
The Autonomous Observer: A Tool for

Remote Experimentation in Robotics

H�ector Gonz�alez-Ba~nosa, Jos�e-Luis Gordillob, David Lina,

Jean-Claude Latombea, Alejandro Sarmientob, Carlo Tomasia

aRobotics Laboratory, Computer Science Dept., Stanford University, CA 94305
bCentro de Intelligencia Arti�cial, ITESM, Monterrey, M�exico, 64849

ABSTRACT

This paper describes a robotics technology { the Autonomous Observer (AO) { developed to facilitate experimentation

over the Internet. The AO is a mobile robot equipped with visual sensors. It applies visual tracking and motion

planning techniques to track a designated moving object (the target) in an environment cluttered by obstacles and

repeatedly measure the target's pose. This pose is sent over the Internet to remote users who can observe 3-D

real-time graphic renderings of the target's motion in its environment under individually selected viewpoints. The

AO was used to set up an experiment in which a can-collecting robot (playing the role of the target) equipped with

a range sensor and a simple arm automatically detects coke cans and collects them in a bag. Observation of the can-

collector's behavior through the AO allowed remote experimenters to correct software bugs causing failures on this

robot (e.g., colliding with obstacles, missing cans). It is well-known in experimental robotics that direct observation

of the performance of a robot is crucial for debugging and tuning the software controlling this robot. The AO

has proven to be an adequate (though perfectible) telepresence tool for remote experimenters. Other information,

e.g., ambient sound and live videos, can also be transmitted to these users to complement the graphic rendering

made possible by the AO. Multiple AO's could be used in the future to observe more complex environments with

multiple moving targets. Applications of AO technology are not limited to collaborative experiments. The same

basic technologies could bene�t other domains as well, such as teleconferencing, surveillance, and interactive TV.

Keywords: Remote experimentation, telepresence, distributed teams, autonomous observer, target tracking, mobile

robotics, asynchronous control, distributed systems.

1. INTRODUCTION

This paper describes a joint project between the Computer Science Robotics Laboratory at Stanford University and

the Center for Arti�cial Intelligence at the Instituto Tecnologico y de Estudios Superiores de Monterrey (ITESM) in

Mexico. The goal of this project was to develop robotics technology to assist geographically dispersed groups who

jointly perform robot experiments. A result of this project is the Autonomous Observer (AO), a mobile robot equipped
with visual sensors, which applies visual tracking, motion planning, and landmark-based navigation techniques to

track a designated moving object, called the target, in an environment cluttered by obstacles. The AO repeatedly

measures the target's pose (position and orientation) and sends this information over the Internet to remote users

who observe in real-time a graphic rendering of the target's motion in its environment from individually selected

viewpoints. The 3-D model of the environment is sent only once, prior to the experiment, so that only small amounts

of data are later exchanged between the AO and the users. Figure 1 illustrates the concept of an AO. Compared

to sending live videos over the network, the two key ideas behind the AO concept are (1) to reduce data exchanges

between the experimental site and the remote users and (2) to allow the remote users to locally select the most

pertinent viewpoints.

To demonstrate this concept, we have built and used an AO in the following experiment. The ITESM team developed

navigation and vision software to control a can collector, an in-door mobile robot that navigates according to user-

input high-level commands, such as \follow the wall on the right," and analyzes data provided by a laser range-�nder

Figure 1: The concept of an Autonomous Observer

sensor to automatically detect coke cans. The can collector is also equipped with a simple arm (a rod mounted

on a turret) to collect the detected cans in a trash bag. The ITESM team transfered the software that they had

previously developed for their own robot in Monterrey, to a similar one at Stanford. The AO was used by the ITESM

experimenters to remotely observe the behavior of the can collector (then playing the role of the target) and to �x

software bugs causing failures on this robot at the Stanford's environment (e.g., going to incorrect locations, colliding

with obstacles, missing cans).

It is well-known in experimental robotics that direct observation of the performance of a robot is crucial for debugging

and tuning the software controlling this robot. Our experiments show that the AO is an adequate (though perfectible)

telepresence tool that provides direct observation to remote experimenters. Other information, e.g., ambient sound,

data available on the robot, as well as live videos, can also be transmitted to these users in order to complement

the real-time graphic rendering made possible by the AO. Moreover, the application of the AO is not limited to

collaborative experiments in robotics or other domains involving complex equipment. We believe that the same basic

technologies could bene�t other tasks, such as telepresence, teleconferencing, surveillance, and interactive TV.

Our current AO is implemented using a Nomad 200 robot from Nomadic Technologies, Inc., equipped with two

cameras. One camera points horizontally and is used to track targets; the other points upward and is used to detect

ceiling landmarks for precise navigation. The AO is equipped with two onboard P166 computers and it is connected

by radio ethernet to the local area network. In our experiments, the target is another Nomad 200 robot.

This paper presents the software techniques implemented in the AO. Perhaps the most critical of these techniques

is a target-tracking planner that periodically decides where the AO must move to both keep the target in its �eld

of view, despite potential obstruction by obstacles, and remain at appropriate distance from the target. It must be

noted that the software controlling the target (the software of the can collector in the experiment reported below) is

designed independently from the AO. For that reason, there is no communication between the target and the AO.

The paper is organized as follows. Section 2 relates our work to previous research. Section 3 presents the components

of the AO software and their current implementation. Section 4 describes our experimental work on the can collector

and the use of the AO in this experiment. Finally, Section 5 draws conclusions from our results and discusses possible

extensions, including the use of multiple cooperating AOs.1

2. PREVIOUS WORK

Most robot tasks consist of moving objects between locations, e.g., manipulator arms assembling products and mobile

robots transporting parts. However, collecting pertinent information about environments through sensing is another

important task for robots. For instance, robots equipped with sensors can be used to build models of objects[1;6]

1For more information about the AO and ITESM's can collector visit http://underdog.stanford.edu/ and

http://renoir.mty.itesm.mx/~gordillo/OI/ , respectively.

and/or environments,[15;18] �nd objects (static or moving),[5;11] detect defaults (e.g., cracks in a structure), track

moving targets,[2;13;17;23] and perform surveillance operations. Such tasks often require computing motion strategies

to adequately place the sensors.[4] For example, building a 3-D map of a large environment may require a strategy that

will reduce the number of sensing operations;[1;15;18;21] �nding a moving object requires sweeping the environment

in such a way that the object cannot sneak into an already cleared subset of the environment.[5;17]

This paper considers an application where a mobile robot (the AO) uses a camera to track a target and estimate

the target's pose several times per second. Visual tracking is a well-studied problem in computer vision.[13;14;23]

However, traditional visual tracking techniques ignore obstacles and track a target until it escapes the �eld of view

of the camera. In some systems, the camera is mounted on a �xed-base pan-tilt platform that is servoed to keep the

target close to the center of the image. The AO camera has much greater motion capabilities; but, to make the most

out of them, the AO must continuously position itself with respect to the occluding obstacles in order to keep the

target in sight. This led us to equip the AO with a target-tracking motion planner that deals both with visibility

constraints and collision constraints (to avoid the AO to bump into obstacles, including the target itself). A model of

the environment (2-D layout of the obstacles) is given in advance, but it should be possible in the future to combine

our target-tracking planning techniques with on-line model-building capabilities. An alternative to a moving AO

would be to rig the environment with enough cameras, so that one of them, at least, would always have the target

in its line of sight; an art-gallery algorithm[22] could be used to compute the camera locations for this setup. The

AO o�ers several advantage over multiple �xed cameras: reduced engineering of the environment and ability (in the

future) to deal with dynamically changing environments.

Our target-tracking planner derives from our previous work,[2;10;17] in which we considered two main cases: (1) the

target's trajectory is known in advance and (2) it is unknown or only partially predictable. Here, we want the target

and the AO to be independently designed systems. Hence, the planner must operate on-line; this means that it must

iteratively compute the next \best" position of the AO in response to the most recent estimation of the target's pose.

At each iteration, the planner computes the AO position that minimizes a measure of the probability for the target

to escape the AO's �eld of view over a certain time span (the planner's scope). In theory, the longer the scope, the

better the AO can anticipate target motions out of its �eld of view. But, simultaneously, the more expensive the

computation becomes[17] and less pertinent the outcome (since the target keeps moving during the computation).

In our application, we do not expect the target to act antagonistically by trying to escape the AO's �eld of view.

Therefore, we have opted for a fast planner that anticipate possible target motions over a short time span, roughly

equal to a few cycles of the AO operations. Planning for target tracking in cluttered environment has applications

other than telepresence. For instance, in computer graphics, it can be used to automatically control the motion of a

virtual camera tracking a moving digital actor.[20]

The domain of application considered in this paper is telepresence. Though telerobotics can be seen as possible

component of a telepresence system,[7] our work is very di�erent. The AO is a robot, but it is not teleoperated; in

the experiment reported below, the target is also a robot, but it is computer controlled. The AO moves autonomously

to collect information about the target (currently, its pose), and transmits this information to user's workstations

for 3-D graphic rendering. The need to observe remote experiments is not unique to robotics and has been noted

in other domains, including physics[24] and medicine.[9] Light-�eld rendering is another technique that allows the

observation of a distant environment from selected viewpoints without 3-D modeling;[19] but it requires using a large

number of cameras, each precisely positioned in the environment.

3. AO SOFTWARE

3.1. Overview

As mentioned above, the AO is basically a mobile robot equipped with a camera to acquire images of a moving target.

Its software analyzes these images to estimate the pose of the target in the environment several times per second.

It sends this information to the user's workstations over the Internet. It also computes the sequence of positions

where the AO should go in order to maximize its chances of keeping the target in view. In a cluttered environment,

the target may move around the corner made by an obstacle and be suddenly occluded by this obstacle. As there is

no explicit communication between the AO and the target, the software must anticipate such a possibility and, for

example, command the AO to swing around the corner before the target gets too close to it. Of course, the AO must

simultaneously avoid colliding with obstacles and remain at an appropriate distance (a user-speci�ed parameter)

Copy Room Door 2501

Figure 2: Example of an arti�cial landmark used for localizing the AO

from the target.

The AO performs the same set of operations several times per second. These consist of: localizing the target,

sending the target's pose to the user's workstations, computing the AO motion to best keep the target in view, and

performing this motion. These operations do not have to be performed sequentially, or with the same frequecy, and

may be distributed over several processors as is the case in our implementation. To perform these operations the

AO software was designed in modules, each one presented int the following subsections. One of these modules, the

coordinator, supervises the rest of the software. Prior to its operations, the AO is given a polygonal map (2-D layout)

of the environment.

3.2. Landmark Detector

As it moves, the AO must keep track of its current position and orientation in the environment. This information

is needed not only for reliable navigation among the obstacles, but also to accurately estimate the target's position.

Our approach to AO self-localization is by means of arti�cial landmarks and odometric sensing. This combination

is not new and our techniques derive directly from the work presented in reference 3.

The AO uses a camera pointing upward to detect and recognize arti�cial landmarks placed at the ceiling of the

environment. Each landmark is a 4� 4 array of black or white squares, such as the one shown in Figure 2. The 4� 4

pattern is unique to the landmark and is called its ID. For each landmark, there is a subset of AO positions from

which it is visible to the AO.

The positions of the landmarks and their ID's are included in the 2-D map given to the AO. Whenever the AO detects

a landmark, it recognizes the 4 � 4 pattern, computes its own position and orientation relative to the landmark,

and derives its position in the environment. When no landmark is visible, the AO updates its position based on

odometric sensing.

The landmark detector receives a 320� 240 grayscale image as input. It �rst computes edge points and then looks

for edge chains that are consistent with the boundary of a square. If such a chain is found, lines are �tted to the

pixels which make up each edge. These lines yield the orientation of the landmark. Next, the positions of the inner

squares are computed and their intensities are read in order to identify the landmark. Four of these values are used

to disambiguate the landmark's orientation, while the others encode the landmark ID. At a ceiling height of 9 feet,

the translational and rotational errors of the self-localizer with respect to the landmark were unbiased with standard

deviations of 0.75 inches and 0.5 degrees, respectively.

3.3. Visual Tracker

A camera pointing horizontally allows the AO to track the target. The visual tracker �nds the target in the current

image provided by this camera and estimates its pose in the environment.

In the case where the target is a non-rigid object capable of performing complex motions, one would have to use

real-time versions of general-purpose tracking algorithms.[14;23] The visual tracker implemented in our current AO

is simpler, but limited to rigid targets moving in translation and rotation on a horizontal
oor (three degrees of

freedom). The target is equipped with unobtrusive rectangular black-and-white patterns placed on its surface, as

(a) (b)

Figure 3: Barcode patterns placed on the target's surface

shown in Figure 3. Each pattern consists of a set of three vertical lines (used for its detection) and a horizontal

barcode identi�er.

The visual tracker receives a 320 � 240 grayscale image as input. It �rst searches the image for occurrences of a

three-line pattern by scanning a few rows of the image and looking for the appropriate sequence of intensity changes.

Since the pattern is rather large and located at an approximately �xed height, it is not necessary to parse more than

2 or 3 image rows. Once a sequence is found, a second procedure locates the pattern boundaries and �ts straight

lines in order to compute the corners (with subpixel precision) through line intersection.

After the corners are detected, the software module reads the binary barcode at the bottom of the pattern (a number

between 0 and 31). It exploits the fact that the four detected corners are perspective projections of a rectangle in

space to compute the position and orientation of the rectangular pattern in space.[16]

Finally, with the poses and barcodes of the detected patterns, the visual tracker infers the location and bearing of

the target. Typically, the target is reliably detected at distances ranging between 2 and 8 feet from the camera. The

relative errors on its position and bearing are less than 5% within the operational range.

3.4. Motion Planner

Our solution to the on-line target-tracking motion planning problem is deliberately simple and fast. Whenever it is

invoked, the planner picks a small set S of candidate positions toward which it can move within a short amount of

time Æ (the planner's scope), given its maximal velocity. For each position p 2 S, it uses the input polygonal map of

the environment to compute the region V (p) that the AO would see if it where at p. It then selects the position p

in S that maximizes the chances that the target be in V (p) given its most recent estimated position.

There are several ways to pick the set S of candidate positions. In our implementation, we place a grid over the map

of the environment and consider the grid points that are reachable by the AO along a collision-free straight-line path,

in a time Æ set to 2 or 3 times the average planning time (as we will discuss later, our planner takes approximately

constant time). We limit S to K candidate positions, at most, where K is a user-input parameter. If the grid's

resolution is too �ne, we pick the K positions at random among the reachable grid points.

Computing the visibility region V (p) at every candidate position is rather fast, but still too expensive to be done

on-line. So, we precompute V (p) at every grid point before starting the normal AO operations. At every grid point

p, the computation is done using a classical line-sweep technique (here, the \line" is a ray emitted from p that we

rotate from 0 to 360 dg.). This computation takes O(n log n) time, where n is the number of vertices in the input

polygonal map. The total precomputation is linear in the number of points in the grid. Our computation of V (p)

takes into account that the range of the AO's camera is both lower and upper bounded. Figure 4 shows the visibility

region at a position p { the obstacles are depicted in dark color and V (p) in light, and no upper limit is shown.

The visibility region V (p) could be restricted to the cone of vision of the camera tracking the target. However, as

the turret of the Nomad 200 rotates relatively quickly and its orientation can be controlled independently of the

heading of the robot, a separate servo-loop keeps the target-tracking camera oriented toward the target. For planning

Region
Occluded

Occluded
Region

Observer

Region

Visible
Region

Visible
Region

Visible

Figure 4: Visibility region of a point p

purposes, the observer has omnidirectional vision.

Thanks to the precomputation step, the on-line planner has quasi-instantaneous access to the visibility region of each

of the candidate positions in S. The visibility region of each candidate is intersected with R, the region reachable by

the target during the planner scope. The position with highest intersection is selected as the best candidate. This

computation corresponds to selecting the point that has the highest probability of observing the target within the

scope Æ. We call this planning strategy maximizing the probability of future observation. Ties among the candidates
are broken by selecting the position that keeps the distance between the AO and the target closest to the value

speci�ed by the user.

The above technique works well if the AO can move as fast as the target (or faster), and the time needed by the

target to travel outside the region visible to the observer remains signi�cantly greater than the planner's scope. If

this distance gets smaller, the planner should reduce its scope accordingly.

In the can-collector experiment, the planner used a a 129�142 grid, which corresponds to a spatial resolution of about

6 in. per increment. The parameter K is set to 15. The precomputation (carried out on a SGI indigo2 RS10000)

takes about 23 sec. Planning takes about 10� 15 msec. Although the computation of the visibility regions depends

on the number of vertices in the map, this operation is done o�-line. Therefore, the on-line planning time depends

mostly on K and is approximately constant for �xed K.

More sophisticated planning techniques could be used to select the next AO position. An interesting extension, if the

landmarks are sparsely distributed, is to maintain an explicit representation of the uncertainty on the AO position

and to aim at positions where a landmark is visible when localization uncertainty becomes too large. Such techniques

have been separately developed and tested successfully.[8]

A completely di�erent strategy, suitable for antagonistic targets, will be to solve a local mini-max problem. For each

candidate in S, evaluate the distance between the most recent estimation of the target's position and the boundary

of V (p). This distance, which we call the distance-to-escape, is roughly proportional to the minimal time needed by

the target to escape V (p); hence, it is a worst-case measure of the likelihood that the target escapes the AO's �eld of

view. Said otherwise, the larger the distance-to-escape, the more likely the target will remain in the �eld of view of

the AO. The best candidate is the one with the largest distance-to-escape. This strategy, which we call maximizing
the minimum escape-time, has been succesfully implemented in simulation and we are currently developing a robot

implementation based on this planner.

3.5. Motion Controller

The controller issues commands for each of the three actuators on the Nomad 200 robot { translation, steering, and

turret rotation. Translation and steering are actuated in order to head toward the positions (set-points) successively

selected by the motion planner. Note that the planner may generate a new intermediate position while the robot is

still moving toward the previous one. The controller then switches immediately to aim for this new set-point.

As mentioned above, the turret is controlled by a separate loop that keeps the horizontal camera pointing toward the

target. The quick response of the turret loop allows us to assume that the robot is equipped with an omnidirectional

target-tracking camera.

High-level motion control cannot be achieved by directly applying classic design methods since the information
ow

between the AO system and the robot motors is an asynchronous transmission. The Nomad 200 motors are driven

by a galil DMC-630 board through a system daemon running as part of the Linux kernel in the robot's computer.

The DMC-630 is in e�ect a low-level position servo. For regular operations we can safely represent the response of

each axis using a simple kinematic model. However, since motion requests within the AO ultimately originate from

an active feedback process running at the top-level, and given that the OS on-board the robot is not based on a

real-time kernel, the axes motion responses become non-linear.

Given the sample rates required by the AO (10-15 Hz), we felt the need for a real-time kernel (which is an expensive

solution) could be avoided with a more sophisticated controller design. Our approach consists on a triple-layered

strategy: a linear compensator, an adaptive scheme that keeps the compensator tuned, and a time pacer that

regulates the control cycle to the speci�ed rate.

The linear compensator is designed using a pole-placement scheme. The controller parameters are selected in ac-

cordance to the desired control rate (15 Hz), the communication delays between the AO modules, and the time the

controller spends executing the necessary operations (duty cycle).

The adaptive loop keeps the compensator poles in place by recomputing the controller parameters as the control rate

and the duty cycle drift from their initial estimated values. The adaption maintains the closed-loop response close

to design speci�cations (e.g., settling-time of 1 sec. and overshoot of 1 %).

Finally, the time pacer veri�es that the control cycle stays close to the speci�ed rate. The pacer estimates on-line the

controller duty cycle, and pauses execution the amount necessary to keep the total cycle time within speci�cation {

i.e., it keeps the sampling time approximately constant. The pausing function is particularly important, as it gives

the kernel a good time slack to attend other processes. Without this slack, the control cycle will be interrupted at

arbitrary instants during operation.

3.6. User Interface

Each user can monitor the status of the remote experiment using the Graphical Robot Interface Program (GRIP).

GRIP also allows each user to teleoperate the target robot kept under observation (to emulate the robot joysticking

function that is usually available at the experimental site). The information about the experiment is retrieved from

the AO and displayed in graphical windows. A top-view window shows the 2-D map of the environment and the

current location of the target in this map, while other windows show 3-D renderings of the experimental site under

viewpoints selected by the user (see Figure 5). In our current system, we also allow the user to access video images

taken by the tracking camera.

The core AO system is separated from the user interfaces by a gateway module. The gateway module contains up-

to-date information of the changes in the environment observed by the AO. Any user interface module communicates

with the gateway module to obtain this information. For better fault tolerance on the Internet, the communication

protocol is a traditional acknowledgment protocol based on UDP. Thus, a target position sent to a user interface

module, but not received by this module, is simply forgotten. This prevents sporadic transmission problems from

queuing at the user's end and signi�cantly delaying the graphic visualization (a frequent problem when the standard

TCP/IP protocol is used). As new positions are computed 5 to 10 times per second, sporadic loss of information is

usually not perceptible by the users. The protocol gives reliable performance under low Internet traÆc, and degrades

gracefully when traÆc increases. The video images are displayed at a slower rate (on the order of one every 5 sec.).

3.7. Coordinator

(a) (b)

Figure 5: Rendering of the experimental site: (a) top view showing the target and the observer, as well as

the ceiling landmarks; (b) view from a selected viewpoint

Each of the above components runs as a separate Unix process. The communication between processes uses standard

TCP/IP protocols (with the exception of the UDP gateway), making it possible to run them on di�erent machines

and test each module independently. In our implementation, the landmark detector and the visual tracker run on one

of the AO's two on-board P166 processors, the motion controller and coordinator run on the other P166 processor,

and the motion planner and the UDP gateway run on a SGI indigo2 RS10000 station. The graphical interfaces run

at the users' remote ends.

The coordinator supervises the rest of the AO's software (see Figure 6). It integrates the information from each

module into a single representation of the state of the AO and the target. The state is essentially a vector pair (p; q),

where p and q are the most recent estimates of the position of the AO and the target, respectively. It connects as

a client to the landmark detector, the visual tracker, and the motion planner, and acts as a server to any process

requiring online information about the system state. The coordinator and the motion controller are integrated into

the same Unix process.

The coordinator estimates the current state from readings coming from the visual tracker and the robot's onboard

odometry. The estimated AO position is corrected for odometric drifts by using the information received from the

landmark detector. The visual tracker typically runs 20 to 25 times per second, which allows the coordinator to

update the target state with this same frequency. The landmark detector is invoked less often, as odometric sensing

is precise enough over short periods of time. The planner is invoked on the order of 5 times per second. Whenever

it is invoked, it computes the next set-point based the most recent state estimate.

4. CAN-COLLECTOR EXPERIMENT

The AO was used in several experiments between Stanford and other research centers (GRASP Laboratory at the

University of Pennsylvania, University of Illinois at Urbana-Champaign, and Iowa State University). The most

complex experiment is the can-collecting robot experiment done with the ITESM in Monterrey, Mex.

The main goal of this experiment was to evaluate the AO as a facilitating tool for collaboration in experimental

robotics among dispersed groups. The can-collector system was designed and developed at ITESM. It consists of

a semi-autonomous robot that follows routes speci�ed using high-level commands, searches for soft-drink cans, and

collects them in a bag.

The can collector is a Nomad 200 robot running three main software modules performing the following tasks: robot

navigation according to the input script; 3-D sensing and can recognition and localization; and can collection.

In the experiment an operator located at ITESM designs a script of high-level navigation commands (e.g., \follow

the wall on the right at some distance, until a corner is reached"), which is downloaded to the can collector. The can

configuration
target & observer

planner
motion

w/r camera

remote

system UDP
gateway

clientstarget pos

state

Target Tracking System

odometry

Coordinator
System

images

position
set-point

GUI’s
remote

commands
velocity

robot drivervideo frame
server

w/r camera
landmark pos

detector
high-level
controller

landmark
detector

visual target

Figure 6: Interaction among the AO software modules

(a)

(b)

(c)

Figure 7: The can collector system

collector then executes these commands autonomously by running sophisticated on-board primitives that incorporate

sensing to manage uncertainty in the can-collector's position. The can collector estimates its position using its own

odometric and sonar sensors. It ignores the existence of the AO { it does not use any of the information computed

by the AO.

The script also instructs the can collector when to perform a 3-D sensing operation to detect cans. The 3-D object

recognition module receives data from a laser range �nder mounted on top of the robot (see Figure 7(a)). A 3-D image

is obtained at a �xed location of the can collector by rotating the robot's turret and thus sweeping a vertical plane

of light. The input data is segmented into 3-D surface patches using a generalization of the one-pass segmentation

algorithm for binary images. The surface patches are then characterized using central second-order moments and

curvature descriptors in order to detect cylindrical surfaces.[12]

The collection of each detected can is performed by using a hooked rod mounted on the robot's turret. The motion

of the robot and its turret is controlled by a speci�c software module in order to pull and drag a can over the table,

into a basket attached to the robot (see Figure 7(b)). This module �rst checks that the can is reachable by the rod

(which is mounted at a �xed height and has a �xed length).

While the can collector is in operation, the AO observes the can collector at some distance (see Figure 8), constantly

Figure 8: The AO and the can collector

sending information about its location and bearing to the operator at ITESM. There, the information is displayed

as shown in Figure 5.

Using the AO feedback, the operator checks whether the downloaded script is achieving its purpose or needs to be

corrected. Although the software was debugged on a similar robot at ITESM, a number of problems occured at

Stanford. Because sonars are imperfect sensors and odometric sensing is quite sensitive to the physical properties

of the ground surface, the can collector collided several times with obstacles. Moreover, the control module failed

on ocassions to collect cans into the trash bag. The ITESM team was able to �x all those errors by looking at the

graphic rendering and low-frequency video provided by the AO.

5. CONCLUSION

As robotics hardware become more sophisticated, it is increasingly important for researchers to be able to experiment

with remote systems. Remote experimentation may drastically reduce hardware costs (including maintenance) by

allowing more researchers to share the same equipment. By allowing researchers to experiment with their software

on various hardware systems at di�erent locations, it is also likely to yield more robust and portable software.

However, remote experimentation in robotics is complicated by the fact that the experimenters absolutely need to

observe the robots in operation. Indeed, it is virtually impossible to correct most software bugs without observing

the behavior of the robots controlled by this software. The Autonomous Observer is one tool developed to help

remote experimenters. It presents two major advantages over the mere transmission of live video: low volume of

data are exchanged between the experimental site and the experimenter's sites, and each experimenter can select the

most pertinent viewpoints. However, nothing prevents the graphic rendering provided by the AO to be augmented

by video images and sound.

Experiments with our AO have given very satisfactory results. However, these should be considered preliminary. The

can-collector experiment was developed in ITESM before being downloaded at Stanford. Therefore, a large portion

of the debugging had already been done in advance. Developing new software modules from scratch at a remote

site would be much harder. Also, the can collector is a relatively simple robot with only 3 degrees of freedom. The

AO technology must be extended to handle articulated robots (e.g., manipulator arms) and multiple robots. We

currently work on multiple cooperating AO's tracking several targets. The AO could also be used to track objects

other than the robots. For example, the current AO does not track cans, making video images necessary in order to

detect when a can is missed by the collector and when it falls outside the bag. Finally, we have not used the AO yet

when experimenters are located at multiple remote sites.

Another interesting extension of the current AO would be to equip it with on-line techniques to build environment

models. Such an ability will eliminate the need to provide a map of the environment in advance. It would also enable

the AO to operate in dynamic environments containing moving objects other than the targets.

ACKNOWLEDGMENTS

This work was done under a project \The Intelligent Observer: A Tool for Collaborative Experimental Research

Among Geographically Dispersed Groups" jointly supported by NSF (award IRI-9506064) and by M�exico's CONA-

CyT (grant 500100-5-C007-A). Alejandro Sarmiento was the recipient of a CONACyT fellowship. Stanford research

on motion planning under visibility constraints is also supported by ARO MURI grant DAAH04-96-1-007 and NSF

grant IIS-9711380.

REFERENCES

1. J.E. Banta, Y. Zhien, X.Z. Wang, G. Zhang, M.T. Smith, and M. Abidi, \A Best-Next-View Algorithm for

Three-Dimensional Scene Reconstruction Using Range Images," Proc. SPIE, Vol. 2588, pp. 418-429, 1995.

2. C. Becker, H. Gonz�alez-Ba~nos, J.C. Latombe, and C. Tomasi, \An Intelligent Observer," Proc. 4th Int. Symp. on
Experimental Robotics, pp. 153-160, 1995.

3. C. Becker, J. Salas, K. Tokusei, and J.C. Latombe, \Reliable Navigation Using Landmarks," Proc. IEEE
Int. Conf. on Robotics and Automation, pp. 401-406, 1995.

4. A.J. Briggs and B.R. Donald, \Robust Geometric Algorithms for Sensor Planning," Algorithms for Robotic
Motion and Manipulation (WAFR'96), J.P. Laumond and M. Overmars (eds.), A K Peters, Natick, MA, pp. 197-

212, 1997.

5. Crass D. Crass, I. Suzuki, and M. Yamashita, \Searching for a Mobile Intruder in a Corridor - the Open

Edge Variant of the Polygon Search Problem," Int. J. of Computational Geometry and Applications, 5(4),
pp. 397-412, 1995.

6. B. Curless and M. Levoy, \A Volumetric Method for Building Complex Models from Range Images," SIG-
GRAPH'96. 1996.

7. M. Doherty, M. Greene, D. Keaton, C. Och, M. Seidl, W. Waite, and B. Zorn, \Programmable Ubiquitous

Telerobotic Devices," Proc. SPIE on Telemanipulator and Telepresence Technologies IV, vol. 3206, pp. 150-158,
1997.

8. P. Fabiani and J.C. Latombe, \Dealing with Geometric Constraints in Game-Theoretic Planning," Proc. IJ-
CAI'99, 1999.

9. H. Fuchs and U. Neumann, \A Vision of Telepresence for Medical Consultation and Other Applications,"

Robotics Research { The Sixth Int. Symp., T. Kanade and R. Paul (eds.), pp. 565-571, 1993.

10. H. Gonz�alez-Ba~nos, L.J. Guibas, J.C. Latombe, S.M. LaValle, D. Lin, R. Motwani, and C. Tomasi, \Motion

Planning with Visibility Constraints," Robotics Research - The 8th Int. Symp., Y. Shirai and S. Hirose (eds.),

Springer, pp. 95-101, 1998.

11. L.J. Guibas, J.C. Latombe, S.M. LaValle, D. Lin, and R. Motwani, \Visibility-Based Pursuit-Evasion in a

Polygonal Environment," Proc. 5th Workshop on Algorithms and Data Structures (WADS'97), Springer-Verlag,
pp. 17-30, 1997.

12. G. Hermosillo, A. Sarmiento, and J.L. Gordillo, \Di�erential Geometry Surface Descriptors Applied to Real-

Time Object Recognition in Range Images," Memorias de Visi�on-Rob�otica del Primer Encuentro de Com-
putaci�on (ENC'97), UA de Quer�etaro, Quer�etaro, pp. 124-133, 1997.

13. S. Hutchinson, G.D. Hager, and P. Corke, \A Tutorial on Visual Servo Control," IEEE Tr. on Robotics and
Automation, 12(5), pp. 313-326, 1995.

14. D.P. Huttenlocher, J.J. Noh, and W.J. Rucklidge, \Tracking Non-Rigid Objects in Complex Scenes," Proc. 4th
Int. Conf. on Computer Vision, pp. 93-101, 1993.

15. K. Kakusho, T. Kitahashi, K. Kondo, and J.C. Latombe, \Continuous Purposive Sensing and Motion for 2D

Map Building," Proc. IEEE Int. Conf. on Syst., Man and Cyb., pp. 1472-1477, 1995.

16. K. Kanatani, Geometric Computation for Machine Vision, Oxford Science Publications, 1993.

17. S.M. LaValle, H. Gonz�alez-Ba~nos, C. Becker, and J.C. Latombe, \Motion Strategies for Maintaining Visibility

of a Moving Target," Proc. IEEE Int. Conf. on Robotics and Automation, 1997.

18. P. Leven, S. Hutchinson, D. Burschka, G. F�arber, \Perception-Based Motion Planning for Indoor Exploration,"

Proc. IEEE Int. Conf. on Robotics and Automation, pp. 695-710, 1999.

19. M. Levoy and P. Hanrahan, \Light Field Rendering," Proc. SIGGRAPH'96, 1996.

20. T.-Y. Li and T.-H. Yu, \Planning Tracking Motions for an Intelligent Virtual Camera," Proc. IEEE Int. Con-
f. on Robotics and Automation, pp. 1353-1358, 1999.

21. J. Maver and R. Bajcsy, \Occlusions as a Guide for Planning the Next View," IEEE Tr. on Pattern Analysis
and Machine Intelligence, 15(5), pp. 417-433, 1993.

22. J. O'Rourke, \Visibility," Handbook of Discrete and Computational Geometry, J.E. Goodman and J. O'Rourke

(eds.), CRC Press, Boca Raton, FL, pp. 467-479, 1997.

23. N.P. Papanikolopoulus, P.K. Khosla, and T. Kanade, \Visual Tracking of a Moving Target by a CameraMounted

on a Robot: A Combination of Control and Vision," IEEE Tr. on Robotics and Automation, 9(1), pp. 14-35,
1993.

24. S.R. Sachs, D. Agarwal, and M. Blaufuss. \A Remote Camera System for the ALS Collaboratory,"

http://www-itg.lbl.gov/~ssachs/telepresence/telepresence.html, Lawrence Berkeley Lab., U.C. Berke-

ley.

