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Abstract The complexity of motions in the environment pre
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We propose a novel method for temporally and spa-
tially corresponding moving objects by automatically
learning the relevance of the objects’ appearance features
to the task of discrimination. Efficient correspondence is
achieved by enforcing temporal consistency of the rele-
vances for a particular object. Relevances are learned
using a technique we have termed “differential discrimi-
native diagnosis.” An agent is assigned to each moving
object in the scene. The agent possesses the basic capabil-
ity to decide whether or not an object in the scene is the
one it represents. Each agent customizes itself to the object
by means of differential discriminative diagnosis as the
object persists in the scene. We explain this correspon-
dence scheme as applied to the task of corresponding mov-
ing people in a surveillance system.

1 Introduction

There has been an increased interest in distributed sur-
veillance systems in recent years [1,2,3,4,5]. The objective
is to provide critical information to the human user in real
time. A surveillance network of reasonable size produces
massive quantities of information. Much of this informa-
tion is redundant and can inundate a human operator while
distracting him or her from information of substance. A
distributed surveillance system that can automatically
eliminate the redundancy in the information conveyed to
the user is invaluable. Changes in the scene, induced by
the motions and actions of people and vehicles, are usually
the subject of interest in most urban surveillance scenar-
ios. The ideal distributed surveillance system should be
able to track all the motions and interactions of objects and
raise appropriate flags when information of importance
needs to be conveyed to the user. This paper addresses the
problem of temporally corresponding moving objects to
facilitate a good interpretation of the objects’ actions.

cludes the use of simple positional correspondence, 
correspondence based purely on the positions of mov
objects. Positional correspondence also fails when mov
objects are relatively large with respect to the field of vie
of the sensors. In such situations, other features of 
moving objects, such as different appearance traits, n
to be put to good use for robust correspondence. How can
we select appearance features so as to facilitate good cor-
respondence? The measure of goodness of the features 
choose not only depends on the object in question, but a
on other objects in the scene. A globally “good” set of fe
tures can be estimated a priori, but only a subset of these
features might be relevant to the correspondence of a 
ticular object. We pose the estimation of the relevance
globally good features for corresponding a particul
object as an on-line learning task. Differential discrimina-
tive diagnosis provides a systematic method for estimatin
the relevance of features and checking the temporal c
sistency of these features for a particular object.

2 Related Work

Much work has been devoted to efficient object corr
spondence and tracking. Surveillance systems describe
[1,2,3,4] deal with the problem of detecting and trackin
moving objects. The system described in [1] uses corre
tion with dynamic templates of the object as a method fo
temporally corresponding it. An IIR filter is used to ada
the dynamic templates over time. The system described i
[2] uses linear prediction with Kalman filters of the pos
tion and size of the moving objects. The algorith
described by Cohen and Medioni in [3] combines th
detection and tracking process. They use a graph repre
tation to generate dynamic templates of each mov
object. An object’s trajectory is determined by choosing 
optimal path through the graph and enforcing a tempo
coherence constraint. [4] uses correlation of the movi
object’s silhouette and template matching.
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Figure 1. CyberARIES high-level surveillance systems architecture
There has also been a good amount of work done in
tracking specific objects. Notably, [6] describes tracking
people and their actions. Gaussian models are used to rep-
resent 2-D regions or blobs. The model accounts for the
position and color of the blobs. These blobs are used to
track the position of the person in the scene. Wren and
Pentland in [7] extend the notions described in [6] to a 3D
context and model a person’s physical actions explicitly.
McKenna et al., [8] use a Gaussian mixture model of the
color of an object to track it effectively. Black and Jepson
in [9] describe an eigenspace method for tracking specific
rigid objects. They use a multi-scale eigenspace approach
to represent and match objects over time. They apply this
technique to the task of tracking and recognizing the ges-
tures of a moving hand. Rehg et al., [10] describe a
method for tracking high-DOF articulated objects. They
employ this method for tracking humans. They explicitly
model the kinematics of articulated parts and use this
model to perform correspondence. Other notable people
tracking systems include KidsRoom [11] and Cardboard
People [12]. These systems also seek to model the articu-
lation of humans.

Our proposed method relies on knowing the class of
the object (person, people or vehicle). Thus, there is
domain knowledge incorporated in the correspondence
process. The injected domain knowledge not only helps in
making the correspondence process robust, but it also
helps in making it computationally efficient. By account-
ing for the different moving objects of interest, we come
close to obtaining the versatility of class independent cor-
respondence. In contrast to most of the methods men-
tioned in this section, our proposed technique poses
moving object correspondence as a statistical pattern clas-
sification/discrimination problem. Rather than modeling
motion, our algorithm finds stable discriminating features
to correspond an object. We show that training an agent to
correspond an object off-line and giving it the capability to
customize itself to the object on-line, leads to an efficient
correspondence algorithm.

3 CyberARIES Surveillance Architecture

An agent-based architecture offers an efficient a
convenient software infrastructure for a distributed su
veillance system. Such an architecture facilitates the co
bined use of powerful tools from machine learning an
computer vision. We have developed an agent based 
tem called CyberARIES for Autonomous Reconnaissance
and Intelligent Exploration. CyberARIES has been imple
mented to run on stationary and mobile surveillance pl
forms. The object correspondence scheme to be descr
in this paper uses the CyberARIES architecture as a fun
mental implementation tool.

Figure 1 shows the connectivity of the surveillanc
architecture within CyberARIES with respect to the corr
spondence agents. The camera produces 320X240 8
grayscale images which are sent to the detector agent. 
detector agent uses a bank of auto-regressive filters
model the background. The background model is th
used to detect moving objects in the scene. It is compa
ble to the motion detection scheme used in [2]. Connec
components analysis is used to segment the detected m
ing objects from the background. This detection and se
mentation scheme has proven to be simple yet effect
The detector agent then feeds a list of segmented obj
to the classifier agent which in turn classifies the object
a “person”, “people” or a “vehicle.” The classifier also ha
the ability to reject detections of no interest to the surve
lance task. Examples of uninteresting detections inclu
moving foliage, false alarms caused by changing lighti
conditions and high frequency motion of the camera on
vibrating platform. The correspondence agents work w
the classified moving objects as their input. 

In addition to the feedforward connectivity describe
so far, there also exist feedback connections from the c
sifier and the correspondence agents to the detector. 
classifier feeds back the locations of the detected obje
that were rejected. Information about the predicted futu
positions of the corresponded moving objects are also 
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back to the detector. The information feedback is used to
adapt the local sensitivity parameters of the detection fil-
ters. This simple feedback mechanism is extremely effec-
tive in improving the SNR of the detections. Figures 2 and
3 show the system in action with the classifier designed to
label each moving object as “people” (in this version of
the system, class “people” includes class “person”) or a
“vehicle.” The two figures also provide a clear idea of the
typical operating environment for the system. Objects can
either be a good distance away or very close to the camera.

4 The Basic Correspondence Agent 

Consider the detected and classified people and vehi-
cles in Figures 2 and 3. The correspondence agent is
responsible for temporally corresponding each moving
object. Under the CyberARIES framework, an agent is
assigned to every moving object in the scene. This section
describes the correspondence algorithm that each agent
possesses before any on-line learning occurs.

4.1 Input Representation and the Classification 
Problem

We pose the correspondence problem as a classifica-
tion problem. Let  denote an object  at time instance

 belonging to a sequence . The object  is represented
by an intensity map with the background subtracted. Fig-
ure 4 shows an example of the intensity map contained in

. The appearance features that we are interested in are
captured by . The temporal correspondence problem
can be defined as matching the object  with a previ-
ously seen instance . Let  denote the magni-
tude of the difference of each pixel between two object

instances as shown in equation (1). The subscripts  an

index potentially different sequences. The function 
resizes the intensity map of the object to a standard s
The function  centers the object in the image usi
its center of mass. The function  crops the differen
of the intensity maps to a prescribed size. Figure 5 sho
the resized, centered and cropped versions of the image
Figure 4. Ideally, if  and  represented the sam
object at two different instances in time, then  shou
contain mostly zeros with very few high magnitude va
ues. Unfortunately, the articulation of a person’s limb
induces large magnitude values, but the locations of th
large magnitude values are more or less consistent. N
and centering errors also cause large magnitude dif
ences. The objective of the classifier is to decide whet
or not a given  represents the acceptable differen
between two instances of the same object or the diff
ences between two instances of different objects. Thus,
classifier classifies each  as a “match” or “no match

4.2 Designing and Learning a Classifier

An ideal classifier for this application should, with
minimum functional complexity, approximate the Baye
Optimal classifier well. The minimum complexity require
ment is critical because of the computational constrai
faced by a real-time surveillance system. It should appr
imate the Bayes-Optimal classifier well because we wa
the classifier’s performance to be as good as poss
given the input representation. Hampshire and Pearlmu

tn s, t
n s t

tn s,

tn s,

tn s,

tn 1– s, Xn i j, ,

Xn i j, , Cr Ce Re tn 1– i,( )( ) Ce Re tn j,( )( )–( )= (1)

i j

Re( )

Ce( )
Cr( )

tn i, tn 1 j,–

Xn i j, ,

Xn i j, ,

Xn i j, ,

Figure 2. System detects and classifies the people and
vehicle

Figure 3. System operating in a slightly different scenario
with more vehicles
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[13] prove the equivalence between Multi-Layer Percep-
trons (MLPs) and Bayesian discriminant functions for two
general classes of objective functions. The two classes can
be categorized as error measures and classification figures
of merit (CFM) [13]. Hampshire [14,15] shows that Dif-
ferential Learning, using the CFM objective function, gen-
eralizes better and requires less functional complexity than
error measures such as Mean Square Error. Moreover, Dif-
ferential Learning focuses on maximizing the separation
between classes rather than learning the a posteriori prob-
abilities of the classes given a finite amount of training
data [15].

For this particular application we chose a single output
logistic linear neural network trained with Differential
Learning as the classifier. A total of 249 sequences were
available for training the classifier. A total of 120
sequences were used for independent testing. Each
sequence contained an average of 15 instances of an
object. Sequences were manually sorted from data collec-
tions in different environments. Different permutations of
sequence pairs were constructed for training and testing.
The classifier successfully matched instances of the same
moving object with an accuracy of 87%. The 95% confi-
dence interval is [84%, 90%]. Figure 6 shows the weights
learned by the classifier. Notice the emphasis of the shoul-
der and head regions. Emphasis is also placed on the back
and sides of the person. The weight layer was forced to be
symmetric to account for any bias in the training data for a
particular direction of movement for the moving objects.

5 Differential Discriminative Diagnosis

The classifier’s training process selects features on 
person’s body that help in the classification task given t
training data. These features are “globally” relevant, i.
the selected features help in discriminating a majority 
the moving objects without being specific to a particul
object. Different environmental conditions and differen
scenes may reduce or increase the relevance of certain
tures. More importantly, only a subset of the “globally
relevant features may be applicable to the corresponde
of a moving object. In some cases, certain “globally” rel
vant features may actually hurt the correspondence p
cess. Thus, identifying the feature subset that is relevan
the correspondence of a particular moving object cou
increase performance dramatically. An agent that rep
sents a moving object customizes itself by estimating 
relevance of each feature in the input vector  bas
on the reaction of the classifier to the input and the ot
objects in the scene. This estimation process is acc
plished by means of differential discriminative diagnosis.

5.1 Background and Notation

Differential discriminative diagnosis is based on a
technique for analyzing the relevance of input features t
classifier in the context of fault detection and diagnos
This technique was first described in [16]. The relevan
analysis method described in [16] is based on two wid
used techniques for pruning the weights of neural n
works, namely Optimal Brain Damage [17] and Optim
Brain Surgeon [18]. Let  represent the classifier
output for the input . Let  be defined as in equatio
(2) where  and  are two distinct input vector

as defined in equation (1). The output of the classifier 
the input  can be approximated based on its out
for the input  using the second-order Taylor Seri

Xn i j, ,

C Xn i i, ,( )
Xn i i, , h

hn i j, , Xn i j, , Xn 1– i i, ,–= (2)

Xn i j, , Xn 1– i i, ,

Xn i j, ,

Xn 1– i i, ,

Figure 5. The two images shown here are the resized, cen-
tered and cropped versions of the images in Figure 4.
Equation (1) is the absolute value of the difference
between these two images.

Figure 4. Two consecutive instances of a moving person
from the same sequence. The object  is represented by
an intensity map of the person with the background sub-
tracted away as shown above.

tn s, Figure 6. The weights learned by the classifier.
Notice the emphasis on the head, shoulders and
the sides. The weight layer was forced to be sym-
metric to account for any bias in the training data
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expansion of the classifier. Equation (3) shows this

approximation.  represents the Hessian with
respect to the input to the classifier, . We now define a
matrix  where  is a diagonal matrix. Given (2) and
(3), let  be the difference between the classifier out-
puts for the inputs  and  as shown in equa-
tion (4). If  is an identity matrix, then by (3),  can

be approximated as shown in equation (5). If  is allowed
to deviate from the identity matrix and contains diagonal
entries that take on a value other than 1, then each element
of  is scaled by the corresponding diagonal entry in

. This scaling of each dimension of  foreshadows
the relationship (described in section 5.2) between each
entry in  and the relevance of the corresponding feature
in the feature vector. Differential discriminative diagnosis
shares conceptual similarities with multi-dimensional
scaling, a technique used widely in multivariate data anal-
ysis.

5.2 Differential Discriminative Diagnosis

The features that contribute most to the discrimination
task are those that consistently appear on the moving
object and are different from those on other moving
objects. Temporally consistent features have entries with
values of zero or a low magnitude in the feature vector

. We are interested in the discriminative subset of
these temporally consistent features that also have a con-
sistently high magnitude in the feature vector  where

. We would also like to apply our prior knowledge of
feature relevance in the form of the optimized classifier.
To this end, we define the relevance differential  for
the feature vectors ,  and  as shown in
equation (6). The relevance differential is the difference

between the magnitude of the approximated classifier out-

put differences defined in equation (5). Recall that the
index  denotes the sequence of the correct match. The
relevance differential , defined in equation (6) indi-
cates the difference between the amassed irrelevances of
all the features in the feature vectors ,  and

. Given the feature vectors ,  and 
where , we find the features that contribute the most to
the discrimination task by maximizing the relevance dif-
ferential  with respect to the matrix . In other
words, we wish to make the correct match,  and

 as close to each other as possible with respect to the
classifier, while making the incorrect match,  and

 as far away from each other as possible. Features
with a high magnitude entry in  are those that are both
temporally consistent and are discriminative. Thus, the
matrix  provides an indication of the relevance of each
feature in  to the correspondence task.

The maximization can be done either by gradient
ascent or analytically. The analytical solution is possible
because  as a function of  is quadratic with only
one local minimum or maximum. Unfortunately, the ana-
lytical solution involves computing the inverse of

 and the gradient ascent process is too slow
for our purpose. For a relatively small logistic linear clas-
sifier, the Hessian is ill-conditioned. Thus, even approxi-
mating the inverse leaves room for significant
approximation errors. In order to make this computation
feasible, we choose to assume that the Hessian is diagonal.
This assumption doesn’t hurt the computation signi
cantly since we can account for the errors in the optimiz
tion process. Also, note that the Hessian can be compu
off-line except for a multiplicative scalar that depends o
the input feature vector . 

Given the diagonal assumption for the Hessian, w
wish to maximize the relevance differential  with
respect to  for all the moving objects in the sce
(indexed by ) and for all time (indexed by ). Thus, th
expression to maximize for the  moving object is give
by (7) We refer to equation (7) as the cumulative relevance

differential, where  iterates over all time that the obje
was present in the scene, and  iterates through all 
other moving objects in the scene at time instance . 
first consider maximizing  for a particular ,  and
, which maximizes (6). Then we extend the derivation 

maximize  for a fixed  and  over all . Finally, we
derive a recursive equation to maximize over all , whi
maximizes (7). Let  denote the kth element of a vector

. Also, let  denote the number of elements in the ve
tor . Similarly, let  and  denote the element 
cell  in each of the matrices. We seek to maximi

(3)C Xn 1– i i, ,( ) hn i j, ,
T

C Xn 1– i i, ,( )X∇+

C Xn i i, ,( ) C Xn 1– i i, , hn i j, ,+( ) ≅=

1
2
---hn i j, ,

T
HXC Xn 1– i i, ,( )hn i j, ,+

HXC( )
X

Ri Ri

Pn i j, ,

Xn i j, , Xn 1– i i, ,

Pn i j, , C Xn 1– i i, , Rihn i j, ,+( ) C Xn 1– i i, ,( )–{ }
Ri I=

=

(4)

P Rihn i j, , )( T
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equation (6) with respect to each element  of the matrix
. Equation (8) represents the value of  at the local

extremum of equation (6). Additionally, we define the
vectors  and  of the same size as  for nota-
tional and computational convenience. Each element,

 and , of the vectors  and  is
defined in equations (9) and (10). We can now derive the
local extremum of the relevance differential, considering
all the moving objects (indexed by ) in the scene at time
instance , in equation (11). Finally, equation (11) forms

the basis for deriving a recursive relationship to find the
extremum of equation (7). Equation (12) shows the extre-
mum of the cumulative relevance differential. The sign of

 in equation (12) determines if the extremum at 
is a minimum or a maximum. Based on this fact and the
boundary conditions on  given by equation (13), we
can find the  that maximizes the cumulative relevance
differential (7).

Each agent adapts its relevance matrix  as it sees
more instances of the object it represents. The agent can
then decide whether or not an object is the one it repre-
sents based on the number of relevant pixels (pixels that
are temporally consistent and discriminative) on the
object. Instead of storing past instances of objects needed
to adapt , the agent stores the sufficient statistics 

and . As a target moves from the field of view of
one sensor to another, the agent follows the target.

6 Results

The performance of the correspondence agents was
tested on the same 120 independent test sequences used to
evaluate the basic correspondence paradigm described in
section 4. The agents achieved an accuracy of 96%. The
95% confidence interval is [94.3%, 97.7%]. The customi-
zation step shows statistically significant improvements
over the 87% accuracy obtained using just the classifier.
Figure 7 illustrates the agents powered by differential dis-
criminative diagnosis. It shows the relevance of the pixels
on the two persons as the agent performs correspondence.

7 Conclusions and Future Work

The proposed correspondence algorithm has been
shown to perform well in corresponding people. The algo-
rithm can easily be extended to track vehicles. The algo-
rithm has a few clear failure modes. A temporally abrupt
and geometrically drastic change in viewing angle causes
the algorithm to fail. The algorithm also fails when track-
ing a person who bends or twists such that a good number
of features that were previously visible are no longer in
plain view. We use this correspondence algorithm in con-
junction with basic positional correspondence by means of
linear prediction of the object’s position. This alleviate
the effects of some of the failure modes of appearan
based correspondence. We are currently experimen
with situations where more than one sensor is looking
the same target. We hope to extend this algorithm to
able to correspond targets not only within a sensor’s fie
of view, but also among sensors. This raises interest
questions of choosing viewpoint-independent features
multiple sets of viewpoint-dependent features for efficie
correspondence.

Acknowledgment

We gratefully acknowledge funding provided for this
research under DARPA grant F04701-97-C-0022.

References

[1] A.J. Lipton, H. Fujiyoshi and R.S. Patil. Moving target clas-
sification and tracking from real time video. In IEEE Work-
shop on Applications of Computer Vision, pp. 8-14, 1998.

[2] W.E.L. Grimson, L. Lee, R. Romano, and C. Stauffer. Using
adaptive tracking to classify and monitor activities in a site.
In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pp. 22-31, 1998.

[3] I. Cohen and G. Medioni. Detecting and tracking moving
objects for video surveillance. In IEEE Computer Society

Rk
i

Ri

Sn i j, , Pn i j, ,( )sgn– Pn i,( )sgn×=

R
k ext

n i j, ,
h

k
n i j, , Sn i j, , h

k
n i,+( ) C

k
Xn 1 i i, ,–( )X∇–( )

h
k 2

n i j, , Sn i j, , h
k 2

n i,+( ) H
k

XC Xn 1 i i, ,–( )( )
--------------------------------------------------------------------------------------------------=

(8)

Rk
i

An i j, , Bn i j, , Ri

A
k

n i j, , B
k

n i j, , An i j, , Bn i j, ,

j
n

A
k

n i j, , h
k

n i j, , Sn i j, , h
k

n i,+( ) C
k

Xn 1 i i, ,–( )X∇=

(9)

B
k

n i j, , h
k 2

n i j, , Sn i j, , h
k 2

n i,+( ) H
k

XC Xn 1 i i, ,–( )( )=

(10)

R
k ext

n i,

A
k

n i j, ,
j

∑– 
 

B
k

n i j, ,
j

∑ 
 
------------------------------

A
k

i n,

B
k

i n,

-----------–= =
(11)

R
k ext

i

A
k

i n, A
k

i n 1–,+( )

B
k

i n, B
k

i n 1–,+( )
------------------------------------------–= (12)

0 X
k

n 1– i i, , R
k max

i( ) h
k

n i j, ,( ) 255≤+≤ (13)

B
k

i n, R
k ext

i

R
k max

i

Ri
max

Ri

R An i j, ,

Bn i j, ,



R e le v a n ce .
H ig h e r m a g nitu d e  (w h ite )  ind ica tes
h ig he r re lev a n c e . L o w e r m a gn itu d e
(b la c k)  in d ic a te s  irre le v a n t p ix e ls

C o rrec t  M a tch

In co rrec t M a tch

N o tice  th e  re leva nce  o f th e  h a ir  o f the  co rrec t m a tch . A lso , th e  re lev an ce  o f th e  d iffe ren ce  in
the  co lo r o f th e  b o dy . B o th  p eo p le  a re  w ea ring  b ack pack s , the  s im ila rity  is  c lea r fro m  the
re levan ce  m ap

n = 2n = 1 n = 3 n = 4

n = 5 n = 6 n = 7 n = 8

C o rrec t M a tch

Inco rrec t M a tch

Figure 7. The relevant differences ( ) are shown here for a person being corresponded and another person in the
scene. Rh has been thresholded to show the contrast between relevant and irrelevant pixels. The incorrect match clearly
has fewer relevant pixels than the correct match.

Rihn i j, ,

tn s,
Rihn i j, ,

tn s,

(Thresh-

Rihn i j, ,
(Thresh-
Conference on Computer Vision and Pattern Recognition,
pp. 319-325, 1999.

[4] I. Haritaoglu, D. Harwood and L. Davis. W4: Who? When?
Where? What? A real time system for detecting and track-
ing people. In IEEE International Conference on Automatic
Face and Gesture Recognition, pp. 222-227, 1998.

[5] C. Diehl, M. Saptharishi, J. Hampshire, and P. Khosla. Col-
laborative surveillance using both fixed and mobile unat-
tended ground sensor platforms. In SPIE Proceedings on
Unattended Ground Sensor Technologies and Applications,
vol. 3713, pp. 178-185, 1999.

[6] C. Wren, A. Azarbayejani, T. Darrell and A. Pentland.
Pfinder: real-time tracking of the human body. In IEEE
International Conference on Automatic Face and Gesture
Recognition, pp. 51-56, 1996.

[7] C. Wren and A. Pentland. Dynamic models of human
motion. In IEEE International Conference on Automatic
Face and Gesture Recognition, pp. 22-27, 1998.

[8] S.J. McKenna, Y. Raja and S. Gong. Tracking colour
objects using adaptive mixture models. In Image and Vision
Computing 17, pp. 225-231, 1999.

[9] M.J. Black, A.D. Jepson. EigenTracking: Robust matching
and tracking of articulated objects using a view-based rep-
resentation. In International Journal of Computer Vision,
vol.26, no 1, pp. 63-84, 1998.

[10] J. Rehg and T. Kanade. Model-based tracking of self-
occluding articulated objects. In Fifth International Confer-
ence on Computer Vision, pp. 612-617, 1995.

[11] A. Bobick, J. Davis, S. Intille, F. Baird, L.Campbell, Y.
Irinov, C. Pinhanez and A. Wilson. Kidsroom: Action rec-
ognition in an interactive story environment. In M.I.T. TR
No: 398, 1996.

[12] S. Ju, M.J. Black, Y. Yacoob. Cardboard People: A parame-
terized model of articulated image motion. In IEEE Interna-
tional Conference on Automatic Face and Gesture
Recognition, pp. 38-44, 1996.

[13] J.B. Hampshire II and B.A. Pearlmutter. Equivalence
Proofs for Multi-Layer Perceptron Classifiers and the Baye-
sian Discriminant Function. In Proceedings of the 1990
Connectionist Models Summer School, pp. 159-172, 1991.

[14] J.B. Hampshire II and A.Waibel. A Novel Objective Func-
tion for Improved Phoneme Recognition using Time-Delay
Neural Networks. In IEEE Transactions on Neural Net-
works, vol. 1, no. 2, pp. 216-228, 1990.

[15] J.B. Hampshire II. A Differential Theory of Learning for
Efficient Statistical Pattern Recognition. Ph.D.Thesis, Car-
negie Mellon University, 1993.

[16] J.B. Hampshire II and D.A. Watola. Diagnosing and Cor-
recting System Anomalies with a Robust Classifier. In
IEEE Proceedings of the 1996 International Conference on
Acoustics, Speech, and Signal Processing, vol. 6, pp. 3507-
3509, May, 1996.

[17] Y. LeCun, J. Denker and S. Solla. Optimal Brain Damage.
In Advances in Neural Information Processing Systems,
vol. 2, pp. 598-605, 1990.

[18] B. Hassibi and D.G. Stork. Second-order derivatives for
network pruning: Optimal brain surgeon. In Advances in
Neural Information Processing Systems, vol. 5, pp. 164-
171, 1993.


	Figure 1. CyberARIES high-level surveillance systems architecture
	Agent-Based Moving Object Correspondence Using Differential Discriminative Diagnosis
	Mahesh Saptharishi John B. Hampshire II Pradeep K. Khosla
	Department of Electrical and Computer Engineering
	Carnegie Mellon University
	Pittsburgh, PA 15213
	{mahesh | hamps | pkk}@cs.cmu.edu
	Abstract
	1 Introduction
	2 Related Work
	3 CyberARIES Surveillance Architecture
	4 The Basic Correspondence Agent
	4.1 Input Representation and the Classification Problem
	4.2 Designing and Learning a Classifier

	5 Differential Discriminative Diagnosis
	5.1 Background and Notation
	5.2 Differential Discriminative Diagnosis

	6 Results
	7 Conclusions and Future Work
	[1] A.J. Lipton, H. Fujiyoshi and R.S. Patil. Moving target classification and tracking from real...
	[2] W.E.L. Grimson, L. Lee, R. Romano, and C. Stauffer. Using adaptive tracking to classify and m...
	[3] I. Cohen and G. Medioni. Detecting and tracking moving objects for video surveillance. In IEE...
	[4] I. Haritaoglu, D. Harwood and L. Davis. W4: Who? When? Where? What? A real time system for de...
	[5] C. Diehl, M. Saptharishi, J. Hampshire, and P. Khosla. Collaborative surveillance using both ...
	[6] C. Wren, A. Azarbayejani, T. Darrell and A. Pentland. Pfinder: real-time tracking of the huma...
	[7] C. Wren and A. Pentland. Dynamic models of human motion. In IEEE International Conference on ...
	[8] S.J. McKenna, Y. Raja and S. Gong. Tracking colour objects using adaptive mixture models. In ...
	[9] M.J. Black, A.D. Jepson. EigenTracking: Robust matching and tracking of articulated objects u...
	[10] J. Rehg and T. Kanade. Model-based tracking of self- occluding articulated objects. In Fifth...
	[11] A. Bobick, J. Davis, S. Intille, F. Baird, L.Campbell, Y. Irinov, C. Pinhanez and A. Wilson....
	[12] S. Ju, M.J. Black, Y. Yacoob. Cardboard People: A parameterized model of articulated image m...
	[13] J.B. Hampshire II and B.A. Pearlmutter. Equivalence Proofs for Multi-Layer Perceptron Classi...
	[14] J.B. Hampshire II and A.Waibel. A Novel Objective Function for Improved Phoneme Recognition ...
	[15] J.B. Hampshire II. A Differential Theory of Learning for Efficient Statistical Pattern Recog...
	[16] J.B. Hampshire II and D.A. Watola. Diagnosing and Correcting System Anomalies with a Robust ...
	[17] Y. LeCun, J. Denker and S. Solla. Optimal Brain Damage. In Advances in Neural Information Pr...
	[18] B. Hassibi and D.G. Stork. Second-order derivatives for network pruning: Optimal brain surge...





