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Abstract

This paper presents a rapid localization method for mobile robots. Localization, i.e., absolute
position measurement, is an important issue since odometer errors render it impossible for any
robot to precisely follow a specified trajectory, resulting in a growing difference between the actual
configuration and the calculated configuration as the robot travels. Periodic localization is required
to correct these errors.

In this paper, we propose a new localization method using range sensor data which is based
on simple geometric properties of the environment. In many common situations, information re-
garding the environment is provided a priori for path planning. During processing, the method
proposed here utilizes this information to partition the workspace into sectors using simple visibil-
ity computations, and a small identifying label is computed for each sector. The localizer analyzes
range sensor readings (distances) and extracts characteristic points, which are compared with the
pre-computed sector labels to localize the robot, first to a sector, and then to a particular con-
figuration within that sector. Advantages of this two step process are that it is computationally
very simple, and that it allows precise localization without any landmarks from any configuration
in the environment. This localization method also provides opportunities for the global navigation
procedure to analyze and select trajectories in terms of their tolerance to localization errors.

*This research supported in part by NSF CAREER Award CCR-9624315, NSF Grants 11S-9619850, EIA-9805823,
and EIA-9810937, and by the Texas Higher Education Coordinating Board under grant ARP-036327-017.



1 Introduction
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Figure 1: Coordinates

Automatic navigation by mobile robots involves following a planned trajectory taking the robot
from a known start configuration to a goal configuration. The desired trajectory can be viewed as
a collection of robot configurations, which describe the robot’s location (z,y) and orientation (©)
with respect to the world coordinate system (see Figure 1).

Unfortunately, it is not possible for robots to precisely follow planned trajectories. This is
due to unavoidable measurement errors which prevent the robot from precisely determining its
current configuration. In particular, mobile robots have encoders to accurately measure/control
the rotation of their wheels. Based on its kinematics, the robot’s configuration is calculated from
the encoder reading. However, the error between the actual configuration of the robot and the
estimated configuration gets larger as the robot travels, mainly due to encoder errors caused by
the slip between the wheel and the surface [22]. Since the robot cannot follow the given trajectory
exactly, periodic localization which resets the error to zero is necessary.

Much work has been done on mobile robot localization. A number of landmark-based or map-
based approaches have been proposed which use ultrasonic range or sonar sensors. In [9], a po-
sition estimation method based on principal component analysis of laser range data is proposed.
The structure of an environment is represented as a family of surfaces in an eigenspace, which is
constructed from the principal components of a large number of range data sets. The Generalized
Voronoi Graph (GVG) can be used for localization [18] by comparing the coordinates of the current
meet point (vertex of the GVG) with the coordinates of previously discovered meet points. If there
is a match, then the robot can locate itself on the partially explored GVG. The disadvantage of
this approach is that localization is possible only at meet points. A fast localization algorithm for
dynamic environments is proposed in [23]; it is based on the definition of a very small landmark,
which is calculated from the circular depth function using a sonar sensor. Sonar sensor data is used
in [10] to build a multi-level description of the robot’s surroundings. The resulting two-dimensional
maps are used for path planning and navigation. The localization method in [20] uses sensor data
and the current odometry reading to build a series of local perception grids, and then registers the
local and the global grids. They assume the mobile robot has a map of its environment represented
as an evidence grid (i.e., each grid cell is marked as either free or occupied).

The basic principles of landmark-based and map-based positioning also apply to vision-based
positioning which relies on optical sensors instead of ultrasonic range sensors and inertial sensors.



Common optical sensors include photometric cameras using CCD arrays. Visual sensing provides a
tremendous amount of information about a robot’s environment and it is potentially the most pow-
erful source of information among all the sensors used on robots. Due to the wealth of information,
however, extraction of visual features for positioning is not an easy task. The problem of localiza-
tion by vision has received considerable attention and many techniques have been suggested. Most
localization techniques using vision provide absolute/relative configuration of sensors. Techniques
vary substantially, depending on the sensors, their geometric models and the representation of the
environment. Sugihara [21] considered two cases of point location problems, and [14] followed this
approach and formulated the positioning problem as a search in a tree of interpretations. In [5], an
algorithm is proposed for localization based on ray angle measurement using a single camera, and
then in [7], an odometric sensor was added to landmark-based ray measurements and an extended
Kalman filter was used to combine vision and odometric information. A method was developed
in [3] that uses a stereo pair of cameras to determine the correspondence between the observed
landmarks and the preloaded map and to estimate the two-dimensional location of the sensor from
the correspondence. A system for navigation in a partially modeled environment is outlined in [11],
and in [4], trinocular stereo and three-dimensional line features are used for building, registering,
and fusing noisy visual maps.

Most of the vision-based approaches use landmarks, whose locations are previously defined in
world coordinates. Some of the map-based localization techniques only provide for localization
in restricted regions of the environment (e.g., only at previously known or discovered landmarks
such as meet points). To our knowledge, no localization method has been proposed which exploits
pre-computable geometric properties of (partially) known environments to enable localization at
virtually any point in the environment using only range sensor data.

1.1 Owur Approach

In this paper, we propose a new localization method using range sensor data (i.e., distance mea-
surements) which is based on simple geometric properties of the environment. In many common
situations, information regarding the environment is provided a priori for path planning. Our goal
is to utilize this information for localization. Our localization method is computationally very
simple and enables the robot to estimate its configuration at any place in the workspace. During
preprocessing, the workspace is partitioned into sectors using simple visibility computations, and
a small identifying label is computed for each sector. The localizer analyzes the range sensor read-
ings and extracts characteristic points, which are compared with the pre-computed sector labels to
localize the robot, first to a sector, and then to a particular configuration within that sector. This
two step process is computationally very simple, and allows precise localization without any land-
marks (beacons). Another advantage of this localization method is that it provides opportunities
for the global navigation procedure to analyze and select trajectories in terms of their tolerance to
localization errors.

The paper is outlined as follows. Section 2 describes visibility sectors, and localization based on
visibility sectors is described in Section 3. The global navigator is described in Section 4. Prelimary
experimental results are presented in Section 5, and some conclusions are given in Section 6.

2 Visibility Sectors

To facilitate subsequent localization, it is convenient during preprocessing, to partition the envi-
ronment into sectors that are distinguished by the features of the environment that are visible from



the sector.

We assume that a model of the environment is provided a prior:, that the portion of the
workspace relevant for navigation can be considered to be planar, and that obstacles can be modeled
by simple polygons. In particular, we assume that a description of the environment is available as
an embedded planar graph G = (V, E), |V| = n and |E| = m, which decomposes the plane into
regions that are free (i.e., contain no obstacles) or blocked (i.e., filled with obstacles). The union of
the free (blocked) regions of the environment is called the workspace (obstacle space) and is denoted
by W (B).

Two points p; and p, are wistble if p1ps does not properly intersect B. The point visibility
polygon V (p) is the set of all points visible from p [19] (see Figure 2(a)).
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Figure 2: (a) A point visibility polygon, and (b) the visibility sectors.

A visibility sector s; C W is a maximal region such that every point p € s; is visible from the
same set of environment vertices V,, C V. Thus, the visibility sectors of W are the faces in the
planar subdivision that is obtained by overlaying the point visibility polygons for all v € V (see
Figure 2(b)).

2.1 Computing Visibility Sectors

As mentioned above, the visibility sectors S = {s1, s, . . ., sk} are the faces in the planar subdivision
which is obtained by overlaying the point visibility polygons for all environment vertices. Thus,
one approach is to first compute all point visibility polygons, and then compute their common
intersection.

All point visibility polygons V(v), v € V, can be computed in O(n?) time using Lee’s [15]
optimal O(n) time algorithm for computing a single point visibility polygon. Let E, denote the
edges in v’s visibility polygon, let E' = U,cy F,, and let n’ = |E’|. Then, the common intersection
of the V(v), for all v € V, can be obtained in O(n'logn’ + k') time, where k' is the number of
intersection points, using one of a number of deterministic [2, 6] or randomized [8, 17] algorithms
for line segment intersection. Thus, the total time required to determine the visibility sectors is
O(n? + n'logn’ + k'). In many practical situations, n’ = O(n), and so the total construction
time would actually be O(n?). We remark that a more efficient algorithm might be obtained by
exploiting the fact that the visibility polygons are planar subdivisions. For example, the overlay of
two planar subdivisions can be computed in O(n + k) time [12] as compared to O(nlogn + k) time
in the general case.

However, since the environments we consider are quite small, and these computations are per-
formed during preprocessing, it is sufficient for us to use a more naive, less efficient algorithm. In



particular, we simply consider all pairs of vertices v;,v; € V' and determine what contribution, if
any, the line containing them makes to V'(v;) or V(v;). After determining all such segments, we
add them to our description of the environment G = (V, E) to obtain a new graph G' = (V, E')
(intersection points are not introduced yet). Finally, we use the LEDA [16] routine to construct a
planar map, whose faces correspond to our visibility sectors, from the graph G'.

2.2 Visibility Sector Labels

Our localization algorithm is a two step process that first localizes the robot to a particular visibility
sector, and then within that sector. To aid this process, we compute, during preprocessing, a label
for each sector that includes a component for each vertex and edge of the environment visible from
that sector.

The component for each feature is classified as one of four types of characteristic points: a local
maxima (M), a discontinuity (D), a local minima (m), or a connection (c) point. The local mazima
represent the convex vertices of the environment visible from the sector, while the discontinuity
points are the concave environment vertices that inhibit the view of some portion of the environ-
ment from the sector. The Local minima of a sector are the visible concave vertices that are not
discontinuity points or are points on edges which are perpendicularly visible from a sector (i.e.,
if a perpendicular segment from the edge can reach the sector without intersecting any obstacle).
Finally, each discontinuity point D has a corresponding connection point c, which represents the
partially visible edge whose visibility is blocked by D (i.e., ¢ represents the ‘landing’ point of a
ray from the sector through D). Note that if a point could be both a discontinuity or a connection
point and a local minimum or maximum, distinction as a discontinuity or connection point takes
precedence.

‘ Sec. ‘ Label ‘

1 mD cmMmMmMmM
mD cMmMmMmMmM
mMmMmMmMmMmM
mMmMmMmMmMcD
mMmMmMmMmcD
mMmD cMmMcDmM
mMmD cMmcDmM
mMmD cmMcDmM
mMmDcmcDmM

OO0~ O x| N

Table 1: Sector labels for the environment of Figure 2(b).

A sector’s label is a string of mark characters (M, m, D and c), one for each characteristic point,
which appear in the order the characteristic points are seen in a counter-clockwise scan with an
initial orientation of 0 (i.e., eastern point first). For example, Table 1 shows the sector labels for
the environment of Figure 2(b).

3 Localization

Our localization method is actually a two-step process. First the robot is localized to a particular
visibility sector, and then its precise position and orientation in that sector are computed. Both



these steps make use of the visibility sector information computed during preprocessing and are
accomplished using only distance readings obtained by simple range sensors.

To simplify the exposition, in this section we make the following assumptions: (i) each visibility
sector in the environment has a unique label, and (ii) the robot’s range sensors provide at least
three readings for each edge visible from the robot’s current position. While the first assumption
is in general not valid, the second may be practically true for laser scanning sensors in certain
environments. These assumptions are removed in Section 4.

3.1 Range sensor data

The ‘visibility’ information required by our localization algorithm can be obtained using simple,
inexpensive range sensors. Ultrasonic range sensors or laser scanning sensors are commonly used
for mobile robots to measure the distance to nearby (visible) obstacles or to avoid collision. Laser
scanning sensors provide distance measurements of 27 radians with a very high sampling rate.
Some mobile robots are equipped with a rotating table so that the ultrasonic sensor mounted on
top gives 27 radians sensor readings. Figure 3 shows an example sensor reading. The center is the
origin of the sensor coordinates. If measured N times for 27 radians, the resolution is ZW’T radians
and the ¢ — th sensor reading gives distance information (r;) at its angle (#;) with respect to the

sensor coordinates. We denote the set of N sensor readings by SD:

SD = {(r;,0;)|r: € R,0; € 6,0<i< N —1}. (1)

270

Figure 3: Range Sensor Reading



3.2 Localization to a visibility sector

To localize the robot to a particular visibility sector of the environment, we extract a label /g
from the distance data R scanned by the robot and match this label with a label £, for one of the
environment’s visibility sectors (recall in this section we assume each sector has a unique label).
This is accomplished by extracting characteristic points from the measured distance data, and then
composing them into a label.

Figure 4 shows the measured distance data scanned from 0 to 27 radians. If we scan these
readings in sorted angular order, then the local minima and maxima readings directly correspond
to local minima and maxima characteristic points m and M, respectively. The discontinuity and
connection characteristic points D and c, respectively, can be found by a similar scan. In this case,
if two consecutive distance readings differ by some predetermined threshold value er, then the
smaller reading corresponds to D and the larger to c. This process is outlined in the pseudo-code
below, where R = {rq,r1,...,7N_1} is the set of N distance readings sorted in angular order; all
index arithmetic is done modulo N, and o denotes string concatenation.

CONSTRUCT ScAN LABEL(R)

1. ZR = @

2. for1:=0to N

3. if (r; — riy1 > er) then {g := fgo cD

4 elseif (r;41 — r; > er) then g := {go Dc

5. elseif (r;_1 > r; and r; < r;41) then g := {gom
6. elseif (r;_1 < r; and r; > r;41) then fg := fgo M
7

8

endif
endfor

Sensor Reading
12 T T

DISTANCE [m]

3 4
ANGLE [rad]

Figure 4: Sensor Data Analysis

The characteristic points identified by CONSTRUCT SCAN LABEL are marked in Figure 4 and
Figure b shows the sensor reading mapped into the workspace. In this case, a total of 128 samples
are measured. The label constructed for this sensor reading is

fr = mMmMmMmMmDCm



Simulated Sensor Reading
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Figure 5: Characteristic Points

where the initial orientation § = T (note the heading direction in Figure 5).

Once the label £ is composed from the scan, it is then matched with a label £, for one of
the environment’s visibility sectors. Our assumption that the range sensors provide at least three
distance readings for all visible edges of the surrounding environment implies that we will have a
distance reading for each characteristic point visible from the robot. However, since the orientation
of the robot is not known, our matching of /g with the environment’s sectors labels must consider
cyclic shifts of /g when performing the matching. For example, in the example considered above,

the label £g matches the label for visibility sector s, but only after cyclically shifting £g.

3.3 Localization in a visibility sector

Once the visibility sector containing the robot is identified, we now must determine the position
and orientation of the robot in that sector, i.e., we must determine its configuration (2., y¥,, ©,)
(see Figure 1). Note that we know the world coordinates of the vertices and edges visible in this
sector. In addition, we have sensor readings for each visible edge, and moreover, after the label
matching, we know the edge associated with each distance measurement.

If our sensor readings corresponding to the local maxima M characteristic points exactly coin-
cided with the corresponding vertices of the environment, then localization would be trivial. For
example, let (Xar, Yar) and (2ar, yar) denote the coordinates of the scanned local maximum point
in the world and the robot’s local coordinate systems (X,Y) and (X,,Y,), respectively. Then,
the robot configuration (z,, ¥,, ©,) denotes the linear transformation from (X,Y) to (X,,Y,) with
translation (z,,y,) and rotation (®,), which can represented as shown in Equation 2:

—cos®, sin®, Xy M z,
—sin®, —cos®, Yy v | = | Y (2)
0 0 1 1 1



In the above matrix representation, there are three unknown variables (z,,y,, and ©,), and two
equations. Therefore, in order to solve for (z,,y,, ©®,) We require the local coordinates of at least
two environment vertices (M characteristic points). Without loss of generality, let M; and M, be
two such points. Solving these four equations for the three unknowns, we obtain:

0 — sin-! Xmz2 — X
\/(-’EMz —zp1)” + (ym2 — yan)’
+ tan~! <7mM2 _ le) (3)
Ymz2 — YM1
2z, = —cosOzpyy +sinOyy + Xm (4)
Yo = —sinOzp — cosOypyr + X (5)

Unfortunately, due to the finite number of scans, our readings do not exactly coincide with
environment vertices. However, we can use the readings to compute the local coordinates of (two)
environment vertices, and then use these to compute (z,, ¥,, ®,) as described above. Consider the
situation shown in Figure 6, where we have scans on the edges adjacent to the local maximum
vertex M = (zar,ym). In the figure, (X,,Y,) is the robot’s local coordinate system and (X,Y) is

Y .
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Figure 6: Computing the local coordinates of M from scans on its incident edges.

the world coordinate system. We can derive the equation (Eq. 6) for the the line containing the left
edge using the series of sensed (local) points P;11, P;12, Pi+3, Pita. Only two points are required to
get the equation of the line, but multiple points are used for a least square error method to reduce
the error. Similarly, the equation for the line through the right edge (Eq. 7) can be derived from
P, Pi1,P_3,Pis.

a1z +biy+c=0 (6)
ase +bsy+ca3 =0 (7)
The local coordinates of M = (zar, ym) can then be calculated as:
_ —c1by + caby
M= albz - a2b1 (8)
_ —aic2 + azc
M= azby — a1by ©)

8



Note that all the variables, ¢, yar, a1, by, ¢1, az, bs, g, are calculated from the sensed data.

In principle, one could use any two convex environment vertices (local maxima M points) for
the above calculations. In practice, it is convenient to select to select adjacent vertices so that the
equations for only 3 lines need to be computed, i.e., we use the edge between the vertices in both
cases.

4 Global Navigation

The global navigator includes the localizer and the path planner/updater modules, which both use
the environment’s visibility sector information. With the given start and goal configurations, and
the known environment information, the global navigator plans the path, and outputs a trajectory
for the mobile robot. As the robot traverses the path, it (periodically) sends sensor readings to
the localizer module. From the sensor data, the localizer estimates the current configuration, and
sends it to the path updater, which replans the path, if necessary, and outputs a new trajectory
for the mobile robot.

Start, Goal

4 | )

Path
Planner/Updater
Environment
Information

Localization

Path -4

Sensor (—»

\ Navigator )

Figure 7: Global Navigator

4.1 Ambiguous Sector Labels and Error Estimation

If each sector in the environment has a unique label, then the localization procedure described in
Section 3 is sufficient to localize the robot to a sector. We note that in many situations, the labels
of the visibility sectors will in fact be unique. For example, in the more complex office environment
shown in Figure 8, which contains 82 visibility sectors, each sector’s label is unique.

However, there exist environments in which multiple sectors have the same label. To deal with
this case safely, the global navigator should plan the path carefully so that no ambiguities will
arise, or it should ask the robot to localize sufficiently often so that accurate localization is always
possible. This section describes how the global navigator deals with these issues.

Many researchers have developed algorithms that estimate the position uncertainty of a dead-
reckoning robot [13, 22]. With this approach, each computed robot position is surrounded by a
characteristic error ellipse which indicates a region of uncertainty for the robot’s actual position
[1, 22]. Typically, these ellipses grow with travel distance, until an absolute position measurement
(localization) reduces the growing uncertainty and thereby resets the size of the error ellipse.



%

N

Figure 8: Sectors for an Office Environment

In Figure 9, the mobile robot started or localized itself at time t;, therefore, there exists no
position uncertainty. Sector ¢ and sector j have the same label. If the robot is in either of these

Goal

L
7
. % Sector j
Sk

Figure 9: Uncertainty Ellipses and Ambiguous Sectors

sectors, which cannot be identified simply from the label information. As the robot moves, the
position uncertainty ellipse grows and it touches sector ¢ at £4. At t5, the ellipse covers both sector
i and j.

In order to avoid this situation, the global navigator should attempt to plan the path so that
the position uncertainty ellipse will never intersect two ambiguous sectors simultaneously. If that is
not possible, then the navigator must determine when the robot should be localized to prevent such
a situation from arising. Finally, even if the pre-planned path avoids all ambiguous situations, the
robot must still be localized and the trajectory updated to correct for the accumulated positioning
errors.

4.2 Limited number of scans

In this section, we consider the issue of determining the minimum number of scans necessary for
accurate localization. This is an important question for two reasons. First, minimizing the sensing
time will minimize the localization time as well. Second, in practice, only a limited number of scans
can performed by sonar range sensors due to limits on the sensor bandwidth and on the resolution
of the robot’s rotating table.

10



The scan label constructed from sensor data will not be correct if every edge visible to the
robot is not scanned in such way that its corresponding characteristic points can be identified. In
particular, the label constructed by the scan will be correct if every edge containing a connection
point c is scanned at least once, every edge which is perpendicularly visible is scanned at least three
times (to get both M’s and the intervening m), and every other edge is scanned at least twice. For
example, Figure 10 shows two scans, with 64 and 16 readings, respectively, taken from the same
position in sector s;. The scan with 64 readings satisfies the requirements given above, while the
one with 16 readings does not. The labels constructed from the scans are £g4 = mMmDcMmcDmM and

Simulated Sensor Reading L Simulated Sensor Reading
10- 10- s

Figure 10: Sensor scan of sector sy with (a) 64 scans, and (b) 16 scans.

£16 = MmDcmcDm, respectively. While the label fg4 correctly matches the pre-computed label for
sector s7, the label £1¢ does not, and in fact matches the label for sector sg instead.

Based on the above observations, a conservative requirement to ensure the correct label is
constructed is to ensure that each edge is scanned at least three times. For example, consider
the situation shown in Figure 11(a). Given the position of the robot, we can determine the scan
interval for each edge (i.e., the visible angle of that edge from the given robot position). Letting a
denote the minimum such angle, the minimum number of scans is

_671'

a
However, the angle, a varies depending on the location in sector s7;. As the robot moves towards
the edge p1ps, a goes to zero and N,,;, becomes co, which is not possible.

Recall, however, that our goal is correct localization, not correct label construction. For local-
ization, as outlined in Section 3.3, we need to compute the local coordinates of two environment
vertices. This requires that we scan at least two points (not three) on the edges adjacent to those
vertices (used to get the equations of the lines whose intersection determines the local coordinates
of the vertex). For example, the local coordinates of the local maximum points M; and Mj can be
obtained from the 16 reading scan (see Figure 10(b)). In this case, although the label constructed
for the 16 reading scan taken in sector sy incorrectly matches sector sg (since the edge Ls was not
scanned), it still correctly identifies the environment vertices corresponding to M; and M, and this
is all that is needed if the localization is performed using M; and M,. In fact, correct localization
will result if the computed label matches the label from a different sector which uses the same local

11
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Figure 11: For sector s7, (a) visible/invisible vertices, and minimum visible angle calculations for
s7 vertices (b) p1, (c) p2, and (d) ps.

maximum points as the actual sector for localization. One situation in which this occurs is if the
scan only misses edges corresponding to connection points. In these cases, our requirement now
becomes that each edge, except those identified with connection points, be scanned twice. That is,

47
= 11
min o ( )

The relaxation of the need to scan connection point edges allows us to obtain a finite requirement
on the minimum number of scans for a particular sector as follows. We first note that one of
the extreme points of the sector (the vertices) will achieve the minimum visible angle for a given
environment edge among all points in that sector. Thus, we compute a minimum angle for each
sector vertex (see Figure 11), take the minimum of these minima, and then apply Equation 11. The
minimum angle of a sector vertex is the minimum angle between the rays connecting the vertex to
all visible vertices from that sector except discontinuity vertices.

The procedure outlined above computes the minimum number of scans necessary for a given
sector. If desired, one can determine a scan resolution valid for the entire environment as follows:
compute the minimum visible angle for each sector, take the minimum of these minima, and then
use this in Equation 11 to determine necessary scan resolution.

12



5 Preliminary Experimental Results

We are currently implementing our localization method with the mobile robot shown in Figure 12.
The robot has dual differential drive with DC gear motors and encoders. Due to encoder errors
caused by slip between the wheel and the surface, periodic localization is necessary. Three ultrasonic
range sensors are mounted on the pan/tilt head so that each sensor gives readings of %’rad. The
sensors have a minimum and maximum range of 20cm and 10.5m, respectively, with a resolution

of 1%.

Figure 12: Mobile robot

For this initial test, we used environment identical to the running example used in the paper
(e.g., Figure 11), but in reduced scale (2.54m X 2.54m as opposed to 10m X 10m). Figure 13 shows
the robot sensing the environment from sector sp; N = 60 sensor scans were obtained (20 scans by
each sensor).

Figures 14 and 15 show preliminary experiment results. Note that the experimental data is
very close to the simulated sensor readings shown in Figures 4 and 5. Due to crosstalk of signals,
the measurement shows several incorrect readings, and postprocessing of the sensed information is
currently being investigated.

6 Conclusion

In this paper, we present a new localization method for mobile robots. This method is based on
range sensor data and some simple preprocessing of the environment to partition it into visibility
sectors. A strength of this localization method is that it can be applied from any configuration in
the environment (it does not need landmarks), and it is very simple, requiring only a comparison
of some features easily extracted from the sensor reading with similar information computed for
each sector in the environment. This localization method also provides opportunities for the global
navigation procedure to analyze and select trajectories in terms of their tolerance to localization
errors.

13



Figure 13: Experiment
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Figure 14: Sensor Data from Experiment Analysis

We believe this method is very promising, particularly in indoor environments for which good
models are usually readily available. We are currently implementing this method on a mobile robot
in our lab, and will report more complete experimental results in the final version of the paper. We
are also working on extensions of the method so that it can be used in the presence of unknown
(e.g., furniture) or moving (e.g., people) obstacles.
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