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Abstract
Robotic systems are becoming smaller, lower
power, and cheaper, enabling their application in
areas not previously considered.  This is true of
vision systems as well.  SRI’s Small Vision Module
(SVM) is a compact, inexpensive realtime device
for computing dense stereo range images, which
are a fundamental measurement supporting a wide
range of computer vision applications.  We
describe hardware and software issues in the
construction of the SVM, and survey implemented
systems that use a similar area correlation
algorithm on a variety of hardware.

1 Introduction
Realtime stereo analysis, until recently, has been

implemented in large custom hardware arrays
(Kanade 1996, Matthies 1995).  But computational
power and algorithmic advances have made it
possible to do such analysis on single processors.
At the same time, increased density, speed and
programmability of floating-point gate arrays
(FPGAs) make custom hardware a viable
alternative.  In this paper, we discuss the
implementation of area-based stereo algorithms on
microprocessors, and describe in detail one such
implementation, the SRI Small Vision Module
(SVM), which achieves realtime operation at low
power in a small package. We also survey area-
based implementations on microprocessors and
FPGAs, comparing speed and efficiency.

In a final section, we briefly describe some
experiments with the SVM related to mobile
robotics and human-computer interaction.  These
experiments make use of realtime stereo to segment
interesting objects from the background.

2 Area-correlation Stereo
Stereo analysis is the process of measuring

range to an object based on a comparison of the
object projection on two or more images.  The
fundamental problem in stereo analysis is finding
corresponding elements between the images.  Once

the match is made, the range to the object can be
computed using the image geometry.

Matching methods can be characterized as local
or global.  Local methods attempt to match small
regions of one image to another based on intrinsic
features of the region.  Global methods supplement
local methods by considering physical constraints
such as surface continuity or base-of-support.  Local
methods can be further classified by whether they
match discrete features among images, or correlate
a small area patch (Barnard and Fischler 1982).
Features are usually chosen to be lighting and
viewpoint-independent, e.g., corners are a natural
feature to use because the remain corners in almost
all projections.  Feature-based algorithms
compensate for viewpoint changes and camera
differences, and can produce rapid, robust
matching. But they have the disadvantage of
requiring perhaps expensive feature extraction, and
yielding only sparse range results.

Area correlation  compares small patches
among images using correlation.  The area size is a
compromise, since small areas are more likely to be
similar in images with different viewpoints, but
larger areas increase the signal-to-noise ratio.  In
contrast to the feature-based method, area-based
correlation produces dense results.  Because area
methods needn’t compute features, and have an
extremely regular algorithmic structure, they can
have optimized implementations.  The SVM and
other systems discussed in this paper all use area
correlation.

2.1 Area Correlation Method
The typical area correlation method has five

steps (see Figure 3):
1. Geometry correction.  In this step, distortions

in the input images are corrected by warping
into a “standard form”.

2. Image transform.  A local operator transforms
each pixel in the grayscale image into a more
appropriate form, e.g., normalizes it based on
average local intensity.



3. Area correlation.  This is the correlation step,
where each small area is compared with other
areas in its search window.

4. Extrema extraction.  The extreme value of the
correlation at each pixel is determined,
yielding a disparity image: each pixel value is
the disparity between left and right image
patches at the best match.

5. Post-filtering.  One or more filters clean up
noise in the disparity image result.

In the rest of this section we describe each of these
operations in more detail.

2.2 Epipolar Geometry
The fundamental geometry for stereo correlation

is the epipolar curve, illustrated in Figure 1.
Consider any point p in one image; the ray from p
through the focal point intercepts objects in the
scene at different depths.  The projection of this ray
in the second image is the epipolar curve associated
with p.  The geometric significance of this curve is
that, for any object imaged at p, the corresponding
point in the second image must lie on the epipolar
curve.  Thus, it suffices to search along this curve
when doing stereo matching.

If the images are ideal projections of a pinhole
camera, then the epipolar curves will be straight
lines.  For efficient processing, it is best to align
epipolar lines in a regular pattern, usually along the
scan lines of the camera.  To accomplish this, the
images must be in the same plane, with their scan
lines and image centers horizontally aligned, and
with the same focal length.  Stereo images with this
geometry are said to be in standard or scan-line
form.  In practice, it is difficult to achieve this
physical geometry precisely, and in some cases
vergence of the images is necessary to view close
objects.  However, if all internal and external
camera parameters are known, then it is possible to
warp each image so that it appears in standard
form.  In practice, it is difficult and time-
consuming to completely calibrate a stereo setup,
and repeated calibration necessitated by vibration

or other mechanical disturbances is not practical.
A compromise is to position the cameras in
approximately the correct geometry, and to
calibrate the internal camera parameters.  The
remaining offset parameters between the cameras
can be dealt with by auto-calibration, discussed in
Section 3.2.

2.3 Image Transforms and Correlation
Measures
Correlation of image areas is disturbed by

illumination, perspective, and imaging differences
among images.  Area correlation methods usually
attempt to compensate by correlating not the raw
intensity images, but some transform of the
intensities.  Table 1 lists some of the correlation
measures found in the literature.  There are three
basic types of transforms:
1.   Normalized intensities.  Each of the intensities

in a correlated area is normalized by the average
intensity in the area.

2.   Laplacian of gaussian (LOG).  The laplacian
measures directed edge intensities over some
area smoothed by the gaussian.  Typically the
standard deviation of the gaussian is 1-2 pixels.

3.   Nonparametric.     These transforms are an
attempt to deal with the problem of outliers,
which tend to overwhelm the correlation
measure, especially using a square difference.

Each of these transforms can be applied with
different correlation measures.  For example, LOG
correlations include correspondence of zero
crossings and their signs, and two measures of the
magnitude: square and absolute difference (also
called the L1 norm).

The census method computes a bit vector
describing the local environment of a pixel, and the
correlation measure is the Hamming distance
between two vectors.   This measure, as with other
nonparametric measures, addresses the problem of
outliers, which the square difference handles
poorly.  The L1 norm tends to weight outliers less
than the square difference, and is more amenable to
implementation on standard microprocessors,
which usually do not have the bit-counting
hardware necessary for computing Hamming
distance efficiently.

There has been relatively little work comparing
the quality of results from the different transforms.
Partly this results from the difficulty of getting good
ground truth test sets.  Some recent work (Zabih
and Woodfill 1997) comparing census and
normalized intensities on synthesized and real
images shows that census does better, in that it can
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Figure 1  An epipolar curve is the image in I2 of
a ray projected from a point of I1.



interpret more of the image correctly, especially at
depth discontinuities.  From the author’s
experience, the best quality results appear to come
from absolute difference of the LOG, and from
census.

Another technique for increasing the signal-to-
noise ratio of matches is to use more than two
images (Faugeras 1993).  This technique can also
overcome the problem of viewpoint occlusion,
where the matching part of an object does not
appear in the other image.  The simple technique of
adding the correlations between images at the same
disparity seems to work well (Kanada 1996).
Obviously, the computational expenditure for
multiple images is greater than for two.

2.4 Filtering
Dense range images usually contain false

matches that must be filtered, although this is less
of a problem with multiple-image methods.   Table
2 lists some of the post-filters that have been
discussed in the literature. The correlation surface
shape can be related to the uncertainty in the
match.  An interest operator gives high confidence
to areas that are textured in intensity, since flat
areas are subject to ambiguous matches.  The
left/right check looks for consistency in matching
from a fixed left image region to a set of right
image regions, and back again from the matched
right region to a set of left regions.  It is particularly
useful at range discontinuities, where directional
matching will yield different results.

Finally, a disparity image can be processed to
give sub-pixel accuracy, by trying to locate the
correlation peak between pixels.  This increases the
available range resolution without much additional
work.

3 Algorithm and Implementation
Although area correlation is computationally

expensive, good algorithm design coupled with
current processors enable video rate performance
for small frame sizes.  In this section we describe
the results of two optimized implementations of the
same basic algorithm. The Small Vision Module
(SVM), takes advantage of the instruction set and
memory design of digital signal processors (DSPs)
to achieve high performance at low power.  The
Small Vision System (SVS) is an implementation of
the same algorithm in C on general-purpose
microprocessors, and an optimized version for
Pentium microprocessors that takes advantage of
the MMX instruction set.

3.1 Algorithm
The algorithm we have implemented (Figure 3)

has the following features:

•  LOG transform, L1 norm (absolute
difference) correlation;

•  Variable disparity search, e.g., 16, 24, or 32
pixels;

•  Postfiltering with an interest operator and
left/right check;

•  x4 range interpolation.

The LOG transform and L1 norm were chosen
because they give good quality results, and can be
optimized on standard instruction sets available on
DSPs and microprocessors.  The census method is
an alternative, but requires fast bit-counting, and is
more suitable for custom hardware.

Figure 2(b) shows a typical disparity image
produced by the algorithm.  Higher disparities
(closer objects) are indicated by brighter green (or
white, if this paper is printed without color).  There
are 64 possible levels of disparity; in the figure, the
closest disparities are around 40, while the furthest
are about 5.  Note the significant errors in the upper

Normalized intensities
      square difference Fua 1993
Laplacian of gaussian
   zero crossings
   sign
   square difference
   absolute difference

Marr and Poggio 1979
Nishihara 1984
Matthies 1995
Kanade 1996

Nonparametric
      rank
      census

Zabih and Woodfill
1994

 Table 1  Correlation measures for area-based
stereo

Correlation surface: peak
width, peak height,
number of peaks

Matthies 1993,
Nishihara 1984

Mode filter
Left/Right check Fua 1993, Bolles and

Woodfill 1993
Interest Operator Moravec 1984
Interpolation Nishihara 1984

Table 2  Range filtering operations



left and right portion of the image, where uniform
areas make it hard to estimate the disparity.

In Figure 2(c), the interest operator is applied as
a postfilter.  Areas with insufficient texture are
rejected as low confidence: they appear black in the
picture.  We’ve found that the best interest operator
is one that measures texture in the direction of
epipolar lines (Matthies 1993).

Although the interest operator requires a
threshold, it’s straightforward to set it based on
noise present in the video input.  Showing a blank
gray area to the imagers produces an interest level
related only to the video noise; the threshold is set
slightly above that.

There are still errors in portions of the image
with disparity discontinuities, such as the side of
the subject’s head.  These errors are caused by
overlapping the correlation window on areas with
very different disparities.  Application of a left/right

check can eliminate these errors, as in Figure 2(d).
The left/right check can be implemented efficiently
by storing enough information when doing the
original disparity correlation.

In practice, the combination of an interest
operator and left/right check has proven to be the
most effective at eliminating bad matches.
Correlation surface checks, in our experience, do
not add to the quality of the range image, and can
be computationally expensive.

We have been careful in designing the
algorithm to consider implementation issues,
especially storage efficiency. Buffering of
intermediate results, a critical part of the algorithm,
is kept to a minimum by calculating incremental
results for each new scanline, and by recalculating
rather than storing some partial results.  We have
been especially careful about storage of correlation
results, and require only space  of size (number of

         

  (a) Input grayscale image, one of a stereo pair (b) Disparity image from area correlation

         

   (c) Texture filter applied (d) Left/right and texture filter applied

Figure 2  A grayscale input image and the disparity images from the SRI algorithm.



disparities x line width).  Storage efficiency is
critical for DSP implementations, since DSPs have
limited onboard high-speed memory.  It also helps
to make microprocessor implementations faster,
since storage buffers can be contained in high speed
cache.

3.2 Calibration
As described in Section 2.2, the standard form

for stereo processing assumes that the two images
are from pinhole cameras of the same focal length,
and are co-planar, with scanlines and focal centers
aligned horizontally.  The difficulty of acquiring
and maintaining this alignment has led us to
consider strategies for automatic calibration.  We
assume that the internal camera parameters are
already known, so that lens distortion can be
corrected (Devernay 1995).  We also assume that
the cameras are in approximately the correct
position, although there may be small errors in
orientation.  To a first approximation, orientation
errors can be considered as generating horizontal,
vertical, and rotational offsets of one image to
another.  Additionally, vergence may make the
epipolar lines non-horizontal.

To calibrate these external offsets, we consider
the appearance of disparity images under calibrated
and noncalibrated conditions (Figure 4).  The
difference between these two is visually obvious,
and we have found two image measure that
correlate well with calibrated images.  The first
measure is simply the sum of all left/right
consistency matches in the area correlation
algorithm.  If the input images are not calibrated,

there will be few valid stereo matches, and the
left/right check will reject many of these.

grayscale image
A pixels

per pixel I αA
per pixel-disp C βAD

C+M γAD

transform
images

area correlation
disparities D

disparity image
I

C
M

filtered disparity
 image

F

Figure 3  Area correlation algorithm diagram.  A is the area of an image, and D is the number of
disparities searched over.   Image warping and post-filtering costs are not considered here.  The cost
of the algorithm is divided into per pixel and per pixel-disparity contributions.

Figure 4  Calibrated and uncalibrated disparity
images.  The stereo input to the bottom image
was offset 2 vertical pixels from the top.



The second measure looks at the smoothness of
the disparity image; it is the number of disparity
values at the mode for a small area, summed over
the entire image.

To use these measures, we first capture a stereo
pair of a scene with objects at different distances,
and compute disparity images at different offsets.
Plots of the measures against vertical and
horizontal offsets are shown in Figure 5 and Figure
6.  Note that there is a peak at the calibrated offsets.

The peak is very sharp in the vertical offset
direction, because even small changes in vertical
offset destroy the horizontal alignment of the
images.  The horizontal offset is more forgiving,
since different offsets still give enough leeway to
capture the depths of all objects in the image.

Unfortunately, the surfaces show that a hill-
climbing algorithm is not sufficient to find the best
offsets, since there are local maxima away from the
peak.  Instead, we can use a hierarchical search
strategy where we first search at a coarse resolution,
then use a fine resolution at a few of the highest
points from the first search.  This method takes on
the order of 100 disparity image calculations, which
is a few seconds at video rates.

Once horizontal and vertical offsets are
calibrated, the measures can be used to compensate
for vergence and rotation, using hill-climbing and
perhaps iterating the offset calculation over a small
space.

3.3 Small Vision Module
The Small Vision Module is a hardware and

firmware implementation of the SRI area
correlation algorithm.  The hardware consists of
two CMOS 320x240 grayscale imagers and lenses,
low-power A/D converters, a digital signal
processor and a small flash memory for program
storage.  All of these components are commercially
available.  The SVM is packaged on a single circuit
board measuring 2” x 3” (Figure 7).
Communication with a host PC for display and
control is through the parallel port.  During
operation, the DSP and imaging system consume
approximately 600mW.

Figure 7   The SRI Small Vision Module

In its current implementation, the SVM uses an
ADSP 2181 running at 33 MHz. Figure 3 shows the
general algorithm, with the data structures

Figure 5  Number of left/right matches as a
function of horizontal and vertical offset.

Figure 6  Smoothness of disparity image
as a function of horizontal and vertical offset.



produced at each stage.  One of the surprising
aspects of the SVM is that the entire algorithm,
including buffering for two 160x120 images, fits
into the DSP’s internal memory of 80 Kbytes.

Based on instruction set timings, the SVM can
perform 8 fps on 160x120 images; in practice,
communication overhead with the host reduces this
to a maximum of 6 fps, enough for realtime
operation of some range applications.  Currently
some 15 SVMs have been distributed to research
labs for evaluation.

We have designed a second-generation SVM,
the SVM II, using a new DSP from Texas
Instruments (TMS320C60x), running at 200 MHz.
In simulation, the SVM II has a performance
improvement of x30 over the SVM.  Performance of
these devices relative to other implementations of
area correlation is given in the next subsection.

One area of improvement for the SVM is in the
imaging system.  Current CMOS imagers are still
an order of magnitude noisier and less sensitive
than corresponding CCDs.  On the other hand, they
offer a degree of on-chip integration that cannot be
achieved with CCDs: automatic exposure control,
clock and control signals, and even A/D
conversion.  Future generations of CMOS imagers
will narrow the gap in video performance with
CCDs, and yield better stereo results.  We have
recently started using new imagers from
Omnivision Technologies (Kempainen 1997),
which achieve S/N ratios of 46 dB even with
automatic gain, and which have sensitivities down
to 1 lux.

3.4 Small Vision System
For development and experimentation on

standard hardware, we have implemented the SRI
area correlation algorithm in C on standard
microprocessors.  Further optimization of the
algorithm is possible by using the Single-
Instruction, Multiple Data (SIMD)  instructions
available on the Pentium (MMX) and several other
microprocessors, which enable a parallel
computation of the transform and correlation
operations.  For the SVM algorithms, these
instructions increase speed by at least a factor of 4
over comparable µPs without SIMD.

4 Benchmark results
We survey some implementations of area

correlation algorithms, comparing them to the
SVM hardware, as well as software
implementations of the SRI algorithm on general-

purpose microprocessors.  Figure 3 diagrams a
generic area correlation algorithm, showing the
operations and costs associated with each (Fua
1993). For concreteness, we take a benchmark
problem to consist of input 320x240 images, with a
search window of 32 disparities.  The performance
of an implementation is measured as a frame rate
on the benchmark problem.

In implementations with multiple processors or
distributed computation, algorithm operations can
be performed in a pipelined fashion to increase
throughput.  The largest cost is in the correlation
and extrama-finding operations, which are
proportional to the number of pixels times the
number of disparities.  Note that the area
correlation window size is not a factor, since
algorithms can take advantage of redundancy in
computing area sums, using a sliding sums method
(Fua 1993).

Table 3 gives performance measurements for
various implemented area correlation systems.1

The columns list the type of correlation, the
processor(s), and the operation coefficients, where
available.  Finally, as an overall measure of
performance, the estimated results on the
benchmark problem are given.  From these results,
it’s possible to draw some general conclusions
about the performance of the various types of
processors: general-purpose microprocessors (µPs),
digital signal processors (DSPs), and custom
hardware (typically field-programmable gate arrays,
or FPGAs).

First, it makes little difference which of the
three correlation methods is chosen: all of the
correlation methods can be implemented on all
types of hardware. The census operator, because of
its heavy reliance on bit-counting, is more suited to
FPGA hardware, since DSPs and microprocessor
generally don’t have bit-counting instructions.  But,
algorithm design can make a big difference: both
the Point Grey and SRI systems use the same
correlation measure, but the latter has double the
performance (considering Point Grey uses three
images).

Second, the highest level of performance is
provided by FPGAs and DSPs.  General-purpose
µPs, even when running at comparable clock rates,
are at least three times slower on the benchmark
problem.  The best performance of µPs comes from
using the Single-Instruction, Multiple Data (SIMD)

                                                       
1 These figures are the author’s best estimate

based on published reports and his own
experiments.



instructions, which enable a parallel computation of
the transform and correlation operations.  For the
SRI algorithms, these instructions increase speed by
a factor of 4 over comparable µPs without SIMD
(e.g., the R10000).

Despite performance limitations, µPs offer the
most flexible development environment.  DSPs,
while somewhat less flexible than µPs, can be
programmed in C, with critical inner loops in
assembly.  At this point they probably offer the best
compromise between performance and
programmability.  FPGAs, because they can be
configured to pipeline successive operations and
parallelize individual operations, offer the best
performance.  However, programming FPGAs can
be difficult, and any changes in the algorithm can
take significant development time (Woodfill and
Von Herzen 1997).

4.1 Machine cycles and efficiency
A more critical examination of the same

algorithm running on different processors reveals
the tradeoffs in hardware and software design, and
helps to quantify the efficiency of a hardware
implementation.  This measure is especially critical
in some areas such as space missions or portable

applications.  To compare power ratings, selected
processors of each type were rated based on how
much power they would take to achieve the
benchmark.2  The results are in Table 4, which also
details the number of instructions used per pixel per
disparity in the correlation calculation.   All of
these processors ran the same SVM algorithm; the
MMX and FPGA array implementations were
optimized for parallel computation.

Without the SIMD MMX instructions, µPs do
poorly.  The Pentium MMX is fairly efficient, since
it processes four to eight pixels at once.  Since there
are two MMX pipelines, theoretically it can process
2 instructions at once, which would make it almost
as fast as the TMS320C6x DSP on a MIPS basis.
However, because of cache miss limitations, the
MMX instructions are issued at below their
theoretic maximum rate.  In DSPs, the programmer
has control over fast cache memory, and can buffer
critical information in this area as needed.  The

                                                       
2 These power ratings are the author’s estimates

rather than measured results, and are based on
processor data sheets and published results.  Since
processor characteristics change quickly, these
results may not be valid in the future.

System Method Processor(s)   α       β       γ  α       β       γ Bench
fps

Remarks

Matthies
JPL 1995

LOG
square diff

Datacube MV200,
68040, Sparc

  0.5

Nishihara
Teleos 1995

LOG sign
Hamming

Pentium
166 MHz

  0.5

Woodfill
Stanford 1995

Census
Hamming

Sparc 10-51
50 MHz

  1.0

Faugeras
INRIA 1993

Normalized
correlation

PeRLe-1
FPGA array

  2.5

SVM+
SRI 1997

LOG
abs diff

2 x ADSP 218x
50MHz

 800  160 200   2.5

CYCLOPS
Point Grey 1997

LOG
abs diff

Pentium II
233 MHz

  3.0 3 images
est. for P II

SVM algorithm
SRI 1997

LOG
abs diff

Pentium II
233 MHz

   70    20   33 12

Kanade
CMU 1996

LOG
abs diff

Custom hardware,
TMS320C40 array

    66   33   33 15 5 images
α, α, χχ pipelined

Dunn
CSIRO 1997

Census
Hamming

Occam
FPGA array

           15 20

SVM II
SRI 1997

LOG
abs diff

TMS320C60x
200 MHz

    50   10 12.5 30+

Woodfill
Interval 1997

Census
Hamming

PARTS
FPGA array

30+ Est. >100 fps
with upgrade

Table 3  Performance of some implementations of area correlation stereo.



general caching scheme of µPs means that the
processor will idle while waiting for cache fills.
With tuning of the code, and some attention to
caching issues, it may be possible to double the
performance of the MMX implementation.  Since
most of the major µP manufacturers plan versions
of their chips with SIMD instructions, µPs are a
viable platform for realtime stereo, except in low-
power applications.

It is somewhat surprising that the DSPs are
more efficient than FPGAs, since the latter have a
speed advantage based on their highly-parallel
implementation of the stereo algorithm.  Because of
their fixed functional units, however, DSP designs
can be optimized for high performance at low
power.  The number of instructions for a standard
design such as the ADSP 21xx is 1/3 that of a non-
SIMD µP.  The TMS320C6x achieves its low
instruction count by having parallel functional units
(in contrast to the parallel data concept of SIMD),
achieving 12 operations per cycle in the correlation
loop.

5 Applications
Practical realtime stereo has been available

recently, and applications are just being developed.
Kanade’s group has implemented a Z-keying
method, where a subject is placed in correct
alignment with a virtual world (Kanade 1996).  At
SRI, we are experimenting with several
applications involving mobile robotics and human
interaction.  In collaboration with Gaetan Marti and
Nicola Chauvin of the Swiss Federal Institute of
Technology in Lausanne, we have developed a
contour method for fast segmentation of range

images based on 3D areas.  This method can be
used, for example, to distinguish terrain height in
front of a moving vehicle.  The important part of
the method is that results are computed within the
range image, rather than in 3D space, making it
suitable for realtime implementation.

A second application is the detection of people
within the camera’s range, in collaboration with
Chris Eveland of the University of Rochester
(Eveland 1997).  Here the solution is to segment the
range image by first learning a background range
image, and then using statistical image comparison
methods to distinguish new objects that appear in
the field of view.  A simple shape analysis is used to
find the head and shoulder area of the person.  The
interesting part of this application is that the
camera can pan and tilt to track the subject.

More details of these applications can be found
at http://www.ai.sri.com/~konolige/svm..
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