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Abstract

Occupancy grids are a probabilistic method for fusing multiple sensor
readings into surface maps of the environment. Although the underlying
theory has been understood for many years, the intricacies of applying it
to realtime sensor interpretation have been neglected. This paper analyzes
how re�ned sensor models (including specularity models) and assumptions
about independence are crucial issues for occupancy grid interpretation.
Using this analysis, The MURIEL method for occupancy grid update is
developed. Experiments show how it can dramatically improve the �delity
of occupancy grid map-making in specular and realtime environments.

1 Introduction

Working with mobile robots has forced AI researchers to confront the problem
of uncertainty in sensor measurement, as they try to build environment maps
using unreliable sensor readings. One of the most popular and successful meth-
ods of accounting for uncertainty is the occupancy grid method [Moravec and
Elfes, 1985; Moravec and Blackwell, 1992; Elfes, 1990; Elfes, 1992a]. Occupancy
grids divide space into a regular grid of cells (either 2D or 3D), and estimate
the probability of any cell being \occupied" by a surface, based on readings
from a sensor. The mathematics of occupancy grids are well-understood: in
technical terms, they are \recursive estimations of a tesselated spatial random
�eld" [Elfes, 1992a]. Having said this, however, there is still a lot of work to be
done in making the method work for particular applications. A fully general so-
lution demands more information about sensor behavior and environment than



is readily available; and the simpler approximations that have been suggested
do not adequately address the real environments in which they are employed.

This paper examines two areas where naive assumptions of the theory are
problematic: specular re
ection and redundant readings. Specular re
ection is
a property of active time-of-
ight sensors such as sonars and radars, in which
the energy from the device is re
ected at an angle by a surface, and re
ects
o� multiple surfaces before returning to the device. Specular readings, unlike
readings in which the beam is re
ected di�usely back to the device, do not give
direct information on the distance to the nearest surface.

In typical indoor environments, the problems posed by specular re
ection
from active time-of-
ight devices such as sonars are severe. Specular re
ection
can also occur frequently with radar and sonar sensors in outdoor environments,
especially in the presence of man-made objects such as cars, poles, or anything
with 
at surfaces that are not perpendicular to the sensor beam.

A second problem for realtime domains is the presence of redundant readings.
The easiest assumption is that all readings give independent information about
a particular cell in the occupancy grid. However, in theory and practice this
assumption is violated. A sensor reading gives information about the combined
probability of occupancy of a set of cells, not just a single cell. Interpreting this
combined probability as a simple, independent probability for a single cell can
lead to large errors in occupancy estimation.

To correct these problems of interpretation, the MURIEL method (MUlti-
ple Representation, Independent Evidence Log) for updating occupancy grids
is developed. This method is a careful re�nement of the occupancy grid mathe-
matics along two lines. First, it splits the sensor model into two parts, a di�use
and specular model. By logging the sensor readings impinging on a cell, the
model mixture can be adjusted dynamically for each new reading, resulting in
a better estimation of occupancy. Second, to deal with the problem of inde-
pendent evidence, it keeps track of the position and orientation (or pose) of all
sensor readings at a cell. Although sensor readings from the same pose add very
little independent information about occupancy at a single cell, readings from
di�erent poses do. The evidence log at a cell can be used to �lter out readings
that have redundant poses, thus eliminating the problem of double-counting the
evidence.

The paper is divided as follows. The next section discusses previous work in
map-making, and shows how the MURIEL algorithm extends occupancy grid
methods. Then, we introduce the mathematics of occupancy grids, and care-
fully develop the theory by looking at the cases of single and multiple targets.
The main contribution of this section is a novel approach that captures the
main features of occupancy grid update in a simple way, and uses assumptions
that are readily adapted to typical sensing environments. In contrast, previous
methods either involved assumptions that were unjusti�ed in real environments,
or needed complex information about the prior distribution of objects in the en-
vironment.
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After this, a section on specular models shows how to integrate gross errors
in detection that accompany certain kinds of sensor readings. Then, we discuss
the problem of independent evidence: how the recursive nature of the occupancy
grid update function arises from the assumption of independent evidence, and
how that assumption is violated for sensors with static poses. Finally, based on
the analysis of these sections, the MURIEL method is introduced, and results
of indoor environment experiments with sonar sensors are presented.

2 Previous work

Work in fusing multiple sensor readings for map-making falls into two broad cat-
egories: target tracking models and occupancy grid models. In target tracking,
one or more geometric features of the environment are modeled and \tracked,"
that is, their location is estimated at each new sensor reading. Target track-
ing models have been used, with impressive results, since the work of Crowley
[Crowley, 1985; Crowley, 1989] and Leonard and Durrant-Whyte [Leonard and
Durrant-Whyte, 1992]. This work uses the techniques of Kalman �ltering, orig-
inally developed for satellite tracking, to update uncertainty estimates for the
robot and targets as the robot moves and gathers information with sonar sen-
sors.

Target-tracking methods are appropriate when there are a small number of
targets, such as a few landmarks, and their interaction with the sensor is well-
known, i.e., their surface re
ectance and geometry. For example, Leonard and
Durrant-Whyte use sonar corner re
ectors as their main target, and pick out a
few strong targets as landmarks for updating the robot position. The Kalman
�lter gives the optimal update for the robot and target positions, given noise in
the sensor reading and robot position.

A key issue in the target-tracking paradigm is the data-association problem:
how to identify the target that a given sensor reading is associated with. Picking
the wrong target is a gross error (in contrast to noise-induced ranging and robot
position errors) that can lead to divergence of the Kalman �lter, where the robot
is completely lost in the environment. Cox and Leonard [Cox and Leonard, 1994]

point out the importance of this problem, and suggest a Bayesian tree approach
to formulating and processing multiple hypotheses about data associations.

While target-tracking is a good method for navigation using landmarks, in
many map-making situations it may be important to determine not just the po-
sition of a few landmarks, but the complete surface geometry of the environment.
Obstacle-avoidance is one application; place-recognition is another. For these
applications, target-tracking methods aren't appropriate, because they rely on
a small set of landmarks whose geometry is speci�ed beforehand, and can't �ll
in the complex, unknown surface geometry. The occupancy grid method origi-
nated by Moravec [Moravec and Elfes, 1985] and extended by Elfes [Elfes, 1990;
Elfes, 1992a] provides a probabilistic framework for target detection, that is,

3



determining whether a region of space is occupied or not. Unlike the case of
target tracking, in occupancy grids the primary problem is one of data asso-
ciation: does a sensor reading give information about surfaces in a particular
area? Although there is uncertainty in the exact range of an echo, the geomet-
ric uncertainty of the beam width (which part of the beam was re
ected?) and
multiple re
ections tend to drown out the range error.

Initial experiments with the occupancy grid method simply ignored geomet-
ric uncertainty, assuming that all sensor returns were simple re
ections [Moravec
and Elfes, 1985], and ignoring the problem of beam width. Later, Elfes [Elfes,
1990; Elfes, 1992a] reformulated the method as a probabilistic Bayesian updat-
ing problem using gaussian noise with a very large variance to account for the
gross errors entailed by multiple re
ections. He also addressed the problem of
geometric uncertainty associated with sensor beam width by considering target
detection under all possible con�gurations of the environment.

While Elfes' work represents the best current development of the occupancy
grid model, it has a number of undesirable features. First, modeling multi-
ple re
ections as gaussian distributed is not realistic, since typically they give
highly-correlated readings from nearby positions. Further, the use of a gaus-
sian distribution implies an averaging model, in which every sensor reading is
assumed to be corrupted by the same \gross error" noise. Recent work by
Moravec [Moravec and Blackwell, 1992] on tuning the noise model for partic-
ular environments still treats all sensor readings the same. In fact, there are
test such as Drumheller's sonar penetration condition for estimating whether
individual sensor readings are the result of multiple re
ections or not.

A second problem with Elfes' framework is the practical matter of enumerat-
ing and updating probabilities for all possible environmental situations of target
detection, since the number of such conditions situations grows exponentially
with the spatial area covered. In practice, given the overwhelming combinatorics
of keeping track of data associations for each reading, independence and other
simplifying assumptions [Matthies and Elfes, 1988; Borenstein and Koren, 1991]

are made to reduce the computational complexity of Bayesian update. That is,
each cell of space is treated as an independent target in the presence of the
geometric uncertainties induced by the beam width. This leads to unrealis-
tic estimates for target map updates, e.g., all the cells at the leading edge of
the beam have their probabilities raised, when in fact usually only one cell is
responsible for the echo.

The MURIEL method is a result of addressing these two problems of occu-
pancy grid map-making. We �rst introduce a multiple target detection model
that accounts for the typical features of occupancy grid update, the surface and
freespace hypotheses, without complicated summation over all environments.
The model assumes a uniform distribution of surfaces in the environment. Us-
ing this model, we derive a mixture formulation that can weight an individual
sensor reading based on an estimate of single or multiple re
ection. The weight-
ing scheme makes it possible to use information about individual sensor readings
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to update the occupancy grid more accurately; all previous approaches used a
�xed weighting for all readings.

We then focus on the problem of data association generated by the large
beam widths of typical sonar and radar sensors. Instead of trying to keep track
of correlations produced by each sensor reading, we ask under what conditions
the multiple target detection model gives the assumed uniform, uncorrelated
distribution of surfaces. One answer is that sensor readings from di�erent poses
(positions and orientations) of the sensor give the assumed distribution. Based
on this reasoning, we propose treating sensor readings as independent only if
they come from di�erent poses. In this way, the combinatorics of data associa-
tion is eliminated, and the independence assumptions are made to correspond
to realistic situations.

Finally, there have been some attempts to deal with dynamic objects in the
occupancy grid by using temporal information to �lter older readings. Boren-
stein and Koren [Borenstein and Koren, 1991] introduce the Vector Field His-
togramm (VFH) method. They use a spatial histogram of sonar \points," along
the axis of the sonar beam, to identify areas that are likely to contain obstacles.
The histogram is updated rapidly as new returns come in, and older ones are
abandoned. The VFH method has the advantage that it can deal with dynamic
and noisy environments; but, because it is only loosely related to probabilistic
methods, it has not been used to build stable maps of an area.

3 Probabilistic sensor models

Figure 1 shows an abstract sensor interpretation method for gathering informa-
tion about the environment. A sensor S measures some condition by transform-
ing energy (radiation, mechanical energy, etc.) into an electrical signal whose
characteristics are measured (B) and interpreted to give information about some
property of interest (A). In the case of time-of-
ight sonars, which are the prin-
cipal example in this paper, a sonar transducer emits a short pulse of sound
(\ping") and then listens for the echo. The measured quantity is the time be-
tween the ping emission and echo reception, conveniently referred to as a range

reading, that is, one-half the distance the ping traverses in that time. We write
a range reading of distance D as r=D. The interpretation routines uses the
range reading to estimate the distance of the nearest surface within the cone of
the propagating ping.

A sensor model describes how a sensor interacts with the environment. An
ideal sensor would give perfect information about the properties it reports on,
but in practice there is always some uncertainty associated either with the sensor
reading, or how the sensor reading relates to the quantity of interest. The
uncertainty can be expressed using probabilistic methods, speci�cally Bayes'
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Figure 1: Sensor interpretation. A property A gives rise to measurement B,
which is interpreted by considering P (AjB).

rule. We have:

P (AjB) = P (BjA)P (A)
P (B)

; (1)

where P (A) and P (B) are the prior probabilities of A and B.
The sensor model is the quantity P (BjA), the probability of getting the

measurement B given that the environment has property A. Normally this is
determined by taking readings of the sensor in known environment states. In
the case where B is a continuous quantity, the result is a conditional probability
density function. The randomness introduced by the measurement process is
typically considered to be gaussian, that is, for a �xed A the probability of
getting a reading B will have a gaussian distribution around a mean value.

It is often inconvenient to estimate P (B), and by simple probability rules
Equation 1 can be rewritten as:

P (AjB) =
P (BjA)P (A)

P (B;A) + P (B; �A)

=
P (BjA)P (A)

P (BjA)P (A) + P (Bj �A)P ( �A) :
(2)

Here, we assume we are given the prior probabilities P (A) and P ( �A) as initial
information; the quantities P (Bj �A) and P (BjA) are determined experimentally
or theoretically, based on the sensor characteristics.

This form of the sensor model brings out two interesting aspects of the model.
First, if the sensor reading B is independent of the surface A, then the posterior
probability equals the prior probability. To see this, just substitute P (Bj �A) =
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P (BjA) into the above equation, and notice that the right-hand side simpli�es
to P (A). Second, if the sensor does not give false positives (P (Bj �A) = 0), then
the posterior probability will always be 1 when a reading is detected, since the
only source of such a signal must be the occupied cell.

Change in odds is a often much more intuitive quantity to deal with than the
absolute probability, because it factors out the priors in a nice way. To convert
to an odds formulation, we use the de�nition:

O(A)
:
=

P (A)
P ( �A)

O(AjB) :
=

P (AjB)
P ( �AjB) :

(3)

The odds of a proposition being true range from 0 (absolutely impossible) to
+1 (absolutely true).

The odds-likelihood posterior can be computed as:

O(AjB) = P (BjA)
P (Bj �A)O(A)

:
= �(BjA)O(A): (4)

If the ratio �(BjA) is 1, then there is no change to the odds of A being true.
�(BjA) is called the likelihood ratio of B given A, and it has the same range

as an odds, from 0 to to +1. Using a logarithmic form gives a more natural
additive scale for representing it:

logO(AjB) = log�(BjA) + logO(A) : (5)

Here the contribution of the prior is added to a contribution from the observa-
tion. The log formulation is especially handy when considering multiple read-
ings.

3.1 Occupancy grid: single target model

For occupancy grids, space is divided into a regular grid, and the property A

that we are trying to determine, for each cell, is whether there is a surface in
the cell, that is, whether the cell is occupied. If i is the index of a cell, we'll
write Ci to represent the proposition that cell i is occupied, and Ci that it is
unoccupied. Ci is a binary random variable. The quantity we are interested in
is the probability of Ci, given a range reading r=D:

P (Cijr=D) : (6)

P (Cijr=D) is a simple probability for any particular value D.
In this paper we'll treat r as a continuous variable, so that the quantities

p(r=DjCi) and p(r=DjCi) are (conditional) probability density functions with
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the continuous range variable r.1 Now, we can write Equation 2 as

P (Cijr=D) = p(r=DjCi)P (Ci)
p(r=DjCi)P (Ci) + P (r=DjCi)P (Ci)

: (7)

or, in terms of the likelihood ratio,

�(r=DjCi) = P (r=DjCi)
P (r=DjCi)

: (8)

If the sensor interpretation problem is to detect a single target, then the
above probability formulation can be applied fairly directly. We'll work out the
details for the simple 1-D case �rst, where the occupancy grid is a linear strip
along the beam axis of the sensor.

The conditional probability densities p(r=DjCi) and p(r=DjCi) can be es-
timated theoretically. Let's look at a cell i, whose distance from the sensor on
beam axis is ri. What is the probability of a range reading given that cell i oc-
cupied by the target? To a �rst approximation, the signal detection probability
density for the target is a gaussian with a peak at the distance ri. There are
two other e�ects that modify this initial proposal [Elfes, 1992a].

1. The range error becomes proportionally larger at increasing range.

2. The probability of detection becomes smaller at larger ranges.

Given these considerations, a mathematical model for target re
ection in the
1-D case is:

p1(r = DjCi) = �(ri)p
2��(ri)

e�(D�ri)
2=2�(ri)

2

(9)

where the target is at distance ri from the transducer. In this model, �(ri) is the
attenuation of detection with distance, �(ri) is the range variance (increasing
with distance).

For typical sonar sensors, such as the electrostatic Polaroid models [Group,
1992], the range error is fairly small, on the order of 1%. We'll use the following
conservative function:

�(r) = :01 + :015r ; (10)

which is a �xed error of 1 centimeter plus 1.5% of the range.
The detection attenuation depends in a complicated way on the cross-section

of the target; we'll use a simple model that attenuates linearly with distance:

�(r) = 0:6(1�min(1; :25r)) : (11)

From this equation, 4 meters is the limit of target detection, which is reason-
able in typical o�ce environments. The factor 0.6 means that targets aren't
necessarily detected even at close range.

1Probability densities are written with lowercase p, and probabilities with uppercase P .
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What is the probability density p1(r = DjCi)? Under the assumption that
there is a single target, if the target isn't at cell i it can be at any other cell.
The simplest assumption would be that the probability density is constant, i.e.,
the target has an equal chance of being detected anywhere along the beam.

p1(r = DjCi) = F : (12)

Putting all this together, Figure 2 shows the log likelihood ratio for a sensor
reading of 2 meters (r = 2m). Cells that are in front of or behind the reading
have substantially lower posterior odds (log� < 0); these areas are referred
to as freespace hypothesis areas. Cells at the range reading have higher odds
(log� > 0), as is expected; these are called surface hypothesis areas. There are
several interesting aspects of this �gure. First, because there is a single target,
the likelihood ratio falls o� very quickly away from the range reading. If any
range reading is returned, the target must be near that reading.

Also note the symmetry in the portions before and after the range reading.
Since we're assuming there's a single target, a range reading at 2m means that
the target is most likely around that distance; cells on either side of it have their
odds lowered. In fact, cells behind the sensor, which were not even scanned by
the sonar beam, also have lowered odds, because the single target isn't there.

The whole point of using occupancy grids is to build up a picture of the
surfaces in an environment; obviously, the single target assumption is not a good
one to make in this case. The reason for presenting this unrealistic case �rst is to
tease out the basic development of the probability model in the simplest possible
way, before moving to the more complicated multiple-target case. As we show
below, the biggest di�erence in dealing with multiple targets will be manifested
in the freespace hypothesis. Cells not in the sonar beam will be una�ected by
updates; and an object will tend to \shadow" other objects behind it. We turn
now to the development of the sensor model for the multiple target case.

3.2 Occupancy grid: multiple target model

In multiple target models, surfaces other than the target at cell i can re
ect the
sonar beam. In the simplest such model, assume that surfaces are distributed
randomly so that the probability density of re
ection is a small constant F . The
only e�ect of the multiple target assumption is to add the constant F to the
probability density for p(r=DjCi):

p1m(r=DjCi) = �(ri)e
�(D�ri)

2=2�(ri)
2

+ F : (13)

From this, the likelihood ratio must be:

�1m(r = DjCi) = �(ri)e
�(D�ri)

2=2�(ri)
2

+ F

F
: (14)
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Figure 2: On-axis log likelihood ratio for a range reading of 2 meters. X axis
is the distance ri of the cell, Y axis is the log likelihood ratio used to update
that cell. The range error �(r) was made larger by a factor of 10 for this and
subsequent �gures to show more detail.
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where the target is at distance ri from the transducer. Again, �(ri) is the
attenuation of detection with distance, �(ri) is the range variance (increasing
with distance). Note that this is almost identical to the single target model
(Equation 20), with the exception of the extra term F in the numerator. The
e�ect of the extra term is to make the likelihood ratio 1 for cells everywhere
but in the vicinity of the range reading r=D, i.e., no change. So the freespace
hypothesis (log� < 0) has vanished in the multiple target model; why?

The answer is that, with multiple targets, detecting one target at a distance
r=D no longer means that there won't be other surfaces at di�erent distances.
We need to make the further distinction that the detected echo is the �rst

one received.2 To express the relevant propositions, we'll use the following
expressions.

r 6< D : No return less than D
r@D : r=D and r 6< D

The posterior odds of a cell being occupied, given r@D as the �rst range reading,
is given by the likelihood ratio

�1m(r@DjCi) = p1m(r@DjCi)
p1m(r@DjCi)

: (15)

The sensor probability density p1m(r@DjCi) is just the probability density
p1m(r=DjCi) times the probability that no range reading was received less than
D:

p1m(r@DjCi) = p1m(r=DjCi)P1m(r 6< DjCi) : (16)

The likelihood ratio can be rewritten as:

�1m(r@DjCi) = p1m(r=DjCi)P1m(r 6< DjCi)
p1m(r=DjCi)P1m(r 6< DjCi)

: (17)

To calculate the last terms, we integrate the probability density function up to
the range D, and subtract it from 1:

P1m(r 6< DjQ) = 1�
Z D

0

p1m(r=xjQ)dx ;with Q = Ci or Ci (18)

Let's give some examples of what these equations look like, to get some intuition
about the probability value. First, Figure 3 shows a probability density function
for p1m(r@DjCi), for targets at 1, 2, and 3 meters. Note the primary charac-
teristics: an initial period of low probability density produced by the random
background targets, followed by the gaussian peak of the target at Ci, followed
by a lower post-target background density. The post-target density is lower
because of the shadow e�ect of the target. Note the di�erence in shadow e�ect
between the three targets: the more likely that the target is detected (closer to
the sensor), the lower the post-target detection rate.

2Many sonar and radar sensors can detect more than one echo from a single output pulse.
More complicated processing schemes can make use of these multiple echoes, but typical
mobile robot applications will look at just the �rst one.
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Figure 3: On-axis probability densities for targets at 1, 2, and 3 meters. X axis
is the range reading, Y axis the density function. The background detection rate
is similar for all three up to the target, and then falls o� to a lower value, based
on the distance of the target. The range variance �(r) has been exaggerated for
display.
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Before giving an example likelihood function, let's see how it behaves in the
extremes, when ri � D and ri � D.

1. ri � D. This is the case when updating a cell much farther from the
sensor than the �rst range reading. The integral of Equation 18 will be the same
for Ci and Ci, since p1m(r=xjCi) is approximately F for any value x � D. So,
the likelihood ratio of Equation 17 will be very close to 1, i.e., cells farther away
than the range reading D won't change their odds.

2. ri � D. This is the case when updating a cell much closer to the
sensor than the �rst range reading. The term P1m(r 6< DjCi) will be less than
P1m(r 6< DjCi), because it will include the gaussian hill located at ri. The
closer the cell is to the sensor, the greater the integrated value, and the lower
the likelihood ratio.

The combination of these e�ects can be seen in the plot of Figure 4, which
shows the log likelihood ratio for cell update, given a range reading of 2 meters.
Note that the surface hypothesis peak diminishes and widens with distance
from the sensor. The upward jog of the graph near the origin actually mimics
a problem with real sensors sonar and radar sensors: targets very close to the
sensor aren't detected because they return an echo before the sensor has �nished
transmitting.

We can brie
y compare the multiple target approach presented here with
previous approaches. As we discussed earlier, these are of two forms.

1. Decomposition methods. This is a theoretically-motivated method that
relies on a decomposition of the quantity p(r=DjCi) into a summation
over all possible con�gurations C(i) where cell i is occupied [Elfes, 1990;
Elfes, 1992b], using Kolmogorov's theorem:

P (r=DjCi) =
X
C(i)

P (r=DjC(i))P (C(i)); (19)

In some simple cases, the quantities P (r=DjC(i)) and P (C(i)) can be
calculated theoretical. Otherwise, they must be estimated by performing
experiments in the actual environment. Unlike the multiple target model
presented here, which has a few parameters that can be adjust for di�erent
environments, there is no simple way of estimating the decomposition
model given a new environment.

2. Simplifying assumptions. For example, [Matthies and Elfes, 1988] makes
the assumption p(r=DjCi) = 1�p(r=DjCi), which is clearly not the case
for multiple targets, although it may be reasonable under the single target
assumption.
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Figure 4: On-axis log likelihood ratios for range readings of 1, 2, and 3 meters.
X axis is the cell distance, Y axis the log likelihood ratio used to update the cell
at that distance.

14
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Figure 5: Sonar sensor interpretation.

3.3 Cone model

We close this section by giving the 2-dimensional version of the multiple target
model.3 Figure 5 shows a typical 2-D cross-section of a sonar sensor with a
superimposed occupancy grid. The sonar model is divided into two areas: a
cone-like freespace hypothesis, where the posterior probability of occupancy
will be lowered, and an arc-like surface hypothesis, where it will be raised.

To calculate the conditional probabilities, we'll use a mathematical model of
the behavior of the sonar sensor, drawn from the Polaroid speci�cations [Group,
1992] and other literature. Sonar transducers put out an energy pattern that
looks something like Figure 6. There is a main lobe whose width depends on a
number of factors, including the transducer element size and the frequency of
the ultrasonic pulse. For Polaroid electrostatic transducers, the nominal width
of the beam at 50 kHz is about 25 degrees. Although there are signi�cant side
lobes at up to .5 meters, we'll approximate the beam pattern by a cylindrical
cone.

The 2-D case is similar to the 1-D case, except we have to account for
angular variation. Given the geometry of the beam, a �rst approximation for

3The generalization to three dimensions is straightforward, but would complicate this expo-
sition. Also, indoor mobile robots are generally happy with two-dimensional representations,
since they typically operate on a �xed, level ground plane. At most they might need several
such plane representations for obstacles or depressions at di�erent heights.
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25 deg

Figure 6: On-axis beam pattern for the Polaroid instrument-grade electrostatic
transducer at 50 kHz. The curve represents equipotentials of the sound energy
level.

the signal detection probability density would be gaussian in �i (target cross
section decreases), and gaussian in the range deviation around ri (range error),
with the attenuation e�ects discussed previously. Given these considerations,
one mathematical model for detection density in the multiple target case is:

p2m(r=DjCi) = �(ri)

2��(ri)�
e��

2

i
=2�2e�(D�ri)

2=2�(ri)
2

+ F (20)

where the target is at range ri and angular deviation �i from the transducer.
In this model, � is a measure of the beam width; a typical value would be 12
degrees (for a beam width of 24 degrees). As before, �(ri) is the attenuation of
detection with distance, �(ri) is the range variance (increasing with distance),
and F is a measure of detecting random other targets. With the exception of
the angular term, this target density function is the same as in the previous
section. All of the mathematics developed there carries over; for example, the
value of P2m(r 6< DjQ) is:

P2m(r 6< DjQ) = 1�
Z D

0

Z �

��

p2m(r=xjQ) d�dx ;with Q = Ci or Ci (21)

We can plot the log likelihood function for di�erent range readings (Figure
7). For each plot, the sensor reading is �xed at a distance D, and a value for
ln� at di�erent cells Ci is computed. Thus, these plots show how each cell in
the grid will be updated given a di�use sonar reading of the indicated range.
The same features as are present in the 1-D plots of Figure 4 are also present
here.
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Figure 7: Multiple target model ln�2m(r=DjCi) for a 3 meter range reading.
The sensor is at 0; 0. X and Y axes are the coordinates of the cell to be updated;
the Z axis shows the log likelihood value.
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Figure 8: Specular (a) and di�use (b) readings in a known local environment.

4 Specular models

In both the single and multiple target models, we have assumed that a range
reading indicates the presence of a target at that range, somewhere within the
surface hypothesis associated with the reading. This assumption is based on
a di�use re
ection of energy from the target: if the surface roughness of the
target is larger than the wavelength of the impinging beam, it will act like a
point re
ector, scattering energy equally in all directions.

When the surface of an object is smooth with respect to the wavelength of
the beam, it will produce specular re
ections, in which most of the energy is
transmitted coherently. If the surface is angled obliquely to the beam axis, the
energy will not be re
ected directly back to the transducer, but will undergo
multiple re
ections before it is received [Leonard et al., 1990]. In this case, the
measured time-of-
ight does not represent re
ection from the nearest surface,
and the target detection density p2m(r=DjCi) given in Equation 20 is incorrect
(see Figure 8). Although it may be possible to extract some information about
the distance of surfaces, especially given some knowledge of their geometry, in
most applications specular re
ections are considered to yield no information
about surfaces. In terms of the multiple target model, for specular re
ections,
we would have:

p2s(r=DjCi) = p2s(r=DjCi) = F : (22)

Given there are two distinct types of beam re
ections, it makes sense to try to
distinguish them. Unfortunately this is not possible by direct examination of
the beam echo. Instead, we have to rely on indirect evidence about surfaces in
the beam cone to decide whether a given reading is specular. Before examining
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this idea in more detail, we �rst develop the mathematics of model mixtures so
that the information can be applied.

4.1 Model classes and mixtures

The natural division of range readings is between those that are from specular
re
ection, and those from di�use re
ection.4 We'll call the class of specular
re
ections S, and di�use re
ections �S. Cases like Figure 8(a) would be classi�ed
as specular, because a di�use re
ection from the surface would have generated
a smaller range reading. The respective target density functions are given by
Equation 22 and Equation 20.

In general, we'll have only uncertain knowledge of whether a given reading is
in S or not; so the di�use and specular models must be combined with di�erent
weights, based on their probability. Since the di�use and specular classes are
mutually exclusive and exhaustive, we have P ( �S) = 1�P (S). We are interested
in calculating the quantity pc(r=DjCi) as a function of the two model classes.
By use of Bayes' rule we obtain:

pc(r=DjCi) = p(r=DjCi; �S)P ( �S) + p(r=DjCi; S)P (S) (23)

= p2m(r=DjCi)(1� P (S)) + p2s(r=DjCi)P (S) : (24)

Equation 24 is just a probabilistic mixture of the two detection densities p2m(r=DjCi)
and p2s(r=DjCi).5

Figures 9 and 10 shows the results of an equal mixingand a .1 di�use mixture.
Since the target detection function p2s adds no information, mixing it in quickly
attenuates the e�ect of the di�use model.

4.2 Dynamic model mixtures

In the �rst experiments done with the occupancy grid model, it was assumed
that the readings were all di�use, mostly because the o�ce environment con-
sisted of many small and large articles that provided plenty of di�use or corner
re
ectors for the sonars [Moravec and Elfes, 1985]. Later, when the method
was used in more specular environments such as o�ce corridors, the value of
pc was determined theoretically [Elfes, 1990], or experimentally [Moravec and
Blackwell, 1992] by tuning the sensor model for the overall environment. In the
latter case, the di�use and specular mix can vary for each value of the range

4Leonard and Durant-Whyte [Leonard and Durrant-Whyte, 1992] point out that most
strong readings from sonars are actually specular, e.g., from corner re
ectors or from surfaces
normal to the sonar beam. These returns aren't \specular" in the sense used here: rather,
we are using \specular" to refer to any sensor reading that has re
ected o� multiple nonlocal
surfaces before returning to the sensor.

5The specular/di�use distinctionmakes little di�erence to p(r=DjCi). Specular re
ections
might have reduced probabilities for detecting random targets at short ranges, but we won't
deal with this complication.
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Figure 9: Model mixtures. This a log likelihood plot for an equiprobable mixture
of specular and di�use readings, with a range reading at 3 meters.
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Figure 10: Model mixtures. This a log likelihood plot for a 10 percent di�use /
90 percent specular mixture. with a range reading at 3 meters.
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reading, e.g., specular readings are much more likely when the range reading is
high.

In all of these models, all readings are treated using the same target density
function, with no attempt to take into account the local environment of the par-
ticular reading; hence we'll call them averaging models. Often there is informa-
tion that helps to determine whether or not a particular sensor reading is spec-
ular. The most important is whether a reading is specular or not; Drumheller
[Drumheller, 1985] states a sonar penetration condition: the freespace hypothe-
sis of a sonar reading should not impinge on a high-con�dence surface. Knowl-
edge of the environment, either a priori or acquired from previous sensor read-
ings, can be used to estimate the probability of a given reading being specular,
and thus change the model mixture dynamically to yield a more accurate inter-
pretation of the measurement.

Figure 8 illustrates the di�erence between static and dynamic mixtures.
There are two sonar readings of the same range D; one is specular, intersecting
a surface at an oblique angle. Using a �xed mixture, the freespace and surface
hypotheses are obviously wrong for the specular re
ection. Since the mixture is
�xed for a given valueD, the model does not take into account the very di�erent
local environments of the two readings. Using the sonar penetration rule, the
specular reading should be recognized and the mixture adjusted accordingly to
weaken the hypotheses. In the MURIEL method, discussed below, we use local
information to determine the probability P (S) of specularity for each individual
range reading, leading to a more re�ned estimate of the likelihood function.

5 Independent Evidence

In typical realtime applications, sensor readings are continuously acquired and
processed to update the grid. In general, the posterior odds for occupancy of a
cell are given by:

O(Cijr1=D1; r2=D2; � � �) =
�(r1=D1; r2=D2; � � � jCi)� O(Ci): (25)

Estimating the joint sensor model �(r1=D1; r2=D2; � � � jCi) is di�cult, so the
assumption is made that the sensor readings are conditionally independent of

the cell's state. Then the above equation has the form:

O(Cijr1=D1; r2=D2; � � �) =
�(r1=D1jCi)�(r2=D2jCi) � � �O(Ci): (26)

This is a recursive equation: the prior odds are multiplied by the likelihood
ratios, and stored as the updated prior. New readings just repeat the process.

Is conditional independence reasonable for the occupancy grid model? Let's
look �rst at the simplest situation, the single target model. For conditional
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independence to hold, we have to have:

p1(r=D; r
0=D0jCi) = p1(r=DjCi)p1(r0=D0jCi) (27)

p1(r=D; r
0=D0jCi) = p1(r=DjCi)p1(r0=D0jCi) (28)

For the �rst term, the assumption of conditional independence is reasonable,
because the gaussian range error is generated by small 
uctuations in the amount
of energy received or the receiver sensitivity, which are randomly distributed
from one measurement to the next.

The second term, on the other hand, represents the target detection distri-
bution when the target isn't at cell i. We've assumed that this is a uniformly
random distribution. However, if the sensor and target are stationary, then two
successive readings for the target will be highly correlated around the distance
of the target, that is,

p1(r=D; r
0=D0jCi) ' p1(r=DjCi) : (29)

So, taking two successive readings from the same position should give almost
the same result as just one. If you think about it a little, this makes sense.
Suppose, to the contrary, that every reading were conditionally independent.
Then, at the end of a series of readings, the probability for a cluster of cells
around the target distance ri would be arbitrarily high. But we know that the
target can be at only one cell, so conditional independence must be wrong.

There are several ways one might correct the conditional independence as-
sumption. In the single target case, a renormalization of the resultant cell
probabilities, so that they sum to one, would give a reasonable answer. This
would make use of the fact that there is only a single target. In the multiple
target case, this solution wouldn't work, because we know there can be more
than one occupied cell. Instead, we might try to understand the correlation be-
tween occupancy of sets of cells, by keeping a probability for each con�guration
C(i) of cells (see Equation 19). The target detection density for cell con�gura-
tions is conditionally independent, so that the recursive updating formula would
work. And individual cell posterior probabilities could be calculated by sum-
ming up the posterior probabilities P (C(i)jr1=D1; r2=D2; � � �). But except for
very small evidence grids, this method is impractical because of the exponential
number of cell con�gurations we would have to update.

Let's look at the problem from another angle, and ask under what circum-
stances we can treat p2m(r=D; r

0=D0jCi) as conditionally independent. The
assumption is that the multiple targets are distributed to give a uniform set of
readings, i.e., if we take enough sensor readings, we approach a uniform distri-
bution. Since the environment is stationary, one way to try to make this the
case is to move the sensor randomly, i.e., to take successive reading from dif-
ferent sensor poses (position and orientation). In fact, in most previous papers
on evidence grids, it is an implicit assumption that each sensor reading is taken
from a di�erent pose. The usual strategy for collecting readings is to move a
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mobile robot to several di�erent positions, and take a circular scan from each
position. This method, in e�ect, is an approximation to random sampling based
on sensor poses.

In more realistic situations, the robot will be continuously moving from one
place to another, perhaps retracing its tracks. Even at a modest 20 readings/sec,
the robot will accumulate thousands of readings, many of them redundant,
over the period of a few minutes. Some mechanism is needed to �lter just the
independent readings. The simplest method is to keep a list of the pose of the
sonar when it is �red, and check any new reading against the list. Although
there do not appear to be any immediate obstacles to implementing this scheme,
the MURIEL algorithm uses a dual representation, in which each cell represents
the pose of readings a�ecting the cell. There are several reasons for this choice.

1. The representation is local to each cell, so decisions about occupancy can
be made on the basis of local information.

2. Pose information at a cell is useful for determining if a specular reading
impinges on the cell.

3. In applications where readings can be coupled in complex ways, pose in-
formation can be used to estimate the coupling.

In the next section we develop algorithms for integrating multiple sensor read-
ings at each cell.

6 The MURIEL method

MURIEL stands for MUltiple Representation, Independent Evidence Log. It
is an algorithm for determining cell occupancy using di�use/specular mixed
models and a log of all readings impinging on a cell.

The strategy of the algorithm is categorize the sonar readings at a cell into a
set of discrete classes, based on (1) the distance of the sensor from the cell, (2)
the angle of the sensor to the cell, and (3) whether the cell is in the freespace
or surface hypothesis region of the sensor. If a cell contains a number of surface
readings from di�erent poses, it is likely that the freespace readings are from
specular re
ections, and the model mixture for these readings is adjusted ac-
cordingly. The occupancy of the cell is then computed using Equation 26 for all
readings on the cell.

There are some general assumptions used in the derivation of the method.
First, the sensor should return information from a variety of poses, to get enough
information for good reconstruction. Second, we assume that the environment
is static; we haven't dealt with the problem of dynamic environments (as is
typical for occupancy grid methods). In the concluding section we'll point out
some modi�cations to the method that might deal with movement.
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The rest of this section develops the algorithm in some detail, starting with
the derivation of specularity probabilities P (S), then de�ning the basic algo-
rithm, and �nally adding features to make the algorithm incremental, so that
it can be computed in realtime as the robot moves.

6.1 Computing the probability of specularity

For any given sensor event, the probability that it will be a specular reading (in
the sense de�ned in Section 4.1) is a function of the geometry of surfaces around
the sensor. A posteriori, we can conclude that a reading is specular if we know
that there are surfaces of a particular kind within the freespace hypothesis of
the sensor reading. These surfaces must be smooth and slanted enough from
perpendicular to the beam axis. Note that small objects in the freespace of the
beam don't necessarily mean a specular reading: they may just have too small
a cross-section to be detected.

In practice, we often start out with little information about the environment
in the occupancy grid, and build up a picture of the surfaces as more sensor
readings are acquired. Ideally, once enough surface information is accumulated,
we should go back to earlier readings, determine their specularity, and update
the results. But this would require a lot of recomputation, and keeping track of
what readings gave rise to cell occupancy values would be a hard bookkeeping
task. So, instead, MURIEL uses a simpli�ed method of computing P (S) that
is local to a given cell. The idea is the following: if a cell is occupied, then
from some poses a sensor will give a surface hypothesis reading for the cell. If
a cell has enough such readings, we assume that it is (probably) occupied, and
compute the specularity probability P (S) for all freespace readings at the cell,
based on a measure of how strong the surface hypotheses are. We have found
that the following estimation gives good results.

First, sum up all of the log� surface readings at the cell; call this value
log�S . Then, establish a cuto� value CS for surface determination. If the value
of log�S is greater than CS , then P (S) is 1, that is, any freespace readings
will be recognized as specular. If log�S is 0, then P (S) is 1. For values of
log�S between these endpoints, P (S) is computed by linear interpolation. The
cuto� CS is a parameter of the algorithm. Higher values mean that the specular
component is not recognized as quickly; reasonable values are 2 { 3.

This method has the advantage of being quickly computable, and yield-
ing a reasonable value for P (S) in many situations. But, it has the following
drawbacks. First, it treats all freespace readings as having the same P (S)
value, based on surface readings at one cell only. Obviously, there may be
some freespace readings that are much more likely to be specular, because their
freespace readings impinge on other occupied cells.

Second, di�erent cells may conclude that a single reading is specular or
di�use. For example, if a cell has no surface readings, any freespace readings
are assumed to be di�use; where one of these readings impinges on a cell with
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substantial surface hypotheses, that cell will determine it to be specular. As a
result, some freespace areas may be given overly generous updates.

6.2 Basic algorithm

The MURIEL algorithm proceeds by updating cells a�ected by each new read-
ing. Given an occupancy grid with pose buckets, and a new sensor reading
divided into freespace and surface hypotheses, MURIEL proceeds with the fol-
lowing �ve steps for each cell in the active area of a new sensor reading.

1. Data collection. At each cell, the new reading is checked to see if it du-
plicates any previous readings. For this purpose, a set of discrete pose

buckets are kept at each cell, one set for freespace readings, one set for
surface readings. Each pose bucket represents a range of angles and dis-
tances to the sensor. If the reading is duplicated, it is discarded; else the
appropriate pose bucket is marked as �lled. This step eliminates non-
independent sensor readings.

2. log�S calculation. The log likelihood ratio for all surface hypothesis read-
ings is computed using Equation 20 for the multiple target model.

3. P (S) is computed for the cell, according to the presecription given above.

4. Occupancy computation. Given the value for P (S), the value of log�F ,
the freespace log likelihood ratio, is computed by using Equation 23 for
each freespace reading.

5. The �nal odds of cell occupancy is computed as log�S+log �F+logP (Ci).

The algorithm can be implemented using a data structure at each cell rep-
resenting the pose buckets as bit vectors. The current implementation uses 64
angular divisions (5.625 degrees) and three displacements: less than 1m, 1m to
2m, and greater than 2m. Thus each cell needs a total of 48 bytes to represent
pose information. The update likelihoods for freespace and surface hypotheses
can be precomputed for each pose, and saved in a table. From this informa-
tion, the cell log odds can be reconstructed using the MURIEL algorithm, as
described above.

6.3 Incremental update

For each new reading impinging on a cell, the basic algorithm recomputes the
log likelihood ratio for each pose, then sums them up. For greater e�ciency,
the algorithm can be modi�ed slightly so that �S and �F are computed incre-
mentally. The values of �S and �F are stored at a cell; when a new surface
reading comes in, �S is updated by multiplying it with the likelihood ratio for
the new reading. When a new freespace reading arrives, �F is updated in the
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same manner, by multiplying it with the likelihood ratio for the new reading,
as if it were non-specular. Finally, to compute the total log likelihood, we use a
linear interpolation:

log�T = log�S + log (�F (1� P (S)) + P (S)) : (30)

Figure 11 shows the di�erence between the true mixture and the approximation
of Equation 30. Using the approximation lets us avoid having to recalculate �F
using all freespace readings at a cell. The steps for a new reading are now:

1. Check that it is not redundant (table lookup)

2. Update likelihood ratio (table lookup and multiplication)

3. Calculate P (S) (linear interpolation)

4. Calculate log likelihood (Equation 30)

The algorithm has been implemented in C using a discrete-beam approach
to approximate the cone-shaped sonar reading: a small set of linear beams
covering the cone are traversed from the origin of the sonar outwards. The cell
size is 10 cm on a side, which is a reasonable tradeo� between resolution and
algorithm e�ciency. A typical sonar reading will update some tens of cells,
and the algorithm takes less than a millisecond to do this on a Sparcstation
10-51. Given a sensor rate of 20 Hz, MURIEL takes a small fraction of realtime
computational resources.

7 Results

The algorithm was tested on SRI's small mobile robot, Erratic [Konolige, 1995],
in the corridors of SRI. Erratic has 7 sonars distributed in a 180 degree arc along
its front. As the robot moves along the hallway, there is signi�cant specular
re
ection from the diagonal and side sonars. The results are shown in Figures
12, 13, 14, 15, and 16, comparing MURIEL with the �xed-mixture (\standard")
model.

The robot was run at a slow speed (approximately 100 mm/sec) for 4 meters.
The sonar rate was 20 Hz, for a total of approximately 800 readings. Some
attempt was made to turn the robot so that the sonars would impinge on the
walls at a variety of angles. The path the robot took is indicated by the dots,
which are the center of the robot at 1-second intervals.

No attempt was made to tune the di�use model (Equation 14) to the hallway;
the parameter values were taken from an old set of experiments with sonar
sensors and a di�use-re
ecting object. The value of the parameter CS was
chosen to be 1.5, which means that a cell whose surface readings sum to more
than 1.5 will reject freespace readings. This setting is a strong one, and biases
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the algorithm towards trusting surface hypotheses that are con�rmed from a
small set of poses.

As can be seen in Figure 12, MURIEL extracts wall segments that are some-
what thick, because of the range uncertainty in the surface hypothesis, and
because of the discrete cell size. These wall segments match the extents of the
real hallway walls almost exactly, with the open doors and a large junction in
the upper right indicated as freespace. The freespace model tends to be conser-
vative, requiring 3 or 4 di�erent poses at short distances before committing to
full non-occupancy. Note also that there is some \bleeding" of freespace behind
the walls, from specular re
ections. This could be attenuated a bit by using a
more global specular check, in which a reading was marked as specular for all
cells if it was specular for an individual cell.

For comparison, similar readings were used to reconstruct the hall scene
using the \standard" algorithm, with the di�use re
ection model (i.e., the spec-
ular contribution was assumed to be zero), in Figure 13. Here the wall segments
have been almost obliterated because of the overwhelming in
uence of multiple
specular readings. You could say the robot is blinded by redundant specular
re
ections; the occupancy grid has the same saturation characteristics as a CCD
sensor in too-bright light. This hallway is particularly susceptible to specular
readings, since the walls are smooth wallboard.

The problem of specular re
ections can be mitigated somewhat by throwing
away redundant readings, as in Figure 14. Here the standard model was used
to compute occupancy, but only independent readings, as determined from the
pose information, were kept. There is not nearly as much freespace saturation
from specular re
ections, and the hall boundaries are seen more clearly. Still,
since specular re
ections are weighted equally with di�use re
ections, the wall
boundaries still have washed out relative to the MURIEL results in Figure 12.

It might be remarked that because of the presence of a large number of
specular readings, the natural model to use for the �xed-mixture algorithm
would have a strong specular component. Figures 15 and 16 show the standard
algorithm using a 30% specular mixture. The �rst of these uses all redundant
readings. As in the di�use case, there is a \washed-out" appearance to the grid,
although it is less severe because the freespace hypothesis has been attenuated.
Still, a lot of the wall segments are missing, because the surface hypotheses are
also weaker.

One could argue that better results would be obtained by increasing the
surface hypothesis strength relative to the freespace hypothesis. This strategy
produces a di�erent problem: the surface hypotheses of specular re
ections start
to become apparent, in arcs behind the walls. The point is, there is no model
mixture that will do well in the presence of specular re
ections, since these are
counted the same as di�use re
ections, but their hypotheses are not correct.
The most that can be done is to try to minimize their e�ect by discounting
long-range readings, which tend to be more specular. This is apparent in the
hallway scene reproduced in Figure 2 of [Moravec and Blackwell, 1992], where
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the best possible �xed sonar model produces both freespace bleeding and false
surface patches beyond the walls.

For completeness, Figure 16 shows the 30% mixture with redundant readings
removed. A lot of the wall area is weakly indicated, similar to Figure 14. But
the weakness of the model mixture is apparent, with very few clear freespace or
surface patches.

Readers who wish to see the results of the algorithm running in a simulation
system can download the SAPHIRA software from the link
http://www.ai.sri.com/~konolige/saphira. Follow the instruction for in-
stalling the SAPHIRA system, then start the simulator and the sample saphira
client. The occupancy grid routines are invoked using the Display/Occ Grid

menu item.

8 Conclusion

This paper presents a method, called MURIEL, for dealing with the problem of
specular re
ection and redundant readings in sensor fusion. The main insight
is that it is possible to discount redundant and specular readings in a local
fashion by keeping track of the readings that impinge on a given cell. Although
the results presented here are qualitative, they provide anecdotal evidence that
MURIEL can signi�cantly improve the �delity of the occupancy grid computa-
tion.

Although the examples in this paper are based on sonar sensors, the MURIEL
method can improve the performance of occupancy grids with any sensor that
has a specular component, such as radar. It can also help in multimodal fusion,
in which information from di�erent types of sensors is integrated. The sensors
complement each others' strengths, giving results not possible with a single sen-
sor [Matthies and Elfes, 1988]. In multimodal fusion, MURIEL could eliminate
double-counting from single-sensor readings taken from the same pose. It could
also help �lter specular re
ections where appropriate, by using information from
all sensors to recognize cells with strong occupancy odds, and then applying the
local specular criterion.

Some modi�cations of the MURIEL method, which we have not investigated,
might prove useful. One is a global assessment of specularity, based on the sonar
penetration condition. Any new reading could be checked in this way; but it
would be hard to keep track of older readings and re-evaluate them whenever a
relevant cell is modi�ed.

By using just one reading per pose bucket, a lot of readings are discarded.
Although much of this information is redundant, in some cases it may help to
categorize a cell state. For example, given very small objects, or ones that are far
away, the frequency of the sensor response at a given pose is a measure of con-
�dence in the presence of the object from that pose. It would be relatively easy
to incorporate such re�nements into the MURIEL algorithm, although given
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the overwhelming contribution of geometric error, this re�nement will probably
not contribute a great deal to the �nal result. One exception, however, would
be to use multiple readings and temporal information to \decay" information
in the grid, similar to ideas proposed for the VFH method (see Section 2).
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Figure 12: Results of the MURIEL algorithm on a typical hall scene. Grayscale
indicates occupancy, with white (ln� � �2) being unoccupied and black (ln� �
2) being occupied. For calibration, the darker gray areas on the center far
left and far right are at the unknown point (posterior odds = 1). The open
wall segments are doorways, and there is an open junction in the upper right.
Essentially all wall segments are correctly identi�ed.
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Figure 13: Results of the standard algorithm on a typical hall scene. Note how
few wall segments are found, due to interference by specular re
ection and the
overwhelming in
uence of redundant readings.
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Figure 14: Results of the standard algorithm with pose buckets. All redundant
readings are discarded. There is some destructive interference from specular
re
ections, leading to missed wall segments. Also, some free areas are taken to
be occupied, at the surface hypothesis of specular readings.
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Figure 15: Results of the standard algorithm using a .3 mixture of specular
re
ections.
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Figure 16: Results of the standard algorithm with pose buckets and .3 specular
mixture.
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