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1.0 Introduction

Philosophers, inventors and great minds alike have described human creations as extensions of

the human body. From early tools to today’s computers, this description holds true. Machine le

attempts to create the ultimate extension: The extension of the human mind. This inspires allus

certain human capabilities as subjective metrics for assessing and designing the capabilities of l

algorithms. Artificial neural networks (ANNs) have gained significant acceptance as powerful co

learners over the recent years. Partly because of suggestions of biological plausibility, neural ne

have often been explored as potential solutions to those problems humans and other animals

tively solve. Speculations about biological motivations aside, the statistical framework that ANN

vide for learning is truly invaluable. Traditionally, neural networks have been trained off-line with a

amount of training data. Depending on the objective function used for training, a neural networ

mates certain statistics from the training data. The training data consists of labelled feature v

where each feature vector could potentially consist of both relevant and irrelevant features. Go

processing hopes to eliminate the irrelevant features from the set of feature vectors. Is preprocessing to

assess and eliminate irrelevant features enough to ensure good performance of a neural network? 

Consider the task of tracking a person in a crowd. People can successfully track even in th

ence of occlusion, awkward motion and many other subtleties in the environment. People not on

with an explicit teacher, they also “learn from experience.” By observing patterns of motion in the

and discriminating features on the person being tracked, people effectively learn to temporally co

spond the person. The number of people in the scene, their positions, shadows, etc., are co

changing. Yet, the person is tracked with reasonable accuracy. If there is a set of features that is

to that person, humans can instantly key on those features and use it to track. Consider the pro

maneuvering through a busy sidewalk. People can quickly identify the best path to their destinati

constantly adapt this path to match the changing environment. Much of this is done even thoug
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Introduction
are many changes occurring that are irrelevant to the task at hand. A neural network based algorithm

can potentially be faced with many irrelevant features as its input. Although part of this problem can be

alleviated with good preprocessing, a changing environment could also change the relevance of a fea-

ture. 

Most commonly used learning algorithms, including neural networks, are inductive learning sys-

tems. Good generalization requires that the training data represent future inputs well. A key assumption

in many strong convergence proofs for neural network training algorithms is that there is a very large, if

not infinitely large, training set. In practice, the amount of labelled training data is usually limited. An

acceptable size for the training set depends heavily on the learning task at hand. The previous paragraph

introduced the problem of a changing environment and its relationship to the relevance of features.

Proper sampling of the environment is of the essence in order to build an adequate training set. A bias

towards certain environmental conditions in the training set also biases the knowledge learned by the

neural network. Computational learning theory provides a theoretical view of the relationship between

the size of the training set and the desired variance of the error rate. The discussion so far assumes an

off-line learning algorithm. Although an on-line learning algorithm can potentially see more training

data while it is executing, the data is unlabeled. In order for the algorithm to learn, there has to be a way

to generate a teaching signal that can lead to convergence to the right concept. There has been an

increasing interest within machine learning to develop methods that combine labeled and unlabeled data

for training. The goal is to create a self-adaptive system by combining supervised and unsupervised

learning algorithms. Given a robust learning algorithm that can learn on-line with unlabeled data in

addition to learning off-line, some of the training set size problems can be alleviated. The previous

statement assumes that the on-line, self-supervised learning algorithm is capable of assessing its perfor-

mance and providing the appropriate teaching signal to better learn the intended concept.
4 of 40 Assessing Feature Relevance On-line Using Differential Discriminative Diagnosis



Tools for Extracting Features and On-line Learning
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The hypothesis addressed in this thesis states that by observing the decisions made by a robust

classifier, the relevance of each feature, given as input to the classifier, to the decision can be assessed.

Additionally, the relevance assessments can be used to improve the performance of the classifier on-line

and enhance the training process by enabling the use of unlabeled examples. The novel algorithm sug-

gested for estimating the relevance of each feature is referred to as Differential Discriminative Diagno-

sis. Differential Discriminative Diagnosis assesses the relevance of each feature to the task by

diagnosing the discrimination power of each feature based on the difference in network outputs to dif-

ferent inputs.

1.1 Outline of the Thesis

Section 2.0 briefly reviews some notable methods concerning feature extraction and relevance

assessments. Section 2.0 also reviews some popular on-line learning strategies. Section 3.0 describes

the proposed algorithm, differential discriminative diagnosis abstractly. Section 4.0 describes differen-

tial discriminative diagnosis as applied to the task of temporally corresponding moving objects. Section

5.0 describes using the proposed algorithm for retrieving similar images from a database and using it to

learn from unlabeled examples. Conclusions and future work constitute sections 6.0 and 7.0 respec-

tively.

2.0 Tools for Extracting Features and On-line Learning 

2.1 Features, Concepts, Knowledge and Relevance

Consider the example of tracking a person in the crowded scene again. The term “discriminating

features” was used in section 1.0 without a precise definition, but was clear from the context. Perc

features such as “long hair”, “red shirt” or “tall” immediately come to mind in the context of the tr

ing example. From the point of view of a learning algorithm, we need to consider the notion 

atomic feature, a value that defines shape, color, depth etc. If the algorithm is fed a set of atomic fea-
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tures, say a grayscale picture of a scene taken by a CCD camera, each pixel value is an atomic feature.

A collection of these atomic features create recognizable patterns (or perceptual features) that we term

as “person”, “hair”, “red”, “tall”, etc. This notion of an atomic feature is referred to simply as a feature

throughout this thesis. The set of features provided to the learning algorithm is arranged in a vec

this vector is referred to as the “feature vector.” A feature vector may represent an image (a collec

pixels) of a person, symptoms of a medical ailment, etc. A concept is defined as the mapping of t

ture vector to a label or classification. The concept can be described by the learning strategy 

associated parameters. This definition follows from the standard concept learning framewo

machine learning. A set of learned concepts can be considered as the knowledge possessed by a

algorithm. 

The mapping from feature vector to a concept may rely on all or some of the features in th

ture vector. In most real-world learning tasks, the problem of extracting just the features applic

learning the concept is not always easy. The algorithm has to deal with a few or possibly many f

that may not be applicable to learning the concept. If an atomic feature contributes to the concept, it is a

relevant feature. Some features contribute more than others to the concept. The extent of a featu

tribution is quantified by its relevance. If the relevance of each feature in the feature vector was know

the information can be used to improve the performance of the classifier and enhance the traini

cess.

2.2 Tools for Assessing the Relevance of Features

A fair number of pattern recognition techniques exist to select feature subsets, to improv

crimination between classes, and also to reduce the dimensionality of the feature vectors. This

mentions a few of these techniques. The first notable technique is Fisher’s linear discriminant [1

technique seeks to reduce the dimensionality of the feature vector while maximizing the sep
6 of 40 Assessing Feature Relevance On-line Using Differential Discriminative Diagnosis
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between classes. Fisher’s linear discriminant offers a good indication of the separability of two c

by means of the Fisher Ratio [1]. Other techniques with similar objectives include the Fukunaga-K

[2] and the Foley-Sammon [3] transforms. Both these techniques seek to improve discrimination

reducing the size of the feature vector by means of transformations. Techniques also exist to ex

reduce dimensionality, but do not consider discrimination explicitly. Often a dimensionality redu

step is followed by a test step to check if the reduced feature set increases or decreases discri

performance. Notable techniques that fit this description include the branch and bound method [4],

sequential forward selection and sequential backward elimination [5]. Given that we wish to reduce the

feature set by a certain number of features, the branch and bound method searches through possible fe

ture subsets using trees to find one that is optimal. Optimality, in this technique, is with respect

algorithm that is used to test the discrimination performance of the reduced feature set. The sequential

forward selection and sequential backward elimination techniques are both faster than the branch and

bound method, but are suboptimal. They provide a relatively fast feature selection method. Pri

components analysis [6] offers a systematic method for reducing the feature set by projecting th

nal feature vector on a new set of basis functions. The weights associated with this projection 

used as a new set of features. Principal components analysis does not consider discrimination in

jection. Thus, it could potentially be quite suboptimal if discrimination is the final objective. Inde

dent components analysis [7] improves on the basic principal components analysis technique. M

the techniques considered so far are off-line techniques. 

In addition to the described methods, various other feature subset selection technique

These techniques fall into either the filter or the wrapper categories [8]. Two good examples of the filte

model include RELIEF [9] and FOCUS [10]. RELIEF seeks to estimate the level of relevance, a c

uous valued weight, of each feature. FOCUS performs an exhaustive search to find the minimum

relevant features needed for the machine learning task. The wrapper model [8, 11, 12], searches the fea

ture space to find one that increases the estimated accuracy of the learning algorithm. The wrapper
7 of 40
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model is similar in spirit to the sequential forward selection and the sequential backward elimination

methods. Koller and Sahami [13] suggest an information theoretic feature selection method that relies

on the Kullback-Leibler information distance [14]. Scherf and Brauer [15] suggest another filter-based

technique, EUBAFES for feature selection. EUBAFES estimates binary weights for each feature used

by a radial basis function neural network. Cherkauer and Shavlik [16] introduce the notion of transpar-

ency, which is related to the minimum description length principle (MDL) [17]. The transparency mea-

sure is used to estimate the quality of input representations for neural networks. 

Most of these techniques rely on finding a good set of features for a particular learning task using

the training data. The implicit assumption is that the estimated relevant features stay relevant for all

future inputs and the irrelevant features stay irrelevant. If a set of good features are selected, but their

relevance changes, can the assessed change in relevance be used to improve the learning algorithm

online? This thesis is primarily concerned with the task of pattern discrimination using artificial neural

networks. Differential Discriminative Diagnosis offers a systematic way to assess the relevance of each

feature in the feature vector to a discrimination task on-line. The assessed relevance can be used to

improve the performance of the neural network classifier that performs the discrimination.

2.3 On-line Learning

Assessing the relevance of features on-line is itself a learning task. Regression with filters can be

considered as one form of on-line learning. In addition, clustering with algorithms such as k-means, c-

means and EM also have been extended to learn while the learning algorithm is actually executing [18,

19, 20, 21, 22]. Reinforcement learning [23, 24, 25] is a popular technique for learning from experience.

This technique takes a state-action perspective to learn. Active learning [26] strategies query the user

during the learning process. The success of these techniques motivates the need for more on-line learn-

ing strategies that easily extend current neural network algorithms to learn, improve or diagnose them-

selves on-line.
8 of 40 Assessing Feature Relevance On-line Using Differential Discriminative Diagnosis
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3.0 Differential Discriminative Diagnosis

Consider the feature vector to decision mapping again. Specifically, consider the concepts

learned by artificial neural networks to discriminate between classes. This section proposes a systematic

method, referred to as differential discriminative diagnosis, for assessing the relevance of each feature

in the feature vector to the discrimination concept learned. The task of assessing the relevance of fea-

tures is posed as an online learning task. The estimated relevances are put to use in specific applications

in sections 4 and 5. 

3.1 The Optimization Perspective

Learning the parameters of an artificial neural network is an optimization problem. The parame-

ters are optimized for a given training set with respect to the objective function or learning strategy.

Estimating the influence of each parameter in the optimized network with respect to the objective func-

tion can be posed as a sensitivity analysis problem. Sensitivity analysis seeks to measure the effect of a

perturbation of a particular parameter to the output or decision of the network. If the network is sensi-

tive to a particular parameter, then that parameter contributes to the decision process and therefore is

relevant. The Taylor series method for sensitivity analysis is one of the most popular techniques in opti-

mization literature [27]. 

Figure 1 illustrates the notion of sensitivity and relevance. The surface plot shows the output

space for a two-class, logistic linear classifier with a two dimensional input vector. As a feature vector

moves along the X dimension, the classifier’s decision changes from class 1 to class 2. Wherea

feature vector moves along the Y dimension, the classifier’s decision stays constant. Feature X c

utes to the classifier’s decision, while feature Y does not influence the classifier. Thus, the featu

each of the feature vectors A and B is relevant and feature Y is irrelevant.
9 of 40



Differential Discriminative Diagnosis

cam’s

he net-

esented

 Sur-

e to the
FIGURE 1.  

Feature vectors A and B consist of two features X and Y. A logistic linear classifier’s 
decision boundary is shown as the surface plot. The classifier is sensitive to feature X. 

3.1.1 Applications of Sensitivity Analysis to Neural Networks

In the context of neural networks, sensitivity analysis has been applied to prune unnecessary con-

nections in the network. Specifically, Optimal Brain Damage [28] and Optimal Brain Surgeon [29] seek

to estimate the saliency of each weight in the network to the learning task. Weights with relatively little

salience are removed from the network and the network is then retrained with reduced connectivity.

This strategy is quite successful in reducing the complexity of a neural network. Following Oc

Razor, if a less complex network learns the concept just as well as a more complex network, t

work with lower complexity will probably generalize better [30].

A similar method of analysis can also be applied to assessing the relevance of features pr

to a neural network. This technique is referred to as discriminative diagnosis [31] and was introduced in

the context of fault detection and diagnosis. As with Optimal Brain Damage and Optimal Brain

geon, a Taylor series expansion of the classifier is used to determine the sensitivity of the featur

decision. This notion can be formalized as in the original version of discriminative diagnosis as follows.

Feature X

F
eature Y A

B

Feature X

F
eature Y A

B
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Let  represent the output of the classifier  to the input . The output produced by the func-

tion  is a scalar value in accordance with the objective function. For example, in the case of the

mean squared error objective function,  is the mean squared error of the classification (When the

algorithm is executing, the error is computed assuming that the classifier has made the right decision).

Let us now consider another input,  where  and  is of a different class than . The output of

the classifier,  to the new input  can be approximated using a second-order Taylor series expan-

sion of the classifier around the input point . This approximation is shown in equation (1).  here

represents the Hessian of  with respect to the input . Given this form of the approximation, we

can use it to approximate the difference in classifier outputs,  in equation (2).

Equation (3) expands equation (2) where the relevance of each feature is the term within the outer sum-

mation. The index  and  iterate over each of the  features in the feature vectors  and . This

technique was successfully used by Hampshire [31] in a fault detection and diagnosis task.

C Xi( ) C( ) Xi

C( )
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Xj i j≠ Xj Xi
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relevance of the feature xi k, (3)

k l m Xj Xi
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3.2 Estimating Feature Relevance With Memory

Discriminative diagnosis can be extended to make its relevance assessments with more than just

two consecutive feature vectors. As the classifier sees and classifies more inputs, a variety of input vec-

tors and classifications can be considered in estimating the relevance of a particular feature. Thus, we

wish to consider feature vectors of different classes and also feature vectors of the same class. First, we

define the vector  where  denotes a time instance, and  represent distinct input

vectors of the same or different classes. Additionally we define a diagonal matrix  that scales each

parameter in the vector .We can now redefine equation (2) in equation (4). If  is the identity

matrix, then equation (4) is identical to equation (2). If on the other hand,  has diagonal entries with

values other than 1, then equation (4) is no longer the same as equation (2). We define

, where  is not necessarily an identity matrix. Equation (5)

shows the derivative of  with respect to each diagonal entry  of the diagonal matrix . Notice

that equation (5) is almost the same as equation (4) (when  is the identity matrix) except for a constant

multiplier of  before the inner summation of the second-order terms.

hn i j, , Xn j, Xn 1– i,–= n i j

R

hn i j, ,

C Xn 1– i, Rhn i j, ,+( ) C Xn 1– i,( ) ≅–

(4)first-order relevance second-order relevance
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T
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X
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X
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                         
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3.2.1 The Relevance Differential

Discriminative diagnosis asks the question: “How badly does the [feature vector ] represent

the [class of ] compared to the [feature vector ]?” [31]. If  and  are of the same class, then w

expect the two vectors to represent each other well. Differential discriminative diagnosis simulta-

neously considers a reference vector , a candidate vector  of the same class as the re

vector, and another candidate vector  of a different class. It is concerned with the diffe

between the discriminative diagnosis of each feature in the feature vectors. Thus, it asks the ques

Which features in , represent the reference vector’s class well while not representing its class w

? The answer to this question lies in maximizing the relevance differential , defined in equation

(6), with respect to the diagonal matrix . The value of each diagonal entry in  reflects the relevance

of each feature in the feature vectors  and . The effect induced on each diagonal term in  by

maximizing equation (6) can be elaborated, based on the mechanics of the Taylor Series, as follows:

• Differences in  are “key” if they influence the decision of the classifier. Those key di

ences that are large in magnitude in , but are small in  are magnified. Key differe

that are similar in magnitude in both  and  are suppressed. 

• The predicted output of the classifier,  to the input  with respect to  is made as

inaccurate as possible. Thus,  magnifies key differences in the feature difference vector .

• The predicted output of the classifier,  to the input  with respect to  is made as

accurate as possible. Thus,  suppresses key differences in the feature difference vector .

Xj

Xi Xi Xj Xi

Xn 1– i, Xn i,

Xn j,

Xn i,

Xn j, ℜi

ℜi Pn i j, , Pn i i, , i j≠,–=

  

   (6)
should be close to 0

should have a large magnitude

Ri Ri

Xn i, Xn j, Ri

hn i j, ,

hn i j, , hn i i, ,

hn i j, , hn i i, ,

Pn i j, , Xn j, Xn 1– i,

Ri hn i j, ,

Pn i i, , Xn i, Xn 1– i,

Ri hn i i, ,
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• Certain differences in  could be key, but could also be unimportant in . In such a case

 appropriately scales the differences.

The result of the maximization is that large magnitude values in  indicate relevant features and 

small magnitude values indicate irrelevant features. Note the difference between the relevance quanti-

fied in equation (3) and in equation (6). 

3.2.2 Notes on Computations for Differential Discriminative Diagnosis

 The maximization of equation (6) can be done in a number of ways. If the objective is to rank

features based on relevance using many observations, then gradient ascent on  can be employed. Note

that the Hessian of the classifier with respect to the input can be computed in linear time using the tech-

nique described in [32]. The analytic solution requires computing the inverse of the Hessian. A few fast

iterative methods for computing the inverse of the Hessian are described in [32]. If the classifier is rea-

sonably complex (i.e. a multi-layer network with many hidden units), and the Hessian is not ill-condi-

tioned, an analytic solution can be found. If the classifier is not complex and the Hessian is ill-

conditioned, a reasonable analytic solution can be found if it is assumed that the Hessian is diagonal.

3.3 Discussion

Differential discriminative diagnosis could potentially be classified as a filter approach since it

assigns continuous valued weights to each feature in the feature vector. Unlike most of the techniques

described in section 2.2, differential discriminative diagnosis estimates the relevance of features while

the classifier is functioning. The relevance assessments explicitly consider discrimination as opposed to

techniques such as principal components analysis. It builds on the existing accuracy of the classifier

based on the observed data, thus, it can account for time-varying relevances. Differential discriminative

diagnosis can also be used to select features off-line similar to the search techniques mentioned in sec-

tion 2.2. Unlike the transform based feature set reduction techniques, differential discriminative diagno-

hn i j, , hn i i, ,

Ri

Ri

Ri
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sis considers each feature independently. Note that this independence assumption is conditional on the

classifier. Thus, if the classifier accounts for the dependencies between features, then significant depen-

dencies are not ignored by the diagnosis process. Consequently, retinatopic feature vectors such as

images, where there is sufficient similarity between them, work well with this technique. We focus on

applications using imagery in the following sections. In section 4.0 we concentrate on an application

where feature relevance is fundamentally time varying. We show that differential discriminative diag-

nosis significantly improves the performance of the classifier. 

4.0 Agent-Based Moving Object Correspondence

In this section, we propose a novel method for temporally and spatially corresponding moving

objects by automatically learning the relevance of an object’s appearance features to the task of d

ination. Efficient correspondence is achieved by enforcing temporal consistency of the relevance

particular object. Relevances are learned using differential discriminative diagnosis. An agent is

assigned to each moving object in the scene. The agent possesses the basic capability to decide

or not an object in the scene is the one it represents. Each agent customizes itself to the object b

of differential discriminative diagnosis as the object persists in the scene. We explain this corres

dence scheme as applied to the task of corresponding moving people in a surveillance system.

4.1 The Problem

There has been an increased interest in distributed surveillance systems in recent years 

35, 36, 37]. The objective is to provide critical information to the human user in real time. A su

lance network of reasonable size produces massive quantities of information. Much of this inform

is redundant and can inundate a human operator while distracting him or her from information o

stance. A distributed surveillance system that can automatically eliminate the redundancy in the

mation conveyed to the user is invaluable. Changes in the scene, induced by the motions and a
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people and vehicles, are usually the subject of interest in most urban surveillance scenarios. The ideal

distributed surveillance system should be able to track all the motions and interactions of objects and

raise appropriate flags when information of importance needs to be conveyed to the user. This paper

addresses the problem of temporally corresponding moving objects to facilitate a good interpretation of

the objects’ actions.

The complexity of motions in the environment precludes the use of simple positional corre

dence, i.e., correspondence based purely on the positions of moving objects. Positional corresp

also fails when moving objects are relatively large with respect to the field of view of the senso

such situations, other features of the moving objects, such as different appearance traits, need t

to good use for robust correspondence. How can we select appearance features so as to facilitate good

correspondence? The measure of goodness of the features we choose not only depends on the o

question, but also on other objects in the scene. A globally “good” set of features can be estimatea pri-

ori, but only a subset of these features might be relevant to the correspondence of a particular ob

pose the estimation of the relevance of globally good features for corresponding a particular obje

on-line learning task. Differential discriminative diagnosis provides a systematic method for estimatin

the relevance of features and checking the temporal consistency of these features for a particula

4.2 Related Work

Much work has been devoted to efficient object correspondence and tracking. Surveillanc

tems described in [33, 34, 35, 36] deal with the problem of detecting and tracking moving object

system described in [33] uses correlation with dynamic templates of the object as a method for tempo

rally corresponding it. An IIR filter is used to adapt the dynamic templates over time. The system

described in [34] uses linear prediction with Kalman filters of the position and size of the mo

objects. The algorithm described by Cohen and Medioni in [35] combines the detection and tr

process. They use a graph representation to generate dynamic templates of each moving ob
16 of 40 Assessing Feature Relevance On-line Using Differential Discriminative Diagnosis
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object’s trajectory is determined by choosing an optimal path through the graph and enforcing a 

ral coherence constraint. Haritaoglu, et al., [36] use correlation of the moving object’s silhouet

template matching.

There has also been a good amount of work done in tracking specific objects. Notably

describes tracking people and their actions. Gaussian models are used to represent 2-D regions

The model accounts for the position and color of the blobs. These blobs are used to track the po

the person in the scene. Wren and Pentland in [39] extend the notions described in [38] to a 3D 

and model a person’s physical actions explicitly. McKenna et al., [40] use a Gaussian mixture mo

the color of an object to track it effectively. Black and Jepson in [41] describe an eigenspace met

tracking specific rigid objects. They use a multi-scale eigenspace approach to represent and

objects over time. They apply this technique to the task of tracking and recognizing the gestur

moving hand. Rehg et al., [42] describe a method for tracking high-DOF articulated objects.

employ this method for tracking humans. They explicitly model the kinematics of articulated part

use this model to perform correspondence. Other notable people tracking systems include KidsRoom

[43] and Cardboard People [44]. These systems also seek to model the articulation of humans.

Our proposed method relies on knowing the class of the object (person, people or vehicle)

there is domain knowledge incorporated in the correspondence process. The injected domain

edge not only helps in making the correspondence process robust, but it also helps in making it 

tationally efficient. By accounting for different moving objects of interest, we come close to obta

the versatility of class independent correspondence. In contrast to most of the methods mentione

section, our proposed technique poses moving object correspondence as a statistical pattern c

tion/discrimination problem. Rather than modeling motion, our algorithm finds stable discrimin

features to correspond an object. We show that training an agent to correspond an object off-l
17 of 40
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giving it the capability to customize itself to the object on-line, leads to an efficient correspondence

algorithm.

FIGURE 2.

CyberARIES high-level surveillance systems Architecture. Each block represents a
concurrently running piece of software. Each arrow indicates the direction of information
flow and information that is being transmitted

4.3 CyberARIES Surveillance Architecture

An agent-based architecture offers an efficient and convenient software infrastructure for a dis-

tributed surveillance system. Such an architecture facilitates the combined use of powerful tools from

machine learning and computer vision. We have developed an agent based system called CyberARIES

for Autonomous Reconnaissance and Intelligent Exploration. CyberARIES has been implemented to

run on stationary and mobile surveillance platforms. The object correspondence scheme to be described

in this paper uses the CyberARIES architecture as a fundamental implementation tool.

Figure 2 shows the connectivity of the surveillance architecture within CyberARIES with respect

to the correspondence agents. The camera produces  8-bit grayscale images which are sent to

the detector agent. The detector agent uses a bank of auto-regressive filters to model the background.

The background model is then used to detect moving objects in the scene. Connected components anal-

ysis is used to segment the detected moving objects from the background. This detection and segmenta-

Camera Detector Classifier

CorrespondenceTrackingPan/Tilt

Event AnalysisUser Interface,
Interaction Unit

Frame
False Alarms

Detections

Detections,
ClassificationsCorrespondences

Correspondences,
Classifications

Camera Detector Classifier

CorrespondenceTrackingPan/Tilt

Event AnalysisUser Interface,
Interaction Unit

Frame
False Alarms
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320 240×
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tion scheme has proven to be simple yet effective. The detection process is elaborated in the section 4.4.

The detector agent then feeds a list of segmented objects to the classifier agent which in turn classifies

the object as a “person”, “people” or a “vehicle.” The classifier also has the ability to reject dete

of no interest to the surveillance task. Examples of uninteresting detections include moving fo

false alarms caused by changing lighting conditions and high frequency motion of the camer

vibrating platform. The correspondence agents work with the classified moving objects as their in

In addition to the feedforward connectivity described so far, there also exist feedback co

tions from the classifier and the correspondence agents to the detector. The classifier feeds b

locations of the detected objects that were rejected. Information about the predicted future posi

the corresponded moving objects are also fed back to the detector. The information feedback is

adapt the local sensitivity parameters of the detection filters. This simple feedback mechan

extremely effective in improving the SNR of the detections. Figure 3 shows the system in actio

the classifier designed to label each moving object as “people” (in this version of the system, clas

ple” includes class “person”) or a “vehicle.” The two figures also provide a clear idea of the ty

operating environment for the system. Objects can either be a good distance away or very clos

camera.
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FIGURE 3.                                                                                                                                                        

The system detects and classifies the moving people and vehicle in the scene.

4.4 Detecting and Segmenting a Moving Object

Our basic algorithm is similar to those described in [33, 34, 36]. The algorithm described in [33]

uses an IIR filter to model the background. In [34], Grimson et al. use a Gaussian mixture to estimate

the background of the scene. Both [33, 34] use color imagery in their background modeling process.

Haritaoglu [36] describes a technique that estimates the maximum and minimum intensity differences

for each pixel while there are no moving objects in the scene. This information is then used to detect

moving objects. Like the system described in [36], we use grayscale imagery to estimate the back-

ground. A key difference in our work is the use of feedback from higher-level processes such as the

classifier and the correspondence agents to adapt the detection process. This information feedback helps

us simplify the detection algorithm while performing just as well as more complicated detection pro-

cesses such as [34].

4.4.1 The AR Filter

We seek to model the background by using a set of AR filters to represent each pixel. Let 

represent a pixel at time  and at position  in a  8-bit grayscale image. Similarly, let

In x y, ,

n x y,( ) 320 240×
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steps,

, is

other

.

  is

objects.
 represent the predicted background value for that pixel. A significant difference

 between the image and the background values suggests the presence of a

moving object. If , the pixel is classified as foreground. If , the

pixel is classified as background, where  represents the decision threshold for a particular pixel.

At each step, we wish to gradually minimize the difference between the background model 

and the image  by using the update rule , where  represents a small

learning rate constant. The update rule can also be posed as an AR filter, as shown in equation (7).

Rather than making the threshold  a constant, we adapt it just as we adapt the background, using

an AR filter. 

This simple AR filter-based background model is quite effective, but suffers when objects in the

scene are moving too slowly. Often when the moving objects are slow, the background incorrectly

acquires part of the object, resulting in false alarms. To alleviate this problem, we introduce a condition-

ally lagged background model. The conditionally lagged background model,  is set to the contin-

uously updated model,  if the pixel is classified as a background pixel. If the pixel is classified as

a foreground pixel, we don’t update the conditionally lagged background. If after some  time 

the magnitude of the difference between the conditionally lagged background and the image, 

less than the magnitude of , the value of  is reset with the value of . On the 

hand, if the magnitude of  is less than the magnitude of , the value of  is set to 

The classification of a pixel as foreground or background now depends on . When

chosen appropriately, this technique prevents the false alarms caused by the movement of slow 

B n 1–( ) x y, ,

Dn x y, , In x y, , B n 1–( ) x y, ,–=

Dn x y, , b– n x y, , 0> Dn x y, , bn x y, ,– 0≤

bn x y, ,

B n 1–( ) x y, ,

In x y, , Bn x y, , B n 1–( ) x y, , ηDn x y, ,+= η

Bn x y, , 1 η–( )B n 1–( ) x y, , ηIn x y, ,+= (7)

0 η 1≤ ≤

bn x y, ,

Bn x y, ,
cond

Bn x y, ,

T

Dn x y, ,
cond

Dn x y, , Bn x y, , Bn x y, ,
cond

Dn x y, , Dn x y, ,
cond

Bn x y, ,
cond

Bn x y, ,
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cond

bn x y, ,– T
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Given a binary map of foreground detections, connected components analysis is used to segment

the moving objects from the background. Prior to this step, morphological operations such as closing

and erosion are performed to remove stray detections. Each positive binary value (i.e., a detection) is

replaced with the actual grayscale value from the original image. Thus, the segmented image contains

just the grayscale values of the moving object without the background.

4.4.2 The Feedback Mechanism

The feedback mechanism allows for adjusting the sensitivity parameters of the detections. The

feedback contains information about the labels (as “people”,“person” or “vehicle”) and corres

dences of each detected pixel. The information feedback is used to adapt a Perceptron to better classify

a pixel as foreground or background. The classification of a pixel as foreground depends on the i

ity . We can redefine the classification rule as , whe

each of the weights, , is adaptable. The weights are updated using the standard perceptron 

rule. If a pixel was classified as foreground and was part of a successfully labelled and corresp

object, the classification (as foreground) is considered correct. On the other hand, if the pixel w

of a rejected object, then the classification is considered incorrect. In practice we have found tha

ing  alone (with ) provides a considerable increase in detection performance.

For most surveillance applications, it is important to track foreground objects that becom

tionary after a while. The information feedback from the correspondence agent is used to det

which pixels represent a stationary object. A new AR filter is initialized to keep track of the cha

intensity of the pixel. This new AR filter can be visualized as an additional background layer. As lo

the difference between the value of the new AR filter and the original AR filter is significant (as d

mined by the perceptron), the layer is maintained. This ensures that the now stationary foregro

object is not regressed into the original background of the scene.

Dn x y, ,
cond

bn x y, ,– 0> ω0 ω1 Dn x y, ,
cond ω2bn x y, , 0>–+

ωi

ω0 ω1 ω2 1= =
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4.5 The Basic Correspondence Agent

Consider the detected and classified people and vehicles in Figure 3. The correspondence agent

is responsible for temporally corresponding each moving object. Under the CyberARIES framework, an

agent is assigned to every moving object in the scene. This section describes the correspondence algo-

rithm that each agent possesses before any on-line learning occurs.

4.5.1 Input Representation and Classification Problem

We pose the correspondence problem as a classification problem. Let  denote an object  at

time instance  belonging to a sequence . The object  is represented by an intensity map with the

background subtracted. Figure 4 shows an example of the intensity map contained in . The appear-

ance features that we are interested in are captured by . The temporal correspondence problem can

be defined as matching the object  with a previously seen instance . Let  denote the

magnitude of the difference of each pixel between two object instances as shown in equation (8). The

subscripts  and  index potentially different sequences. The function  resizes the intensity map

of the object to a standard size. The function  centers the object in the image using its center of

mass. The function  crops the difference of the intensity maps to a prescribed size. Figure 5 shows

the resized, centered and cropped versions of the images in Figure 4. Ideally, if  and  repre-

sented the same object at two different instances in time, then  should contain mostly zeros with

very few high magnitude values. Unfortunately, the articulation of a person’s limbs induces large

nitude values, but the locations of these large magnitude values are more or less consistent. N

centering errors also cause large magnitude differences. The objective of the classifier is to 

whether or not a given  represents the acceptable differences between two instances of th

tn s, t

n s t

tn s,

tn s,

tn s, tn 1– s, Xn i j, ,

Xn i j, , Cr Ce Re tn 1– i,( )( ) Ce Re tn j,( )( )–( )= (8)

i j Re( )

Ce( )

Cr( )

tn i, tn 1 j,–

Xn i j, ,

Xn i j, ,
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object or the differences between two instances of different objects. Thus, the classifier classifies each

 as a “match” or “no match.”



Two consecutive instances of a moving person from the same sequence. The object is 
represented by an intensity map of the person with the background subtracted away as 
shown above.

FIGURE 5.                                                                                                                                                              

The two images shown here are the resized, centered and cropped versions of the 
images above. Equation (8) is the absolute value of the difference between these two 
images.

4.5.2 Designing and Learning a Classifier

An ideal classifier for this application should, with minimum functional complexity, approxim

the Bayes-Optimal classifier well. The minimum complexity requirement is critical because of the

putational constraints faced by a real-time surveillance system. It should approximate the Baye

mal classifier well because we want the classifier’s performance to be as good as possible gi

input representation. Hampshire and Pearlmutter [45] prove the equivalence between Multi-Lay

ceptrons (MLPs) and Bayesian discriminant functions for two general classes of objective func

The two classes can be categorized as error measures and classification figures of merit (CFM

Hampshire [45, 47] shows that Differential Learning, using the CFM objective function, generalize

better and requires less functional complexity than error measures such as Mean Squared Erro

Xn i j, ,
24 of 40 Assessing Feature Relevance On-line Using Differential Discriminative Diagnosis



Agent-Based Moving Object Correspondence
over, Differential Learning focuses on maximizing the separation between classes rather than learning

the a posteriori probabilities of the classes given a finite amount of training data [47].

For this particular application we chose a single output logistic linear neural network trained with

Differential Learning as the classifier. A total of 249 sequences were available for training the classifier.

A total of 120 sequences were used for independent testing. Each sequence contained an average of 15

instances of an object. Sequences were manually sorted from data collections in different environments.

Different permutations of sequence pairs were constructed for training and testing. The classifier suc-

cessfully matched instances of the same moving object with an accuracy of 87%. The 95% confidence

interval is [84%, 90%]. Figure 6 shows the weights learned by the classifier. Notice the emphasis on the

shoulder and head regions. Emphasis is also placed on the back and sides of the person. The weight

layer was forced to be symmetric to account for any bias in the training data for a particular direction of

movement for the moving objects.

FIGURE 6.                                                                                                                                                             

The weights learned by the classifier. Notice the emphasis on the head, shoulders and 
the sides. The weight layer was forced to be symmetric to account for an bias in the 
training data.
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4.6 Differential Discriminative Diagnosis

The classifier’s training process selects features on the person’s body that help in the cla

tion task given the training data. These features are “globally” relevant, i.e., the selected features

discriminating a majority of the moving objects without being specific to a particular object. Diffe

environmental conditions and different scenes may reduce or increase the relevance of certain f

More importantly, only a subset of the “globally” relevant features may be applicable to the corre

dence of a moving object. In some cases, certain “globally” relevant features may actually hurt th

respondence process. Thus, identifying the feature subset that is relevant to the corresponde

particular moving object could increase performance dramatically. An agent that represents a m

object customizes itself by estimating the relevance of each feature in the input vector  ba

the reaction of the classifier to the input and the other objects in the scene. This estimation pro

accomplished by means of differential discriminative diagnosis.

4.6.1 Using Differential Discriminative Diagnosis

The features that contribute most to the discrimination task are those that consistently app

the moving object and are different from those on other moving objects. Temporally consistent fe

have entries with values of zero or a low magnitude in the feature vector . We are interested

discriminative subset of these temporally consistent features that also have a consistently high 

tude in the feature vector  where . We would also like to apply our prior knowledge of fe

relevance in the form of the optimized classifier. To this end, we use the relevance differential  for

the feature vectors ,  and  as shown in equation (6). The relevance differential is the

difference between the magnitude of the approximated classifier output differences,  defi

section 3.2. Recall that the index  denotes the sequence of the correct match. The relevance differential

, defined in equation (6) indicates the difference between the aggregated irrelevances of 

Xn i j, ,

Xn i i, ,

Xn i j, , i j≠

ℜn i j, ,

Xn i i, , Xn i j, , Xn 1– i i, ,

Pn i j, ,

i

ℜn i j, ,
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features in the feature vectors ,  and . Given the feature vectors ,  and

 where , we find the features that contribute the most to the discrimination task by maximizing

the relevance differential  with respect to the matrix . In other words, we wish to make the cor-

rect match,  and  as close to each other as possible with respect to the classifier, while mak-

ing the incorrect match,  and  as far away from each other as possible. Features with a high

magnitude entry in  are those that are both temporally consistent and are discriminative. Thus, the

matrix  provides an indication of the relevance of each feature in  to the correspondence task.

The maximization can be done either by gradient ascent or analytically. The analytical solution is

possible because  as a function of  is quadratic with only one local minimum or maximum.

Unfortunately, the analytical solution involves computing the inverse of  and the gradient

ascent process is too slow for our purpose. For a relatively small logistic linear classifier, the Hessian is

ill-conditioned. Thus, even approximating the inverse leaves room for significant approximation errors.

In order to make this computation feasible, we choose to assume that the Hessian is diagonal. This

assumption doesn’t hurt the computation significantly since we can account for the errors in the o

zation process. Also, note that the Hessian can be computed off-line except for a multiplicative

that depends on the input feature vector . 

4.6.2 The Cumulative Relevance Differential

Given the diagonal assumption for the Hessian, we wish to maximize the relevance differential

 with respect to  for all the moving objects in the scene (indexed by ) and for all time (ind

by ). Thus, the expression to maximize for the  moving object is given by (9) We refer to equ

Xn 1– i i, , Xn i i, , Xn i j, , Xn 1– i i, , Xn i i, ,

Xn i j, , i j≠

ℜn i j, , Ri

Xn 1– i i, , Xn i i, ,

Xn 1– i i, , Xn i j, ,

Ri

Ri Xn 1– i i, ,

ℜn i j, , Ri

HXC Xn 1– i i, ,( )

Xn i j, ,

ℜn i j, , Ri j

n i
th

ℜn i j, ,

j i≠
∑

n

∑

       

(9)
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(9) as the cumulative relevance differential, where  iterates over all time that the object was present in

the scene, and  iterates through all the other moving objects in the scene at time instance . We first

consider maximizing  for a particular ,  and , which maximizes (6). Then we extend the deri-

vation to maximize  for a fixed  and  over all . Finally, we derive a recursive equation to max-

imize over all , which maximizes (9). Let  denote the kth element of a vector . Also, let  denote

the number of elements in the vector . Similarly, let  and  denote the element in cell 

in each of the matrices. We seek to maximize equation (6) with respect to each element  of the matrix

. Equation (10) represents the value of  at the local extremum of equation (6). Additionally, we

define the vectors  and  of the same size as  for notational and computational conve-

nience. Each element,  and , of the vectors  and  is defined in equations (11) and

(12). We can now derive the local extremum of the relevance differential, considering all the moving

objects (indexed by ) in the scene at time instance , in equation (13). Finally, equation (13) forms the

basis for deriving a recursive relationship to find the extremum of equation (9). Equation (14) shows the

n
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extremum of the cumulative relevance differential. The sign of  in equation (14) determines if the

extremum at  is a minimum or a maximum. Based on this fact and the boundary conditions on

 given by equation (15), we can find the  that maximizes the cumulative relevance differential

(9).

Each agent adapts its relevance matrix  as it sees more instances of the object it represents. The

agent can then decide whether or not an object is the one it represents based on the number of relevant

pixels (pixels that are temporally consistent and discriminative) on the object. Instead of storing past

instances of objects needed to adapt , the agent stores the sufficient statistics  and . As a

target moves from the field of view of one sensor to another, the agent follows the target.

4.7 Results

The performance of the correspondence agents was tested on the same 120 independent test

sequences used to evaluate the basic correspondence paradigm described in section 4. The agents

achieved an accuracy of 96%. The 95% confidence interval is [94.3%, 97.7%]. The customizing step

shows statistically significant improvements over the 87% accuracy obtained using just the classifier.

Figure 7 illustrates the agents powered by differential discriminative diagnosis. It shows the relevance

of the pixels on the two persons as the agent performs correspondence.
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FIGURE 7.

The relevant differences ( ) are shown here for a person being corresponded and another person in the scene.

 has been thresholded to show the contrast between relevant and irrelevant pixels. The correct match has
clearly fewer irrelevant pixels than the incorrect match.

4.8 Conclusions

The proposed correspondence algorithm has been shown to perform well in corresponding peo-

ple. The algorithm can easily be extended to track vehicles. The algorithm has a few clear failure

modes. A temporally abrupt and geometrically drastic change in viewing angle causes the algorithm to

fail. The algorithm also fails when tracking a person who bends or twists such that a good number of

Relevance.
Higher magnitude (white) indicates
higher relevance. Lower magnitude
(black) indicates irrelevant pixels

Correct Match

Incorrect Match

Notice the relevance of the hair of the correct match. Also, the relevance of the difference in
the color of the body. Both people are wearing backpacks, the similarity is clear from the
relevance map

n=2n=1 n=3 n=4

n=5 n=6 n=7 n=8

Correct Match

Incorrect Match

Rihn i j, ,

Rihn i j, ,
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features that were previously visible are no longer in plain view. Occlusion is another cause for failure.

We use this correspondence algorithm in conjunction with basic positional correspondence by means of

linear prediction of the object’s position. This alleviates the effects of some of the failure mod

appearance-based correspondence. We are currently experimenting with situations where more 

sensor is looking at the same target. We hope to extend this algorithm to be able to correspond

not only within a sensor’s field of view, but also among sensors. This raises interesting questi

choosing viewpoint-independent features or multiple sets of viewpoint-dependent features for ef

correspondence.

5.0 Retrieving Similar Images: Extending Correspondence

The moving object correspondence algorithm described in the previous section can ea

extended to a content based image retrieval context. In addition to corresponding consecutively

ring instances of a moving object, a surveillance system should also be able to correspond instan

moving object seen by multiple sensors and at different time windows. Specifically, consider th

nario where a moving object passes through a sensor’s field of view in the morning and then rea

later that evening. Interpretation of the moving object’s actions may involve recognizing that it wa

same object at two different windows in time. Similarly it might also be necessary not only to ass

the same objects, but also similar objects. 

The correspondence scheme described in section 4.0 can easily be extended to the retriev

lem. When we save an image of a moving object in a database, we also save the associated 

For every candidate object in the database, given an image of a reference object, we determ

many relevant pixels are on the candidate object. Pixels on a target are relevant if for each large

tude value in , the corresponding entry in  is small. Each object can then be ranked based

number of relevant pixels. The following figures illustrate the results of this retrieval scheme.

Ri

Ri Xn i j, ,
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FIGURE 8.

The top 10 matches out of a total 249 people are shown above. Note that the best match belongs to the same
sequence as the reference person. Sequence 19 (the 2nd best match) is the same person at an earlier time
window. Except for the reference, all other images are shown at their original sizes.                                                                                                                                         
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Retrieving Similar Images: Extending Correspondence
FIGURE 9.

The top 10 best matches (out of a possible 249 images) for another reference person are shown above. Again,
notice that the best match belongs to the same sequence as the reference. The rest of the matches are not the
same person, but are very similar in appearance.
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Retrieving Similar Images: Extending Correspondence
FIGURE 10.

Notice in this figure that the algorithm picked two other sequences of the same person (matches 2 and 3).
Matches 8 and 9 are perceptually not the same as the reference and it is not clear why these two sequences are
listed in the top ten best matches.        

5.1 Conclusions

We did not explore many retrieval methods. Potentially, well studied methods from the content-

based image retrieval arena could perform better than the method used here. But, we have found that 
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nce (or 

ned to 
this method works well with little additional computation and suits the purpose of the surveillance task. 

Moreover it validates the proposed correspondence technique as being robust. This retrieval mechanism 

can also be used to learn from unlabeled data. If feature vectors within a class share some similarities 

and share some differences with feature vectors of other classes, then differential discriminative diagno-

sis will rank those features as relevant. Unlabeled data can now be “labeled” based on the prese

absence) of relevant features. This training process can be repeated iteratively till the label assig

each of the unlabeled feature vectors are consistent.

6.0 Conclusions

This thesis makes the following novel contributions:

• A novel way for ranking the relevance of features to a discrimination task on-line.

• A novel way to account for time-varying relevances. An extreme case of ever changing relevances

was presented in the correspondence application and was dealt with successfully using differential

discriminative diagnosis.

Differential discriminative diagnosis is a simple and effective technique for estimating feature

relevances. It can be used as an on-line learning algorithm to improve systems trained off-line. Unlike

techniques such a principal components analysis, etc., it accounts for the discrimination power of a fea-

ture. At the same time, the relevance estimation process does not consider combinations of features as

many of the transform based techniques suggested in section 2.2. Differential discriminative diagnosis

assumes that given the classifier, each of the features in the feature vector are independent. This

assumption may not be true in general. This technique is known to work well with images where a fair

amount of perceptual similarity exists between feature vectors of the same class. Differential discrimi-

native diagnosis was also used successfully for a path-planning problem. In this problem, a classifier

was used to monitor a planned path as a mobile robot proceeded to its destination. The classifier raised
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Future Work
a flag when the path was determined to be bad because of a change in the environment (for e.g. moving

people or vehicles). Differential discriminative diagnosis was used to determine the location(s) in the

path that caused it to turn from good to bad. This problem and the proposed solution are described in

detail in [48]. 

7.0 Future Work

An intuitive justification and empirical proof of the capabilities of differential discriminative

diagnosis were presented in this thesis. Future work includes an in-depth analysis of the statistics

learned by this algorithm. The relationship between the classifier and the algorithm also needs to be for-

malized. As a by-product of the analysis, failure modes of the algorithm also need to be outlined. We are

currently experimenting with using this algorithm to learn with unlabeled data and recognizing previ-

ously unseen classes. 
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