance path planning, this is
not at all necessary. In that case, it is sufficient to
store views which allow the description of relevant
paths. This leads to a less detailed representation
of the view manifold, namely by a graph of repre-
sentative views and connections between them.

In discretized environments like mazes, there is
a canonical set of views to store: since no move-
ment decisions need to be taken while travers-
ing corridors, the views necessary to support path
planning are solely those at junctions. As open
environments do not impose a structure on the
view graph, we have to select a set of views which
are representative for the manifold (in the follow-
ing referred to as snapshots), and to find edges
between them.

If we restrict ourselves to the use of purely
topological information, i.e.; we do not label the
graph edges with directions, it is necessary to use
a method which allows us to find connected views
from a given start view. We will refer to such a
method as homing. In the followingsection, we de-
scribe the two crucial components of our scheme:
The procedures for homing and for taking snap-
shots.

3.2.  Nauigating between Places: Scene-based

Homing

A location may be identified visually using one
of two methods: First, by association with an im-
age of the location (recorded while approaching or
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Fig. 4. A robot with omnidirectional sensor uses a snap-
shot taken during a previous visit to find back to the goal
position. The goal direction is in the image regions with
maximal contraction with respect to the snapshot (after
Cartwright & Collett, 1983).

leaving it), or second, by association with an im-
age of the scene as seen from the location. These
two methods depend on the visual characteristics
of the location and determine how such a snap-
shot can be used to recover its associated spa-
tial position: If the location itself is marked by
salient optical features, these can be tracked until
the goal is reached (e.g. Collett 1996). If there are
no such features, the location has to be defined
by its relational properties, e.g., with respect to
an array of surrounding landmarks. After a dis-
placement, the direction back to the location can
be inferred by comparing the current visual input
to the snapshot: Image regions in the direction of
the displacement are expanded while the image in
the goal direction is contracted. Driving into the
direction of maximal image contraction eventually
leads to the goal position (Fig. 4).

A number of experiments have shown that in-
vertebrates such as bees or ants are able to pin-
point a location defined by an array of nearby
landmarks (see Collett 1992 for a review). Appar-
ently, these insects search for their goal at places
where the retinal image forms the best match to
a memorized snapshot. Cartwright and Collett
(1983) have put forward the hypothesis that bees
might be able to actively extract the goal direc-
tion by a mechanism using the azimuth and size
change of visible objects after a displacement.

As robots usually move in the open space be-
tween obstacles, such an approach is especially
suitable for robot implementation. In order to
apply the idea of Cartwright & Collett (1983) to
robotic homing tasks, two basic problems have to
be solved:

1. Correspondences between image points in the
snapshot and in the current view must be es-
tablished to detect disparities between them.

2. If a visually navigating agent has no direct
access to the actual distance of the surround-
ing landmarks, this lack of knowledge must
be compensated by some additional assump-
tion about the distance distribution of possi-
ble landmarks in the environment.

In our approach (Franz, Schélkopf & Biilthoff,
1997), we assume that all visible landmarks have
approximately the same distance from the loca-
tion of the snapshot. The resulting disparity fields
have a very simple structure and can be used as
matched filters: From a variety of these predefined
disparity fields, we determine the degree of match
to the actual disparities. The best match is used
to estimate the driving direction by finding the
maximally contracted image region.

It can be shown mathematically that the goal
can be approached with arbitrary accuracy even
though the differences in the distances to the
individual landmarks are neglected, and that
each snapshot is surrounded by a catchment area
(Franz, Schélkopf & Bilthoff, 1997). In practice,
the accuracy depends mainly on the noise proper-
ties of the detector ring, since a displacement can
only be detected if it generates sufficient change
in the detector signal. In our experimental setup,
this was usually the case at distances from the goal
in the range of 1 to 3 cm, depending on the dis-
tances of the surrounding landmarks. The size of
the catchment area for a single snapshot is mainly
determined by the layout of the environment. In
our toy house arena, maximum homing distances
of 45 cm were achieved. The success rate was
95 % for homing distances smaller than 15 c¢m,
and dropped to 50 % in the range of 20 to 25 cm.

The matching of three parameters requires min-
imal computational resources compared to other
methods for image matching. On an SGI Indy
workstation, the calculation of a home vector from
78-dimensional views took less than 40 ms which
allows real time image processing at video rate.
The continuous home vector computation results
in smooth trajectories to the home position.

The disparities in panoramic views after a dis-
placement have been used in several robotic sys-
tems for homing tasks. E.g., Hong et al. (1991)



identified and matched image features in images
with constant orientation. They used this scheme
to successfully guide a mobile robot along a corri-
dor. In Rofer’s system (1995), a Kohonen network
had to learn the correspondence between snapshot
and current view. Both approaches assume an
approximately isotropic landmark distribution for
the computation of the driving direction.

3.83.  Sampling the View Manifold with Snapshots

In our robot implementation, the vertices of the
view graph are identified with snapshots of the
surrounding panorama, namely one-dimensional
360° records of the grey values at the horizon.
While this limitation to a small subregion of the
image discards potentially useful information, the
omnidirectional image of the horizon has several
advantages: 1. The small number of 78 pixels
allows real-time processing with small computa-
tional resources. 2. Landmarks at the horizon do
not leave the field of view during rotation and
translation unless they become occluded. 3. Rota-
tional and translational disparity fields sampled in
a 360° field of view can easily be separated (Nelson
& Aloimonos, 1988). 4. A 360° field of view makes
the recognition of views relatively robust against
changes affecting only parts of the panorama, e.g.
moving persons. 5. Places can be encoded by a
single view without the need to integrate partial
views into a place representation.

Ideally, the set of snapshots taken to represent
a given environment should satisfy three crite-
ria: First, the views should be distinguishable.
In purely graph-based maps, this is the only way
to guarantee that specific vertices can be navi-
gated to. This can be achieved by incorporating
only distinct views into the graph. Second, a large
proportion of the view manifold should be covered
with a small number of vertices to keep processing
requirements small. Third, the spatial distance of
neighbouring views should be small enough to al-
low reliable navigation between them.

As we confine our system to use only visual in-
put, the selection of the snapshots must be based
on the current view and the stored snapshots. The
criteria can be fulfilled by measuring the degree
of similarity between views: Dissimilar views are
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Fig. 5. Success rates (in %) for travelling between views
with various image distances. In each bin, 20 pairs were
tested. Light grey bars are results for pairs connected by a
direct line of sight, dark bars for pairs without restrictions.
The dashed line marks the threshold © of the classifier;

image distances are measured in units of ©.

distant on the view manifold and distinguishable
by definition, and similar views often are spatially
close.

Measuring similarity can be viewed as a pattern
classification problem. We take a minimalistic ap-
proach by using the maximal pixel-wise crosscor-
relation as a measure of similarity. This is equiv-
alent to the Euclidean distance of two view vec-
tors, after first rotating one of them such as to
maximize the overlap with the other one. When-
ever a threshold of the image distance to all stored
snapshots is exceeded by the current view, a new
snapshot is taken. The threshold is chosen to en-
sure that the snapshots are both distinguishable
and close enough to allow safe navigation between
them. Clearly, such a classifier can also be used
to detect the proximity of already recorded snap-
shots and thus allows us to find already visited
locations. We will use this classifier for both tasks
in our graph learning system (see Sec. 3).

In order to find the threshold value of the im-
age distance, we made the following experiment
(Fig. 5): During a test run, the robot covered
the entire free space of the arena with snapshots
spaced at most 2 cm apart. From these snapshots,
view pairs were selected randomly and their im-
age distance was computed. The range of image
distances was divided into 6 bins. For each bin,
homing runs for 20 different view pairs were per-
formed. A run was counted as a success if the
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Fig. 6. Map of image distances to a snapshot at the cen-
ter of the arena. Darker regions represent lower image dis-
tances. White contours enclose regions with an image dis-
tance below the threshold ®. Hashed regions mark the
shape and position of the toy houses in Fig. 1

robot reached a 2 cm circle around the home po-
sition in less than 30 s.

Since the classifier will be used for two different
tasks, 20 view pairs were generated for each of the
following two categories: 1. Pairs connected by a
direct line of sight are relevant for the selection of
snapshots, since there must be traversable space
between them during exploration. 2. For edge ver-
ification (see Sec. 4.1), no restrictions on the set
of possible views can be made. Figure 5 shows
the success rate for both categories. We have cho-
sen the threshold value © (dashed line) such that
vertices connected by a direct line of sight can be
reached in 90% of all cases (light grey bars). For
the general case (dark bars), where the path may
be blocked by obstacles, at least 70% of all vertices
with image distance below © can still be found by
the homing procedure.

As an example, we have computed the im-
age distance map to a snapshot at the center of
the arena for the view dataset mentioned above
(Fig. 6). Regions with image distances below ©
are surrounded by white contours. If the robot
starts at the center, the next snapshot would be
taken after the white contour is crossed. This
leads to a spacing of the snapshots between 5 and
15 c¢m, depending on the variability of the visual
input. If the threshold is used to detect proxim-
ity, there are several regions with false positives.
This is partly due to the low resolution and con-
trast of the mirror optic of the robot and partly
due to the occurrence of similar views in different
parts of the arena. As a consequence, the chosen
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Fig. 7. Block diagram of the graph learning algorithm.

experimental setup allows for the study of all the
relevant cases discussed in Section 3.1. The num-
ber of snapshots that can be distinguished using
this classifier usually falls in a range between 25
and 40, depending on the start position.

4. Graph Learning

In order to learn view graphs, the two procedures
described above for taking snapshots and homing
towards them have to be complemented by addi-

tional building blocks (cf. Fig. 7):

4.1. A Minimalistic System for Learning a View
Graph

Route learning. As explained before, the system
uses a classifier to ensure that all recorded views
are sufficiently distinct. If the image distance of
the current view to the stored snapshots exceeds
a threshold value, the robot takes a new snapshot
and edges it to the last one. In this way, the clas-
sifier adapts the spacing between the snapshots to
the rate of change in the optical input. Thus, ar-
eas which have to be covered by a denser net of
snapshots, due to a rapid change of views, are also
explored more thoroughly (Kinesis).

This route learning procedure has no way of
forming new edges to previously visited views,
i.e. the resulting graphs will be mere chains. By
adding the following simple behaviour we can get
nontrivial graphs:



Edge verification. Whenever the image distance
between the current view and an unconnected ver-
tex drops below the threshold, the robot decides
to home to this vertex. If homing is successful,
we include the newly learnt edge into the graph.
In cases where the robot gets lost or bumps into
obstacles, we start a new graph, which will typi-
cally get connected to the old one in due course.
Thus, the classifier has two tasks in our system:
to decide when to take snapshots and to detect
candidates for overlaps between the chains of the
graph.

If a view is encountered during an exploration
step which is already connected the system homes
to it as well. This procedure does not produce ad-
ditional knowledge, but has the effect that edges
intersecting previously stored edges are less likely
to be recorded. Edge verification could in princi-
ple also be used for the edges learnt by the route
learning procedure. For reasons of excessive ex-
ploration times, we did not resort to this more
cautious strategy.

Choice of exploration direction. When the robot
has taken a new snapshot, or when it has homed
to a vertex, a new exploration direction must be
chosen. This choice primarily determines the ez-
ploration strategy of our system. While the clas-
sifier influences the spacing of the snapshots and
the frequency of verification runs, the exploration
strategy affects the overall connectivity and the
spatial extent of the view graph. Clearly, a high
number of stored snapshots is desirable in order to
represent the environment accurately. However,
if the snapshots are not sufficiently connected by
edges, they are not useful for path planning. In
addition, the distribution of the snapshots in space
is equally important as their number. In the
next section, we describe several local exploration
strategies used in our system.

4.2. Local Ezxploration Strategies for Graph
Learning

The exploration strategies used by our robot have
been motivated by the principle of mazrimizing
knowledge gain (Thrun, 1995). As we have not
formalized any notion of knowledge, this principle
was used as a qualitative guideline. In our context,
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knowledge gain is possible, for instance, through
the recording of new edges and new snapshots.
In the following, we describe several exploration
strategies, which, in our case, concern primarily
the choice of the next direction to explore after
a snapshot has been taken, or a vertex has been
reached.

Ezploration direction during route learning. The
simplest conceivable rule is to choose a random
direction and then to go straight until the next
snapshot. The resulting Brownian motion pattern
has the advantage that eventually every accessible
point of the environment will be explored without
the danger that the exploring agent is caught in
an infinite loop. Good results can also be achieved
if one uses a fixed turning angle. Using smaller
angles distant areas are reached faster, whereas
angles closer to m lead to a more thorough explo-
ration of the local neighbourhood.

Ezploration of the largest open angle. Our nav-
igation scheme is designed such that all vertices
of the view graph remain in the catchment ar-
eas of their respective neighbours. This property
can be used to choose the next exploration direc-
tion: The system determines the home vectors to
all neighbouring vertices and directs the next ex-
ploration step to the largest open angle. Alter-
natively, one could use information about neigh-
bouring vertices, such as their connectivity or sim-
ilarity. E.g., exploring areas where neighbouring
views are connected to each other would be more
likely to lead to undesired edge intersections.

Limiting the connectivity of vertices. The effec-
tivity of exploration can be increased by limiting
the number of edges a vertex can have. Similarly,
the largest open angle can also be used to deter-
mine whether a vertex has been fully explored.
If the largest open angle is smaller than a pre-
set value, or the number of edges is higher than a
threshold, the system can move on to other ver-
tices. Using this strategy, exploration tends to
spread out to less explored vertices and areas.

Non-edges. The graph produced by the naviga-
tion system so far includes no information about
failed actions such as obstacles encountered dur-
ing exploration, or failed verification of shortcuts.
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Fig. 8. Robot trajectory during an exploration run. Cir-
cles denote locations of snapshots, dotted lines recorded
edges.

The exploration can be made far more effective
by memorizing failed actions as “non-edges”, thus
preventing them from being repeated. This is also
a way of including information about obstacles in
the graph structure.

In this study, we were only interested in evalu-
ating the performance of local rules, but the ap-
proach can easily be extended to include global
rules such as searching the graph for less explored
vertices, or deleting unnecessary edges. The graph
structure is also influenced, to a lesser extent, by
the obstacle avoidance behaviour of the robot.

Behaviour near obstacles. Distance sensors, to-
gether with low-level obstacle avoidance be-
haviours, are used to keep the robot away from
obstacles. Typically, the visual input changes
very rapidly near objects. Exploration of these
areas thus requires a large number of snapshots
which, in complex natural environments, would
ultimately lead to a fractal graph structure near
objects. To prevent the navigation system from
becoming ineffective, the robot is not allowed to
take new snapshots if nearby objects are detected
by proximity sensors. The resulting graph struc-
ture tends to concentrate in the open space be-
tween obstacles.

Figure § illustrates some features of the graph
learning scheme. The system starts by recording
a chain of vertices 1 to 4, turning at a fixed angle
of 90° after each snapshot. After leaving vertex
4, the proximity of vertex 1 is detected. The edge
verification procedure establishes a new edge be-

400F
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Fig. 9. Number of graph vertices and edges as a function
of exploration time during a simulated exploration. The
number of edges continues increasing when the number of
vertices has saturated. The simulated world can be tra-
versed in approximately 30 time units.

tween vertex 1 and vertex 4 by homing to vertex
1. The next exploration direction is chosen to fall
into the largest open angle, where the robot col-
lides with an obstacle and backs up. It continues
exploring until the momentary view becomes suf-
ficiently different from all stored snapshots and
starts a new graph by recording vertex 5. This
time, the proximity of vertex 2 is detected, and a
new edge between vertex 2 and 5 is established,
connecting the two subgraphs.

The accumulation of knowledge over time can
be seen from the results of a simulated explo-
ration (Fig. 9): We first observe an increase in the
number of both graph vertices and edges. How-
ever, after some time almost no new snapshots are
taken — the view manifold has been sufficiently
densely sampled, while the verification procedure
still adds new edges to the graph.

4.3.  Ezamples of view graphs

Figure 10 shows two examples of view graphs G
and (G5 taken in the same environment with dif-
ferent start positions. (G1 contains 35 vertices and
50 edges, Gy 21 vertices and 32 edges. After ex-
ploration (G 75 min, Gz 60 min) all unconnected
vertices (6 in Gp, 4 in G3) were deleted from the
graph. 89% of the edges in G; and 97% in G4
could be reproduced in a subsequent homing ex-
periment. Note, that unreproducible edges do not
render the graph useless for navigation. Since the
threshold of the classifier is chosen such that the
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Two view graphs with different start positions S. Circles denote locations of snapshots, lines recorded edges

between them. The sample trajectory in G started at vertex 1. Vertex L is a possible linking place between G and G3

(See discussion).

vertices remain in the catchment areas of their
neighbours, the system does not lose orientation
if a particular vertex cannot be found.

Both graphs cover more than half of the open
space in the arena. The connectivity of the graphs
reflects the topological relations of the environ-
ment. As discussed above, the system records
only snapshots which are sufficiently distinguish-
able. This limits the number of snapshots taken
in a given setup. As a consequence, systems like
ours that use only topological information during
exploration are necessarily confined to a subregion
of the arena, where the visual information remains
unambiguous.

Once the graph has been learnt, one can gen-
erate a path to a goal by search algorithms, e.g.,

metric distance
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Fig. 11. Scatterplot of metric distance vs. graph distance
for all connected view pairs of the graph G (Fig. 10). The
correlation indicates that graph distance contains informa-
tion on metric distance.

as described by Schélkopf and Mallot (1995), and
then sequentially navigate along this path by hom-
ing. The usefulness of the view graph for global
navigation tasks is illustrated by the sample tra-
jectory in G, (Fig. 10).
chain of 10 vertices, thus connecting regions which
have no visual overlap.

The robot traverses a

The final analysis sheds some light on the re-
lationship between topological (i.e. graph-based)
and metrical maps. For all view pairs in the graph
G1, we computed both the graph distance (some-
times called combinatorial distance) and the Eu-
clidean distance in space. It turned out that in
our experimental setup, the two distance mea-
sures are strongly correlated (Fig. 11). This means
that even though our system has not acquired ex-
plicit metrical information during exploration (no
distances or angles were recorded), the resulting
topological map does nevertheless contain some
information about metric distances.

5. Discussion

In this study, we presented a system which is
able to acquire a graph representation of an open
environment using only visual information. The
purely topological approach relies on the availabil-
ity of a homing mechanism to reach neighbouring
vertices and a simple threshold classifier for select-
ing snapshots. The robot implementation demon-
strates that complex exploration and navigation
tasks can be performed without resorting to met-
ric information.
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Our experiments have also shown a principal
limitation of systems that have no access to metric
information during exploration: Only areas pro-
viding non-ambiguous information can be mapped
reliably. Although the 78-dimensional views used
in our system are able to encode more places than,
e.g., the relatively low-dimensional signatures of
ultrasonic sensor rings, the range of the system
could probably be further improved by using views
with higher resolution in combination with more
sophisticated classifiers. In addition, views could
be made more distinct by considering also their
context in the graph, as proposed by Kuipers &
Byun (1991) for place identification. Similarly, the
neural architecture of Scolkopf & Mallot (1995)
utilizes lateral weights to bias view recognition by
topological context.

A simple solution to the problem of ambiguous
visual input is to use distances and directions for
disambiguation. Once the topological representa-
tion is learnt, no metric information is needed for
navigation tasks since the vertices are uniquely de-
fined by their context. In fact, Piaget & Inhelder
(1967) proposed a similar idea in their theory of
early spatial knowledge: While children do not ap-
pear to memorize explicit metric information, they
seem to use it when they learn to orient themselves
in their environment.

Note that disambiguation can also be performed
without using metric information by including lo-
cal graphs such as G; and G5 in Fig. 10 in a collec-
tion of linked graphs. Common vertices between
subgraphs have to be marked as linking places to
allow transitions between them (Poucet, 1993). In
our example (Fig. 10), vertex L is common both
to G1 and G5 and could be used to switch from
one subgraph to the other.

Using a purely topological representation, our
system 1s necessarily confined to the known path
segments coded in the graph. Although it is able
to detect neighbouring unconnected vertices, there
is no simple way to find novel paths over terrain
not contained in the catchment areas of recorded
views. However, our experiments have shown that
our simple topological representation contains im-
plicit metrical knowledge which might be used to
accomplish tasks ususally attributed to a metri-
cal representation. This has consequences for the
interpretation of experimental results: If an ani-

mal can be shown to utilize metrical information,
one cannot directly conclude that it was acquired
explicitly during exploration.

Although topological approaches show certain
disadvantages, it should be noted that a purely
metric representation contains no explicit infor-
mation on travellable paths. In cluttered environ-
ments, such a system may have problems to find
its destination, because dead ends or other block-
ages are not represented. Thus, a combination of
both approaches has the highest potential in terms
of navigation performance.

Several information sources can be integrated
into a common graph representation, with vertices
containing information about different sensory in-
put and internal states. Lieblich and Arbib (1982)
propose that animals use a graph where vertices
correspond to recognizable situations. The same
idea was also used in the robot implementation of
Mataric (1991) where vertices are combinations of
robot motions with compass and ultrasonic sen-
sor readings. If metric information is available,
graph labels can include directions or distances to
the neighbouring vertices. This allows not only
for a wider spacing between snapshots but also to
find shortcuts between snapshot chains over un-
known terrain. A generalization of purely topolog-
ical maps are graphs where edges are labelled by
actions (e.g., Kuipers & Byun, 1988; Scholkopf &
Mallot, 1995; Bachelder & Waxman, 1995). This
way, systems can be built which do not depend
on just one type of action (in our case this was a
homing procedure). Although presented for nav-
igation problems, similar graph approaches may
well be feasible for other cognitive planning tasks,
along the lines of Tolman (1932).

Clearly, the system we presented here is ex-
tremely simple compared to biological systems.
Our intention is not to build models of animals,
but to identify some of the basic building blocks
that might play a role in biological navigation.
This focus on understanding and synthesizing be-
haviour in a task-oriented way leads to parsimo-
nious solutions with both technological and etho-
logical implications.
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Notes

1. If the views are recorded using sensors with overlapping
Gaussian receptive fields, the view will be a smooth
function of the position.
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