
Interaction and Intelligent Behavior

by

Maja J Matari�c

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 1994, in partial ful�llment of the

requirements for the degree of

Doctor of Philosophy

Abstract

This thesis addresses situated, embodied agents interacting in complex domains. It
focuses on two problems: 1) synthesis and analysis of intelligent group behavior, and
2) learning in complex group environments.

Basic behaviors, control laws that cluster constraints to achieve particular goals
and have the appropriate compositional properties, are proposed as e�ective primi-

tives for control and learning. The thesis describes the process of selecting such basic
behaviors, formally specifying them, algorithmically implementing them, and empir-
ically evaluating them. All of the proposed ideas are validated with a group of up to
20 mobile robots using a basic behavior set consisting of: safe{wandering, following,
aggregation, dispersion, and homing. The set of basic behaviors acts as a substrate for

achieving more complex high{level goals and tasks. Two behavior combination oper-

ators are introduced, and veri�ed by combining subsets of the above basic behavior
set to implement collective
ocking, foraging, and docking.

A methodology is introduced for automatically constructing higher{level behav-

iors by learning to select among the basic behavior set. A novel formulation of

reinforcement learning is proposed that makes behavior selection learnable in noisy,

uncertain multi{agent environments with stochastic dynamics. It consists of using

conditions and behaviors for more robust control and minimized state{spaces, and
a reinforcement shaping methodology that enables principled embedding of domain
knowledge with two types of shaping functions: heterogeneous reward functions

and progress estimators. The methodology is validated on a collection of robots

learning to forage. The generality of the approach makes it compatible with the ex-

isting reinforcement learning algorithms, allowing it to accelerate learning in a variety
of domains and applications.

The presented methodologies and results are aimed at extending our understand-

ing of synthesis, analysis, and learning of group behavior.

Thesis Supervisor: Rodney A. Brooks

Title: Professor of Computer Science and Engineering

Chapter 1

Overview of the Thesis

One of the main goals of Arti�cial Intelligence (AI) is to gain insight into natural

intelligence through a synthetic approach, by generating and analyzing arti�cial in-

telligent behavior. In order to glean an understanding of a phenomenon as complex

as natural intelligence, we need to study complex behavior in complex environments.

Traditionally, AI has concerned itself with complex agents in relatively simple

environments, simple in the sense that they could be precisely modeled and involved

little or no noise and uncertainty. In contrast to traditional systems, reactive and

behavior{based systems have placed agents with low levels of cognitive complexity

into complex, noisy and uncertain environments. This thesis describes work that

attempts to simultaneously scale up along both dimensions. The environmental com-

plexity is scaled up by introducing other agents, and cognitive complexity is scaled

up by introducing learning capabilities into each of the agents (Figure 1-1).

This thesis addresses two problems:

1. synthesis and analysis of intelligent group behavior

2. learning in complex group environments

Our ideas are based on the notion of basic behaviors, a means for combining

constraints from the agent, such as its mechanical and sensory characteristics, and

the constraints for the environment, such as the types of interactions and sensory

information the agent can obtain, in order to construct an appropriate abstraction

for structuring primitives for control.

We will present a methodology that uses basic behaviors to generate various robust

group behaviors, including following, homing, and
ocking (Figure 1-2). We will also

introduce a formulation of reinforcement learning based on behaviors as the unit of

representation that allows a group of agents to learn complex tasks such as foraging

1

cognitive
complexity

environment complexity

group
behavior

group
learning

reactive systems

behavior−based
systems

traditional
AI

Figure 1-1: Traditional AI has addressed complex agents in simple environments while
reactive and behavior{based approaches have dealt with simple agents in noisy and
uncertain worlds. This work attempts to scale up along both dimensions simultane-

ously, by addressing synthesis and learning of complex group behavior.

2

9 17 18
Frame: 195
Time: 228.4

18 17

9

Following

2 5 9 17 18
Frame: 129
Time: 138.5

1817

9

5
2

Homing

1 2 9 14 17
Frame: 41
Time: 43.8

17

14

9

2

1

Flocking

Figure 1-2: This �gure shows examples of real robot data for three di�erent group

behaviors: following, homing, and
ocking. The robots, physically 12 inches long,
are scaled down and plotted as black rectangles, with white arrows indicating their

heading. The dark robots in the row of rectangles at the bottom shows the robots
that were used in the experiment. Boxes on the lower right indicate frame numbers

and the elapsed time in seconds for each of the runs.

3

7 9 12 14 16 17 18
Frame: 741
Time: 824.1

18H

17H

16

14

12

9AH

Figure 1-3: An example of the foraging behavior of 7 robots, shown after 13.7 minutes
of running. About eight pucks have been delivered to the home region, marked with
a grey box. The two robots near home are following each other on the way to the
drop-o�. Other robots are wandering in search of additional pucks.

(Figure 1-3). Finally, we will validate the proposed approaches with experiments on

homogeneous groups of mobile robots.

This chapter gives a brief summary of the novel approaches, of the experimental

data, and of the implications of the thesis. The organization of the thesis is outlined

at the end of the chapter.

1.1 Synthesis and Analysis of Group Behavior

This thesis is based on the belief that intelligent collective behavior in a decentralized

system results from local interactions based on simple rules. Basic behaviors are

proposed as a methodology for structuring those rules through a principled process of

synthesis and evaluation. A behavior is a control law that clusters a set of constraints

in order to achieve and maintain a goal. For example, safe{wandering is a behavior

that maintains the goal of avoiding collisions while the agent is moving.

We postulate that, for each domain, a set of behaviors can be found that are

basic in that they are required for generating other behaviors, as well as being a

minimal set the agent needs to reach its goal repertoire. The process of choosing the

set of basic behaviors for a domain is dually constrained. From the bottom{up, the

4

process is constrained by the dynamics of the agent and the environment. From the

top{down, the process is constrained by the agent's goals as speci�ed by the task.

The combination of the two types of constraints helps to prune the agent's behavior

space.

We will use the example of group interactions between situated, embodied agents

to illustrate the process of selecting a basic behavior set. The agents are mobile robots,

embodied and endowed with speci�c mechanical, sensory, and e�ector constraints. We

de�ne the high{level goals of the system as consisting of collectively moving objects

(pucks) in the environment in an e�cient fashion. In this work, e�ciency is de�ned in

terms of minimizing energy by minimizing the amount of time required to complete

a task or the number of moves required for each of the agents.

An e�ective set of basic behaviors in the spatial domain should enable the agents

to employ a variety of
exible strategies for puck manipulation, collection, and distri-

bution. The e�ectiveness of such strategies depends on maximizing synergy between

agents: achieving the necessary goals while minimizing inter{agent interference.

We propose the following set of basic behaviors:

� safe{wandering { minimizes collisions between agents and environment

� following { minimizes interference by structuring movement of any two agents

� aggregation { gathers the agents

� dispersion { dissipates the agents

� homing { enables the agent to proceed to a particular location

According to our de�nition, the above behavior set is minimal or basic in that

its members are not further reducible to each other. Additionally, we will show that

they are su�cient for achieving the set of pre{speci�ed goals. The described basic

behaviors are de�ned with respect to the group. Other utility behaviors, such as

grasping and dropping, can also be a part of an agent's repertoire.

The basic behavior set is evaluated by giving a formal speci�cation of each of the

behaviors, and comparing the collection of those speci�cations to a formal speci�ca-

tion of the set of global tasks required for the group.

Once a basic behavior set is established, it can be implemented with a variety

of algorithms. The �rst step in the veri�cation of basic behavior algorithms is a

comparison between the formal behavior speci�cation and the formal correctness of

the algorithm. We will argue that it is di�cult to prove properties of the exact

behavior of individual agents within a group, but it is possible to evaluate and predict

the behavior of the ensemble as a whole. Using the notion of ensemble behavior, we

5

Figure 1-4: The simulator environment called the Interaction Monitor was used to

validate the methodologies for synthesizing and analyzing group behavior described
in the thesis. The agents are shown as black circles, with white markers indicating
their heading. The large rectangle represents the agents' workspace.

will propose group behavior algorithms that utilize a centroid operator that averages

the inputs from multiple agents. This operator has statistical properties that allow

analyzing and making predictions about the behavior of the group.

This thesis provides detailed speci�cations and algorithms for each of the basic

behaviors. Instead of analytical proofs, it provides empirical evaluations of the per-

formance of each of the algorithms, based on the following criteria:

� repeatability: how consistent is the behavior over di�erent trials?

� stability: does the behavior oscillate under any conditions?

� robustness: how robust is the behavior in the presence of sensor and e�ector

error and noise?

� scalability: how is the behavior e�ected by increased and decreased group sizes?

The above criteria were applied to the data obtained by performing at least 50

trials of each basic behavior. The experiments were performed on two di�erent multi{

agent environments, in order to minimize domain biases. The �rst environment was a

multi{agent simulator (the Interaction Monitor) featuring up to 50 agents with local

sensing and distributed, local control (Figure1-4).

The second environment was a collection of 20 physical mobile robots equipped

with local sensors and local control (Figure 1-5). Each of the robots is equipped

with a suite of infra{red sensors for collision avoidance, puck detection, and stacking,

and with micro switches and bump sensors for contact detection. In addition to the

6

Figure 1-5: Some of the 20 mobile robots used to validate the group behavior method-
ologies described in the thesis. These robots demonstrated group safe{wandering,
following, aggregation, dispersion,
ocking, and foraging.

local sensors, the robots are equipped with radios and sonars for triangulating their

position relative to two stationary beacons, and for broadcasting that position within

a limited radius. The radios are used to detect other robots and gather data for local

centroid computations.

The basic behaviors, each consisting of one rule or a small set of simple rules,

generated robust group behaviors that met the prespeci�ed evaluation criteria. A

small subset of the data is shown here, using the Real Time Viewer1, a software

package for displaying and replaying each of the robots runs, plotting their positions

over time, and displaying each frame and the elapsed time for each experiment. The

�gures show following (Figure 1-6), dispersion (Figure 1-7), and homing (Figure 1-8).

More of the data, the algorithms, the speci�cations, and a detailed evaluation can be

found in Chapter 4.

Basic behaviors are intended as building blocks for achieving higher{level goals.

The behaviors are embedded in an architecture that allows two types of combination:

direct, by summation, and temporal, by switching (see �gure 1-9). Both types of

combination operators were tested empirically. A simple and robust
ocking behavior

was generated by summing the outputs of safe{wandering, aggregation, and homing

(Figure 1-10). A more complex foraging behavior that involves �nding and collecting

pucks, was implemented by switching between safe{wandering, dispersion, following,

1Written by Matthew Marjanovi�c.

7

9 17 18
Frame: 13
Time: 13.5

18

17

9

9 17 18
Frame: 21
Time: 22.1

18

17

9

9 17 18
Frame: 36
Time: 38.1

18
17

9

Figure 1-6: Continuous following behavior of 3 robots. The entire time history of the

robots' positions is plotted.

1 2 4 11 16 17
Frame: 32
Time: 54.3

17

16

11

1 2 4 11 16 17
Frame: 52
Time: 102.3

17

16

11

1 2 4 11 16 17
Frame: 72
Time: 172.7

17

16

11

Figure 1-7: Dispersion behaviors of 3 robots.

8

9 11 16 17 20
Frame: 19
Time: 21.5

20

17

16

11

9

9 11 16 17 20
Frame: 31
Time: 34.3

2017

16

11

9

9 11 16 17 20
Frame: 220
Time: 238.0

20
17

16

11
9

Figure 1-8: Homing behaviors of 5 robots. Four of the �ve robots reach home quickly

and the �fth joints them about 60 second later.

...

basic
behaviors

composite
behaviors

sensory
inputs

effector
outputs

Figure 1-9: The control architecture for generating group behaviors consists of direct

and temporal combinations (i.e. sums and switches) of subsets from a �xed basic
behavior set. Direct combinations are marked with

L
, temporal combinations withN

.

9

1 2 9 14 17
Frame: 4
Time: 4.7

17
14

9 2

1

1 2 9 14 17
Frame: 13
Time: 19.7

17

14

9
2

1

1 2 9 14 17
Frame: 24
Time: 31.4

17

14

9 2

1

Figure 1-10: Flocking behavior of 5 robots. The robots are started out in a nearly
linear dispersed state. They quickly establish a
ock and maintain it as the positions
of the individual robots within the
ock
uctuate over time.

2 7 9 12 14 16 17 18
Frame: 156
Time: 171.0

18A

17

16

12

9

7

2 7 9 12 14 16 17 18
Frame: 532
Time: 641.4

1817

16

14
12

9

7

2 7 9 12 14 16 17 18
Frame: 891
Time: 1065.9

18TF

17

16

14

12

9

7

Figure 1-11: An example of the foraging behavior of 6 robots. About eight pucks

have been delivered to the home region, marked with a grey box. Two of the robots
are dropping o� pucks while the others are wandering in search of additional pucks

to pick up and deliver home.

10

and homing (Figure 1-11).

In addition to empirical testing of the behaviors and their combinations, the pro-

posed methodology for generating decentralized group behavior was compared to a

centralized, \total knowledge" approach. The experimental results showed that the

simple, fully distributed strategies, applied to dispersion and aggregation tasks, con-

verged only a constant factor slower than the centralized approach.

1.2 Learning in Complex Group Environments

The �rst part of the thesis introduces basic behaviors as a methodology for structuring

simple rules into
exible and e�ective repertoires of group behavior. It also presents

combination operators that allow for constructing and achieving higher{level goals.

The second part of the thesis, starting with Chapter 6, describes a methodology for

automatically combining basic behaviors into higher{level ones, though unsupervised

reinforcement learning based on the agents' interactions with the environment.

In reinforcement learning (RL) approaches the agent learns from external scalar

reward and punishment. RL has been successfully applied to a variety of domains

that have largely been modeled as Markovian, where the agent{environment inter-

action can be described as a Markov Decision Process (MDP). However, the MDP

assumption does not directly apply to the noisy and uncertain multi{agent environ-

ments addressed in this work. Nonetheless, since external and internal feedback are

the most natural sources of information for learning in situated agents, methods for

applying RL to such complex domains are needed.

The traditional formulation of RL problems in terms of states, actions, and rein-

forcement required a reformulation in order to be applied to our domain. The notion

of state as a monolithic descriptor of the agent and the environment did not scale

up to the multi{agent domain used here, given the continuous and discrete aspects

describing the agent (e.g., velocity, IR sensors, radio data), and the existence of many

other agents in the environment. Furthermore, the most commonly used notion of

actions was inappropriate since atomic actions were too low level and had e�ect too

unpredictable and noisy to be useful to a learning algorithm. Finally, delayed rein-

forcement and reward discounting were insu�cient for learning in our domain.

To make learning possible we propose a reformulation that elevates the level of

system description from states and actions to conditions and behaviors. Behaviors

are control laws that achieve goals but hide low{level control details. Using the notion

of basic behaviors, a small basis set can be de�ned as used as a substrate for learning.

When actions are replaced with behaviors, states can be replaced with conditions,

the necessary and su�cient subsets of state required for triggering the behavior set.

11

Figure 1-12: The mobile robots used to validate the group behavior and learning

methodologies described in this thesis. These robots demonstrated learning to forage
by using group safe{wandering, following, and resting behaviors.

Conditions are many fewer than states, thus greatly diminishing the agent's learning

space and speeding up any RL algorithm.

In addition to the use of behaviors and conditions, we propose two ways of shaping

the reinforcement function in order to aid the learner in a nondeterministic, noisy, and

dynamic environment. We introduced heterogeneous reward functions that partition

the task into subgoals, thus providing more immediate reinforcement. Within a single

behavior (i.e., a single goal), we introduced progress estimators, functions associated

with particular conditions that provided some metric of the learner's performance.

Progress estimators, or internal critics, decrease the learner's sensitivity to noise,

minimize thrashing, and minimize the e�ect of fortuitous rewards by correlating some

domain knowledge about progress with appropriate behaviors the agent has taken in

the past. The details of the reformulation are given in Chapter 7.

The proposed formulation was validated on the task of learning to associate the

conditions and behaviors for group foraging with a collection of robots. The behaviors

included the foraging subset of basic behaviors: safe{wandering, dispersion, and hom-

ing, augmented with grasping and dropping, as well as with resting, a new behavior

triggered by an internal \day{time night{time" clock. By clustering, the condition

set was reduced to the power set of the following predicates: have-puck?, at-home?,

night-time?, and near-intruder?.

A smaller group of robots with more reliable hardware was used for the learning

experiments. In terms of sensors and e�ectors, the robots were functionally identical

to the �rst set (Figure 1-12), and the implemented basic behaviors and combinations

were directly portable.

Three learning algorithms were implemented and tested on the foraging task. The

12

0

10

20

30

40

50

60

70

80

90

100

R(t) = P(t) R(t) = E(t) R(t) = I(t) + H(t) + E(t)

Figure 1-13: The performance of the three reinforcement strategies on learning to
forage. The x-axis shows the three reinforcement strategies. The y-axis maps the
percent of the correct policy the agents learned, averaged over twenty trials.

�rst was standard Q-learning, while the other two simply summed the reinforcement

received over time.

Q-learning received a reward whenever a robot dropped a puck in the home region.

The second algorithm was based on the reinforcement received from heterogeneous

reward functions based on reaching subgoals including grasping and dropping pucks,

and reaching home. The third algorithm used reinforcement both from the heteroge-

neous reward functions and from two progress estimators: one monitoring progress

in getting away from an intruder, and the other monitoring progress toward home.

The two progress estimators were found to be su�cient for making the given learning

task possible and for consistent and complete learning performance. The absence of

either one disabled the robots from learning the complete policy.

The performance of each of the three algorithms was averaged over 20 trials (Fig-

ure 1-13). The analysis of the learning performance showed that the parts that were

not learned by the �rst two algorithms relied on the progress estimators and were

successfully learned in the third case. Detailed analysis of the results is given in

Chapter 8.

1.3 Thesis Outline

The preceding sections brie
y summarized the contributions of the thesis. This sec-

tion outlines the structure of the thesis and summarizes each of the chapters.

Chapters 2 through 5 deal with synthesizing and analyzing group behavior. Chap-

ters 6 through 8 address learning in multi{agent domains. Readers interested in mov-

13

ing directly to the details of the basic behavior approach should skip to Chapter 4.

Those interested in going directly to the learning part of the thesis should skip to

Chapter 6. All newly introduced, ambiguous, or frequently used terms are de�ned in

Appendix B. The following are summaries of the chapter contents.

Chapter 2 describes the biological, sociological, and pragmatic motivation behind

this work. It describes the key issues in individual and multi agent control, and

introduces and de�nes the main concepts of the thesis.

Chapter 3 presents an overview of related work in Robotics, Simulation, Arti�cial

Life, Distributed AI, and analysis of behavior.

Chapter 4 introduces the basic behavior approach, describes the methodology for

selecting basic behaviors, and illustrates the process by de�ning the basic behaviors

for a collection of mobile agents interacting in the plane. The chapter describes

the experimental environments, basic behavior speci�cations and algorithms, and the

empirical data and the criteria for evaluating the performance of each of the behaviors

as well as their e�cacy relative to centralized alternatives.

Chapter 5 describes two methodologies for combining basic behaviors into more

complex, higher{level behaviors. The methodologies are demonstrated by combining

the basic behaviors described in Chapter 4 to generate three di�erent kinds of higher{

level behaviors and evaluate their performance. This chapter also discusses methods

for minimizing interference between behaviors within an agent.

Chapter 6 motivates learning in situated agents and reviews the existing learning

work based on the type of information being acquired by the agent. It then de�nes

the group learning problem discussed in the thesis as an instance of reinforcement

learning (RL) and overviews existing RL models and algorithms as applied to the

situated agent domain.

Chapter 7 describes a formulation of RL that enables and facilitates learning in

our complex situated multi{agent domain. It introduces the use of behaviors and

their conditions in place of actions and states, and describes a method for shaping

the learning process through the use of heterogeneous reward functions and progress

estimators.

Chapter 8 presents the experimental robot environment and the learning task used

to validate the methodologies proposed in Chapter 7. It describes the experimental

design, the three learning algorithms that were implemented and compared, and

discusses the results. In conclusion, the chapter addresses extensions of the presented

work including the problem of learning social rules and multiple concurrent tasks.

Chapter 9 summarizes the thesis.

14

Chapter 4

The Basic Behavior Approach

One of the hardest problems in AI is �nding the right level of system description for

e�ective control, learning, modeling, and analysis. This thesis proposes a particu-

lar description level, instantiated in so-called basic behaviors, building blocks for

synthesizing and analyzing complex group behavior in multi{agent systems.

Biology provides evidence in support of basic behavior units at a variety of levels.

A particularly clean and compelling case can be found in motor control. Controlling

a multi{joint manipulator such as a frog leg or a human arm is a complex task,

especially if performed at a low level. In order to cut down the complexity, nature

imposes an abstraction. Mussa-Ivaldi & Giszter (1992) show that a relatively small

set of basis vector �elds, found in the frog's spine, generates the frog's entire motor

behavior repertoire by applying appropriate combinations of the basis vectors. Bizzi,

Mussa-Ivaldi & Giszter (1991) and Bizzi & Mussa-Ivaldi (1990) discuss control of the

human arm with a similar approach. The described motor basic behaviors are a result

of the types of constraints: the dynamics of the manipulator and the dynamics of the

motor tasks. In the case of motor control, the behaviors are designed for speci�c

optimizations, such as minimizing e�ort by minimizing jerk, executing straight line

trajectories, and using bell{shaped velocity pro�les (Atkeson 1989).

Taking the idea from motor control, we de�ne behaviors as control laws that

encapsulate sets of constraints so as to achieve particular goals. Basic behaviors are

de�ned as a minimal set of such behaviors, with appropriate compositional properties,

that takes advantage of the dynamics of the given system to e�ectively accomplish

its repertoire of tasks.

Basic behaviors are intended as a tool for describing, specifying, and predicting

group behavior. By properly selecting such behaviors one can generate repeatable

and predictable group behavior. Furthermore, one can apply simple compositional

44

Problem Synthesis and analysis of intelligent group behavior

in order to understand the phenomenon (science)

and apply it (engineering).

Assertion Complex group behavior results from

local interactions based on simple rules.

Approach Propose basic behaviors for structuring

such simple rules.

Validation Implement robot group behaviors using

a basic behavior set and combinations.

Table 4.1: A summary of the group behavior problem being addressed in the thesis,
and the structure of the proposed solution.

operators to generate a large repertoire of higher{level group behaviors from the basic

set.

The idea behind basic behaviors is general, but particular sets of such behaviors are

domain{speci�c. In order to demonstrate the methodology, basic behaviors for group

interaction in the spatial domain will be derived, combined, analyzed theoretically,

and tested empirically. Table 4.1 summarizes the research goals, the approach, and

the experimental methodology.

4.1 Selecting and Evaluating Basic Behaviors

This chapter describes how basic behaviors are selected, speci�ed, implemented,

and evaluated. The idea of basic behaviors is general: they are the intended as primi-

tives for structuring, synthesizing, and analyzing system behavior, as building blocks

for control, planning, and learning. Basic behaviors are related to dynamic attrac-

tors, equilibrium states, and various other terms used to describe stable, repeatable,

and primitive behaviors of any system. This work is concerned with �nding ways

of identifying such behaviors for a speci�c system, and using them to structure the

rest of the system's behavioral repertoire. The power of basic behaviors lies in their

individual reliability and in their compositional properties.

This work focuses on basic behaviors for generating intelligent group interactions

in multi{agent systems. It is based on the belief that global behavior of such systems

45

results from local interactions, and furthermore, that those interactions are largely

governed by simple rules. Basic behaviors present a mechanism for structuring the

space of possible local rules into a small basis set.

This chapter will illustrate the process of selecting basic behaviors on concrete ex-

amples of behaviors for a group of agents interacting in physical space. The process of

identifying the basic behaviors, formally specifying them, implementing them, testing

their properties both theoretically and empirically, and �nally combining them, will

be carried out. The criteria for selecting basic behaviors for the domain of spatially

interacting agents are described �rst.

4.1.1 Criteria for Selection

We propose that, for a given domain, a small set of basis or basic behaviors can be

selected, from which other complex relevant and desirable group behaviors can be

generated. Basic behavior sets should meet the following criteria:

Necessity: A behavior within a basic behavior set is necessary if it achieves a

goal required for the agent's accomplishment of its task(s), and that goal cannot be

achieved with any of the other basic behaviors or their combinations. Thus, a basic

behavior cannot be implemented in terms of other behaviors and cannot be reduced

to them.

Su�ciency: A basic behavior set is su�cient for accomplishing a set of tasks in

a given domain if no other behaviors are necessary. The basic behavior set should,

under the combination operators, generate all of the desirable higher{level group

behaviors.

If such behaviors are designed by hand, as opposed to being observed in an ex-

isting system, they should, in addition to the above criteria, also have the following

properties:

1. Simplicity: the behavior should be implemented as simply as possible,

2. Locality: within our framework, the behavior should be generated by local rules,

utilizing locally available sensory information,

3. Correctness: within the model in which it is tested, the behavior should provably

attain (and in some cases maintain) the goal for which it was intended within

the set of conditions for which it is designed,

4. Stability: the behavior should not be sensitive to perturbations in external

conditions for which it is designed,

46

5. Repeatability: the behavior should perform according to speci�cation in each

trial under reasonable conditions and error margins,

6. Robustness: the performance of the behavior should not degrade signi�cantly

in the presence of speci�ed bounds of sensory and e�ector error and noise,

7. Scalability: the behavior should scale well with increased and decreased group

size.

It is di�cult to imagine any �xed metric for selecting an \optimal" set of be-

haviors, since the choice of the basic behavior set depends on the task(s) it will be

applied to. This work makes no attempt to devise optimality criteria in any formal

sense. Furthermore, this work does not provide theoretical proofs of correctness of

the algorithms for the presented behaviors. While such proofs may be computable for

a simple model of the agents and the environment, they become prohibitively di�cult

for increasingly more realistic models that include sensors, e�ectors, and dynamics.

As an alternative to simpli�ed modeled environments, the behaviors were tested in

the fully complex worlds with all of the error, noise, and uncertainly. In order to

make the evaluation more complete, various initial conditions and group sizes were

tested, and a large amount of data were obtained for analysis. Behavior evaluation is

described in detail in section 4.5.

The next section illustrates the process of selecting basic behaviors for the domain

of planar mobile agents.

4.1.2 Basic Behaviors for Movement in the Plane

The experimental work in this thesis is focused on interactions among mobile agents

in two{dimensional space. This domain has the desired complexity properties: the

number of possible collective behaviors is unbounded. Fortunately, the unbounded

space of possible spatial and temporal patterns can be classi�ed into classes, and

thus e�ectively viewed from a lower level of resolution. The classi�cation is based on

task and domain{speci�c criteria which allow for selecting out the (comparatively)

few relevant behavior classes to focus on. The proposed basic behaviors impose such

classes; they de�ne observable group behaviors without specifying particular rules for

implementing them.

Group behaviors in the spatial domain can be viewed as spatio{temporal patterns

of agents' activity. Certain purely spatial �xed organizations of agents are relevant,

as are certain spatio{temporal patterns. Purely spatial �xed organizations of agents

correspond to goals of attainment while spatio{temporal patterns correspond to goals

of maintenance.

47

Safe{Wandering the ability of a group of agents to move around while avoid-

ing collisions with each other and other obstacles. Here, the

homogeneous nature of the agents can be used for inter{agent

collision avoidance. Thus, two distinct strategies can be de-

vised; one for avoiding collisions with other agents of the same

kind, and another for avoiding collisions everything else.

Following the ability of two or more agents to move while staying one
behind the other.

Dispersion the ability of a group of agents to spread out over an area in

order to establish and maintain some predetermined minimum

separation.

Aggregation the ability of a group of agents to gather in order to establish

and maintain some predetermined maximum separation.

Homing the ability to reach a goal region or location.

Table 4.2: A basic behavior set for the spatial domain, intended to cover a variety of
spatial interactions and tasks for a group of mobile agents.

In the process of selecting basic behaviors, the designer attempts to decide what

behavior set will su�ce for a large repertoire of goals. While the dynamical properties

of the system provide bottom{up constraints, the goals provide top{down structure.

Both of these in
uences guide the behavior selection process. Energy minimization

is a universal goal of powered physical systems. In the planar motion domain this

goal translates into minimization of non{goal{driven motion. Such motion is either

generated by poor behavior design, or by interference between agents. Thus, minimiz-

ing interference means maximizing goal{driven behavior and minimizing unnecessary

motion.

Minimizing interference translates directly into the achievement goal of immediate

avoidance and the maintenance goal of moving about without collisions. Avoidance

in groups can be achieved by dispersion, a behavior that reduces interference locally.

It can also serve to minimize interference in classes of tasks that require even space

coverage, such as those involving searching and exploration.

In contrast to various goals that minimize interaction by decreasing physical prox-

imity, many goals involve the exchange of resources through physical proximity. Con-

sequently, aggregation is a useful primitive. Moving in a group requires some form

48

of coordinated motion in order to minimize interference. Following and
ocking are

examples of such structured group motion.

Table 4.2 shows a list of behaviors that constitutes a basic set for a
exible reper-

toire of spatial group interactions. Biology o�ers numerous justi�cations for these

behaviors. Avoidance and wandering are survival instincts so ubiquitous it obviates

discussion. Following, often innate, is seen in numerous species (McFarland 1985).

Dispersion is commonplace as well. DeScnutter & Nuyts (1993) show elegant ev-

idence of gulls aggregating by dynamically rearranging their positions in a �eld to

maintain a �xed distance from each other. Camazine (1993) demonstrates similar gull

behavior on a ledge. People maintain similar arrangements in enclosed spaces (Gleit-

man 1981). Similarly, Floreano (1993) demonstrates that simulated evolved ants use

dispersion consistently. Aggregation, as a protective and resource{pooling and shar-

ing behavior, is found in species ranging from the slime mold (Kessin & Campagne

1992) to social animals (McFarland 1987). The combination of dispersion and aggre-

gation is an e�ective tool for regulating density. Density regulation is a ubiquitous

and generically useful behavior. For instance, army ants regulate the temperature

of their bivouac by aggregating and dispersing according to the local temperature

gradient (Franks 1989). Temperature regulation is just one of the many side{e�ects

of density regulation. Finally, homing is a basis of all navigation and is manifested by

all mobile species (for biological data on pigeons, bees, rats, ants, salmon, and many

others see Gould (1987), Muller & Wehner (1988), Waterman (1989), Foster, Castro

& McNaughton (1989), and Matari�c (1990b)).

Besides the described behavior set, numerous other useful group behaviors exist.

For example, biology also suggest surrounding and herding as frequent patterns of

group movement, related to a higher level achievement goal, such as capture or mi-

gration (McFarland 1987). These and other behaviors can be generated by combining

the basic primitives, as will be described and demonstrated in the next chapter.

4.2 Basic Behavior Experiments

The remainder of this chapter describes the experimental environments, presents

the algorithms for implementing the proposed basic behaviors, and evaluates their

performance based on a battery of tests and a collection of criteria.

4.2.1 Experimental Environments

Behavior observation is one of the primary methods for validating theories in syn-

thetic AI projects like the one described in this thesis. In order to have conclusive

49

results, it is necessary to try to separate the e�ects caused by the particular experi-

mental environment from those intrinsic to the theory being tested. In order to get

to the heart of group behavior issues rather than the speci�c dynamics of the test en-

vironment, two di�erent environments were used, and the results from the two were

compared. The two environments are the Interaction Modeler, and a collection of

physical robots.

Another motivation for using both a physical and a modeled environment is the

attempt to isolate any observable inconsistencies in the performance of the same

behaviors in the two di�erent environments. In general, it is di�cult to determine

what features of the real world must be retained in a simulation and what can be

abstracted away. By testing systems in the physical world some of the e�ects that arise

as artifacts of simulation can be identi�ed (Brooks 1991a). This is the motivation

behind using data from physical robots. By the same token, the current state of

the art of physical robot environments imposes many constraints and biases on the

types of experiments that can be conducted. Consequently, results from any physical

environment must also be validated in an alternative setup. Two di�erent robot types

were used, in order to eliminate system{speci�c biases.

Since this work is concerned with basic principles of interaction and group behavior

rather than a speci�c domain, it is especially concerned with e�ects that are common

to both the modeled and the physical worlds.

4.2.2 The Agent Interaction Modeler

The Interaction Modeler (IM) is a simulator which allows for modeling a simpli�ed

version of the physics of the world and the agent sensors and dynamics (Figure 4-1).

The Modeler and the control software for the agents are written in Lisp. However,

for purposes of realism, the modeler is divided into three distinct components: the

simulator, the physics modeler, and the agent speci�cation. The simulator executes

the agent speci�cations and moves the agents according to their control algorithms

and their sensory readings. The simulator implements the physics of the sensors, but

not the physics of the world. The latter are implemented by the physics modeler

that checks the positions and motions computed by the simulator against simpli�ed

physical laws, and applies corrections. The IM loops between the simulator and the

physics modeler.

The main purpose of the Interaction Modeler is to observe and compare phe-

nomena to those obtained on physical robots. However, the Modeler is also useful

for preliminary testing of group behaviors which are then implemented on physical

robots. Although it is di�cult to directly transfer control strategies from simulations

50

Figure 4-1: The interaction modeler environment. The agents are shown as black
circles with white markers indicating their heading. The large rectangle indicates

the boundaries of their workspace. The agents are equipped with local sensors and
simpli�ed dynamics.

51

Figure 4-2: Each of the Nerd Herd robots is a 12"{long four{wheeled base equipped
with a two{pronged forklift for picking up, carrying, and stacking pucks, and with a
radio transmitter and receiver for inter{robot communication and data collection.

to the physical world, the modeler is useful for eliminating infeasible control strategies

at an early stage, as well as for testing vastly larger numbers of agents, performing

many more experiments, and varying parameter values.

4.2.3 The Mobile Robot Herd

Group behavior experiments are implemented and tested on a collection of 20

physically identical mobile robots a�ectionately dubbed \The Nerd Herd." Each

robot is a 12"{long four{wheeled vehicle, equipped with one piezo{electric bump

sensor on each side and two on the rear of the chassis. Each robot has a two{

pronged forklift for picking up, carrying, and stacking pucks (Figure 4-2). The forklift

contains two contact switches, one on each tip of the fork, six infra{red sensors: two

pointing forward and used for detecting objects and aligning onto pucks, two break{

beam sensors for detecting a puck within the \jaw" and \throat" of the forklift, and

two down{pointing sensors for aligning the fork over a stack of pucks and stacking

(Figure 4-3). The pucks are special{purpose light ferrous metal foam-�lled disks, 1.5

inches diameter and between 1.5 and 2.0 inches in height. They are sized to �t into

the unactuated fork and be held by the fork magnet.

The robots are equipped with radio transceivers for broadcasting up to one byte

of data per robot per second. The system uses two radio base stations to triangulate

52

IR
bump

contact

radio

IRIR

bump

bumpbump

contact

breakbeam
IRs

Figure 4-3: Each of the Nerd Herd robots is equipped with contact sensors at the
ends of the fork, piezo{electric bump sensors on each side and two on the rear of the
chassis, and six infra{red sensors on the fork. Two forward{pointing IRs are located
at the ends of the forks, two break{beam IRs in the jaw and throat of the fork, and
two down{pointing IR for stacking pucks in the middle of each of the fork arms.

the robots' positions. The radio system is used for data gathering and for simulating

additional sensors. In particular, radios are used to distinguish robots from other

objects in the environment, an ability that cannot be implemented with the on{board

IR sensors1.

The mechanical, communication, and sensory capabilities of the robots allow for

exploration of the environment, robot detection, and �nding, picking up, and carrying

pucks. These basic abilities are used to construct various experiments in which the

robots are run autonomously, with all of the processing and power on board. The

processing is performed by a collection of four Motorola 68HC11 microprocessors.

Two of the processors are dedicated to handling radio communication, one is used

by the operating system, and one is used as the \brain" of the robot, for executing

the down{loaded control system used in the experiments. The control systems are

programmed in the Behavior Language, a parallel programming language based on

the Subsumption Architecture (Brooks 1990a).

1The IRs are all the same frequency and mechanically positioned for obstacle detection rather

than communication.

53

4.2.4 Hardware Limitations

Properties of physical hardware impose restrictions not only on the control strategies

that can be applied, but alson on the types of tasks and experiments that can be

implemented. Robot hardware is constrainted by various sensory, mechanical, and

computational limitations. This section describes some relevant properties of the

hardware we used and their e�ect.

The robots' mechanical steering system is inaccurate to within 30 rotational de-

grees. Furthermore, the position triangulation system works su�ciently well when

the robots are within the predetermined range of the base stations. However, the

exchange of information between the robots, which nominally ought to take place at

1Hz, su�ers from extensive loss of data. Consequently, as much as half of the trans-

mitted data were lost or incorrect. The combined e�ect of steering and positioning

uncertainty demanded that the robots move slowly in order to minimize error. Thus,

the limiting factor on the robot speed was imposed by sensing and actuation, not by

the controller.

The infra{red sensors have a relatively long range (12 inches), and vary in sensi-

tivity. Consequently, not only do di�erent robots have di�erent sensing ranges that

cannot be tuned due to hardware restrictions, but the sensitivity between the two

sides of the fork on a single robot varies as well. Consequently, the amount of time

and e�ort required for detecting, picking up, or avoiding objects varied across robots

and over time. Thus, the control system could not be dependent on uniformity of the

group.

This uncertainty and variability, although frustrating, is bene�cial to experimental

validity. For instance, hardware variability between robots is re
ected in their group

behavior. Even when programmed with identical software, the robots behave di�er-

ently due to their varied sensory and actuator properties. Small di�erences among

individuals become ampli�ed as many robots interact over extended time. As in na-

ture, individual variability creates a demand for more robust and adaptive behavior.

The variance in mechanics and the resulting behavior provides a stringent test for all

of the experimental behaviors.

4.2.5 Experimental Procedure

All robot and modeler programs were archived and all basic behaviors were tested

in both domains. All robot implementations of basic and composite behaviors were

54

tested in at least 20 trials2. In the case of the Modeler, all behaviors were tested in at

least 20 trials, with both identical and random initial conditions. Di�erent strategies

for the same group behaviors were tested and compared across the two domains.

Modeler data were gathered by keeping a record of relevant state (such as position,

orientation, and gripper state) over time. The same data were gathered in robot

experiments through the use of the radio system. The system allowed for recording

the robots' position and a few bytes of state over time. For each robot experiment,

the robots' IDs and initial positions were recorded. Some of the experiments were

conducted with random initial conditions (i.e., random robot positions), while in

others identical initial positions were used in order to measure the repeatability of

the behaviors. All robot data were also recorded on video tape, for validation and

cross referencing.

Throughout this chapter, the Interaction Modeler data are shown in the form of

discrete snapshots of the global state of the system at relevant times, including initial

state and converged state. The robot data are plotted with the Real Time Viewer

(RTV), a special purpose software package designed for recording and analyzing robot

data3. RTV uses the transmitted radio data to plot, in real{time, the positions of

the robots and a time{history of their movements, i.e. a trail, the positions of the

previously manipulated pucks, and the position of home. It also allows for replaying

the data and thus recreating the robot runs.

The robots are shown as black rectangles aligned in the direction of their heading,

with their ID numbers in the back, and white arrows indicating the front. In some

experiments robot state is also indicated with a symbol or a bounding box. In all

shown data plots, the size of the rectangles representing the robots is scaled so as

to maintain the correct ratio of the robot/environment surface area, in order to de-

monstrate the relative proximity of all active robots. The bottom of each plot shows

which of the twenty robots are being run. The corner display shows elapsed time, in

seconds, for each snapshot of the experiment. Figure 4-4 shows a typical data plot.

4.3 Basic Behavior Speci�cations

This section gives formal speci�cations for each behavior in terms of the goal it

achieves and maintains.

Basic behaviors in 2D space are speci�ed in terms of positions p, distances d, and

2In the case of foraging, most data were obtained with another set of robots, described in sec-

tion 8.1.
3RTV was implemented and maintained by Matthew Marjanovi�c.

55

2 5 9 17 18
Frame: 129
Time: 138.5

1817

9

5
2

Figure 4-4: An example of a robot data plot: the robots are shown as scaled black
rectangles aligned in the direction of their heading, with their ID numbers in the back,
and white arrows indicating the front. The bottom of the plot shows which of the
twenty robots are being run, and the corner display shows elapsed time in seconds.

distance thresholds �avoid, �disperse, and �aggregate.

R is the set of robots: R = fRig; 1 � i � n

pi =

0
B@

xi

yi

1
CA phome =

0
B@

xhome

yhome

1
CA

dhome;i =
q
(xhome � xi)2 + (yhome � yi)2

di;j =
q
(xi � xj)2 + (yi � yj)2

Using this notation, the following are speci�cations for the basic behavior goals.

56

Safe{Wandering:

The goal of safe{wandering is to keep moving while maintaining a minimum dis-

tance �avoid between agents:

dpj

dt
6= 0 and 8(i) di;j > �avoid

Following:

The goal of following is to achieve and maintain a minimum angle � between the

position of the leader i relative to the follower j:

i = leader; j = follower

0 �
dpj

dt
� (pi � pj) � k

dpj

dt
kk (pi � pj) k cos �

� = 0) cos � = 0)

0 �
dpj

dt
� (pi � pj) � k

dpj

dt
kk (pi � pj) k

Dispersion:

The goal of dispersion is to achieve and maintain a minimum distance �disperse

between agents:

8(j) di;j > �disperse and �disperse > �avoid

Aggregation:

The goal of aggregation is to achieve and maintain a maximum distance �aggregate

between agents:

8(j) di;j < �aggregate

57

Homing:

The goal of homing is to decrease the distance between the agent and a goal

location called \home":

8j
dpj

dt
� (pj � phome) < 0

4.4 Basic Behavior Algorithms

This section presents the algorithms used to implement each of the proposed basic

behaviors in the Interaction Modeler and on the robots. The algorithms are given in

formal notation and in algorithmic pseudo code. All algorithms are formally expressed

as velocity commands of the form:

command (v)

Two operators, N and C, are used for computing most of the algorithms. N is

the neighborhood operator which, given a robot R and a distance threshold �,

returns all other robots within that neighborhood:

N (i; �) = fj 2 i; ::n j di;j � �g

C is the centroid operator which, given a robot i and a distance threshold �,

returns the local centroid:

C(i; �) =

P
j2N (i;�) pj

jN (i; �)j

Cg is the global centroid operator:

Cg =

P
j2R pj

jnj

4.4.1 Safe{Wandering

Strategies for moving while avoiding collisions are perhaps the most studied topic

in mobile robotics. The work in this thesis was concerned with �nding avoidance

strategies that perform well in group situations and scale well with increased group

58

Avoid-Other-Agents:

If an agent is within d_avoid

If the nearest agent is on the left

turn right

otherwise turn left.

Algorithm 4.1:

Avoid-Everything-Else:

If an obstacle is within d_avoid

If an obstacle is on the right only, turn left.

If an obstacle is on the left only, turn right.

After 3 consecutive identical turns, backup and turn.

If an obstacle is on both sides, stop and wait.

If an obstacle persists on both sides,

turn randomly and back up.

Algorithm 4.2:

sizes. Finding a guaranteed general{purpose collision avoidance strategy for an agent

situated in a dynamic world is di�cult. In a multi{agent world the problem can

become intractable.

Inspired by biological evidence which indicates that insects and animals do not

have precise avoidance routines (Wehner 1987), we used the following general avoid-

ance behavior:

command (v

0
B@

cos(� + u)

sin(� + u)

1
CA)

where � is R's orientation and u is the incremental turning angle away from the

obstacle. A simple Avoid-Other-Agents rule was devised, as shown in Algorithm 4.1.

The Avoid-Other-Agents behavior takes advantage of group homogeneity. Since

all agents execute the same strategy, the behavior can rely on and take advantage of

the resulting spatial symmetry. If an agent fails to recognize another with its other{

agent sensors (in this case radios), it will subsequently detect it with its collision{

avoidance sensors (in this case IRs), and treat it as a generic obstacle, using the

59

Safe--Wander:

If an agent is within d_avoid

If the nearest agent is on the left

turn right

otherwise turn left.

If an obstacle is within d_avoid

If an obstacle is on the right only, turn left.

If an obstacle is on the left only, turn right.

After 3 consecutive identical turns, backup and turn.

If an obstacle is on both sides, stop and wait.

If an obstacle persists on both sides,

turn randomly and back up.

Otherwise move forward by d_forward, turn randomly.

Algorithm 4.3:

Avoid-Everything-Else behavior, as shown in Algorithm 4.2.

A provably correct avoidance strategy for arbitrary con�gurations of multiple

agents is di�cult to devise. In order to increase robustness and minimize oscilla-

tions, our strategies take advantage of the unavoidable noise and errors in sensing

and actuation, which result in naturally stochastic behavior. This stochastic compo-

nent guarantees that the an avoiding agent will not get stuck in in�nite cycles and

oscillations. In addition to the implicit stochastic nature of the robots' behavior,

Avoid-Everything-Else also utilizes an explicit probabilistic strategy by employing

a randomized move.

Variations of the above avoidance algorithm were experimented with and com-

pared based on the amount of time the agent spent avoiding relative to the amount

of time spent it moving about freely. This ratio is an indirect measure of the quality

of the avoiding strategy in that the more time the agents spend avoiding the worse

the strategy is. Avoiding time is dependent on the agent density, so it was used as

a controlled variable in the experiments. The ratio used to evaluate avoidance is

an indirect metric; a direct measure of being stuck would be more useful, but the

robots did not have the appropriate sensors for determining this state. No signi�cant

performance di�erences were found among the similar strategies that were tested.

The strategy for safe{wandering is the combination of the two avoidance strategies

60

with a default rule for moving with occassional changes of heading, as shown in

Algorithm 4.3.

4.4.2 Following

Follow:

If an agent is within d_follow

If an agent is on the right only, turn right.

If an agent is on the left only, turn left.

Algorithm 4.4:

Following is implemented with respect to the follower agent. It is achieved with a

simple rule that steers the follower to the position of the leader:

command (
v0

k pleader � pfollower k
(pleader � pfollower))

Following can be implemented as a complement of the Avoid-Everything-Else

behavior, as shown in Algorithm 4.4.

Figure 4-5 illustrates following on three robots. Additional data on following will

be presented and analyzed in the next section.

This approach to following models tropotaxic behavior in biology, in which two

sensory organs are stimulated and the di�erence between the stimuli determines the

motion of the insect (McFarland 1987). Ant osmotropotaxis is based on the di�er-

ential in pheromone intensity perceived by the left and right antennae (Calenbuhr &

Deneubourg 1992), while the agents described here use the binary state of the two

directional IR sensors.

Under conditions of su�cient density, safe{wandering and following can produce

more complex global behaviors. For instance, osmotropotaxic behavior of ants ex-

hibits emergence of unidirectional lanes, i.e., regions in which all ants move in the

same direction. The same lane{forming e�ect could be demonstrated with robots

executing following and avoiding behaviors. However, more complex sensors must be

used in order to determine which direction to follow. If using only IRs, the agents

cannot distinguish between other agents heading toward and away from them, and

are thus unable to select whom to follow.

61

algorithm, when tested on the Interaction Modeler, produces more direct homing

trajectories. Figure 4-9 shows another robot run of homing with �ve robots. In this

run the entire time history of the robots' positions are shown, and the positioning

errors can be easily seen. Nonetheless, all robots reach home. Figure 4-10 illustrates

homing in simulation.

Individual homing is e�ective as long as the density of agents is low. If enough

agents are homing within con�ned space, they interfere with each other. In the case of

our non-holonomic robots, interference had even more enduring e�ects on the group.

Figure 4-11 shows the growing interference between robots as they approach the goal

region. Entire time{trails are shown to demonstrate how much group interference

slows down individual performance.

Simulation and robot experiments described in this work show that interference

increases if the agents have non{zero turning radii, unequal velocities, or are subject

to sensor and control errors. All of the above conditions are common in situated

agents, suggesting the need for some form of group or structured navigation, such as

ocking, which will be introduced in an upcoming section.

4.5 Basic Behavior Evaluation

4.5.1 Empirical Evaluation of Basic Behaviors

Evaluation is one of the most di�cult components of research, and it is somewhat

new to the �eld of AI and Experimental Robotics. By nature and by design, the two

�elds are based on building arti�cial computational and physical systems. However,

results from such synthetic endeavors do not fall cleanly into the well de�ned set

of evaluation criteria designed for natural sciences. Analyzing something one has

designed is intrinsically di�erent from analyzing something externally imposed.

As a young and diverse �eld, AI still lacks standardized evaluation criteria. Con-

sequently, it is left to each researcher to establish criteria that are both speci�c to the

project and generally acceptable. The ideas proposed in this thesis are evaluated in

two ways. The �rst addresses the merit of the general approach and its applicability

to various domains. This evaluation is performed in the summary of the thesis, after

the entire work has been presented. The second type of evaluation addresses the

speci�c instantiation of the ideas in the spatial domain. This chapter presents the

evaluation criteria applied to the implementations and performance of spatial basic

behaviors and their composites.

AI and Robotics research in general is exploratory and often prone to phenomeno-

70

logical evaluation. To prevent this, all of the evaluation criteria for the experimental

part of the work were established prior to testing and were applied to the perfor-

mance of each of the behaviors as well as to their combinations. An earlier section

on basic behavior selection elaborated the criteria for choosing the basic behavior set

and hinted at some evaluation procedures. This section gives a detailed illustration

of empirical basic behavior evaluation on the example of following.

According to our pre-speci�ed de�nition, a robot was said to be following when

it maintained a minimal angle � between itself and the leader. Repeatability and

robustness of following were evaluated based on its manifested average uninterrupted

duration, i.e. average time to failure. This duration was almost completely dependent

on how reliably the front{pointing sensors could detect the \leader". Figure 4-12

illustrates continuous following behavior of 3 robots over a four minute period. The

robot at the \front" of the queue is moving forward with its wheels slightly turned,

thus tracing out a circular path. The other two robots follow their local \leader"

according to the presented algorithm. The path of the �rst robot is smooth, while

the followers oscillate in order to keep the robot ahead of them within IR range. One

of the robots separated after two minutes, while the other two stayed together for the

duration of the shown 243.3 second run. Figure 4-13 also illustrates the robustness

of following; the robot in the lead moves about randomly and the follower keeps up

throughout the duration of the run.

The range of the IR sensors used was directed and short, requiring the agents to

stay close together within the queue. Consequently, errors in steering could cause a

follower to lose sight of the leader if it failed to turn su�ciently in order to maintain

the leader in sight. If the two continued to move in the same direction, as they would

during a higher{level task, the follower could catch up with the leader again. If not,

they would separate.

The narrow IR range explains why long queues and trains of agents were physi-

cally di�cult to maintain. However, queues were stable and insensitive to dynamic

obstacles and sensory and mechanical irregularities in the form of sensor noise, errors

in steering, and perturbations in velocity. Figure 4-14 illustrates following on three

robots in the presence of sensory or e�ector error. The middle robot stalls due to

some error, and the robot behind it stops as well, then turns and follows the leader,

as it senses the �rst robot in its range. The middle robot activates again, senses the

second robot within its range, follows it, and the queue is maintained. Figure 4-15

demonstrates following in the presence of static constraints in the environment, such

as walls and corners. The robots are able to avoid the walls and maintain the queue.

Following was also evaluated based on scalability in order to test its performance

as agents are added and removed. The data above demonstrate the behavior that

72

results if an agent stalls, or is removed from the middle of the queue. The next set of

data deals with the performance as new agents are added to the queue, the situation

that is expected to happen more commonly, since following is, at a global level, a

recruiting behavior.

Figure 4-16 demonstrates average following time for two robots in multiple runs.

Figure 4-17 plots following data for three robots. The mean following time for two

agents is nearly identical as that for three. This is exactly as expected, since following

is a completely local behavior between two agents. The failure of any pair is as likely

as the failure of any other, and the pairs are mutually independent, soq agents can

be dynamically added and removed from the ends of the queue without a�ecting the

rest.

This section has illustrated the criteria we used to evaluate the proposed basic

behaviors. The evaluation process was illustrated on the example of following. The

described criteria were systematically applied to all of the other basic behaviors as

well.

4.5.2 Evaluation of Heterogeneous Groups

An obvious alternative for a fully distributed system of identical agents is a hierar-

chical distributed system. In order to evaluate the performance of the homogeneous

basic behaviors, they were compared to particular hierarchical implementations. This

section describes the performance of a hierarchical group of agents on two basic be-

haviors: aggregation and dispersion. These two behaviors were chosen because they

can be stated in terms of achievement goals and, given su�cient space, can reach a

static state. The algorithms were evaluated based on the time or the number of steps

required to reach that well{de�ned state.

A version of hierarchical agents was implemented by classifying the agents into

a total order, based on a randomly assigned unique ID number, thus simulating an

established pecking order in the group (Chase, Bartolomeo & Dugatkin 1994, Chase

1993, Chase 1982, Chase & Rohwer 1987). While in homogeneous algorithms all

agents moved simultaneously according to identical local rules, in the hierarchical case

the ID number determined which agents were allowed to move while others waited. In

all cases, a simple precedence order, a spatially{local hierarchy, was established such

that within a small radius the agent with the highest ID got to move. Multiple types

of dispersion and aggregation algorithms were tested with such hierarchical agents.

Using the Interaction Monitor, 20 experiments were conducted with each group

size (3, 5, 10, 15, and 20 agents) and each of the algorithms. Additionally, the algo-

rithms were tested on two di�erent degrees of task di�culty. Aggregation was tested

78

4.6 Summary

This chapter has introduced the methodology for selecting basic behaviors and demon-

strated it on the spatial domain. A basic behavior set consisting of safe{wandering,

following, dispersion, aggregation, and homing was proposed, implemented in two dif-

ferent experimental environments, and tested in simulation and on physical robots.

Experimental data were evaluated using a collection of criteria we speci�ed a priori.

The performance of the basic behaviors was also tested compared against hierarchical

and total knowledge approaches.

The next chapter introduces ways in which the described basic behaviors can

combined in order to be achieve a variety of higher{level goals and tasks.

83

Chapter 6

Learning in Situated Systems

So far we have dealt with the problem of synthesizing intelligent group behavior by

hand. We now extend the presented ideas to include learning, an ability that allows

the agent to acquire new and adapt old behaviors for individual and group bene�t.

6.1 Motivation

Why learn?

Learning has two purposes universal across domains. It is useful for:

1. adapting to external and internal changes

2. simplifying built{in knowledge

The ability to cope with changes in the environment is termed adaptability. It

allows agents to deal with noise in their internal and external sensors, and with

inconsistencies in the behavior of the environment and other agents. Adaptability

comes at a phenotypical and cognitive cost, so creatures are adapted only to a speci�c

niche. Consequently, all creatures, natural and otherwise, fail at their tasks under

certain conditions. The purpose of learning is to make the set of such conditions

smaller.

Adaptability does not necessitate learning. Many species are genetically equipped

with elaborate \knowledge" and abilities, from the very speci�c, such as the ability

to record and utilize celestial maps (Waterman 1989), to the very general, such as

plasticity in learning motor control (McFarland 1987) and language (Pinker 1994).

But genetic code is �nite. In fact, primate and human cortical neural topology is

too complicated to fully specify in the available genome, and is instead established by

106

Problem Learning in complex situated domains.

Assertion Traditional reinforcement learning

must be reformulated.

Approach Replace states, actions and reinforcement

with conditions, behaviors, heterogeneous reward functions

and progress estimators.

Validation Implement learning on a group of mobile robots

learning to forage.

Table 6.1: A summary of the situated learning problem addressed here, and the
structure of the proposed solution.

spontaneous synaptic �ring in utero and in the �rst decade of life (Vander et al. 1980).

In addition to compensating for genetic parsimony, learning is useful for optimizing

the agent's existing abilities, and necessary for coping with complex and changeable

worlds. It is often argued that societies exist largely for conservation and propagation

of behavior strategies too complex to be passed on genetically.

The answer to the built{in versus learned tradeo� varies across species and envi-

ronments. The work described here addresses this fundamental tradeo� in the domain

of situated multi{agent systems.

The rest of the thesis will address the following problem: how can a collection of

situated agents learn in a group environment? This problem will be addressed in a

nondeterministic, noisy and error{prone domain with stochastic dynamics, in which

the agent does not have an a priori model of the world.

We propose a formulation of reinforcement learning that uses a level of description

that makes the state space manageable, thus making learning possible. Furthermore,

we present two methods for shaping reinforcement to take advantage of information

readily available to the agent, and to make learning more e�cient. These ideas

are validated by demonstrating an e�ective learning algorithm on a group of robots

learning to forage. Table 6.1 summarizes the problem and the approach.

107

6.2 Relevant Learning Models

There are many things an agent can learn, but not many ways in which it can learn

it. According to what is being learned, existing approaches can be classi�ed into the

following categories:

� learning declarative knowledge

� learning control

� learning new behaviors

� learning to select behaviors/actions

6.2.1 Learning Declarative Knowledge

Learning declarative knowledge is one of the founding areas of AI but also one that is

least directly related to the work in this thesis. The only type of declarative knowledge

that situated agents have had to deal with to date are maps of the environment.

Much of the robotics literature deals with the problem of constructing and updating

such maps in variety of situated domains (see Matari�c (1990a) for a review of the

literature). Maps and world models are closely tied to action in the world, which

is why they are the primary type of declarative knowledge so far used in situated

agents1. In contrast, this thesis focuses on procedural knowledge that is directly tied

to acting and interacting in the world. The remaining learning categories are directly

tied to action2.

6.2.2 Learning Control

Learning control is a growing �eld based on adaptive control, a branch of control

theory. Problems in adaptive control deal with learning the forward or inverse model

of the system, i.e., the plant. Forward models provide predictions about the output

expected after performing an action in a given state. Analogously, inverse models

provide an action, given the current state and a desired output (Jordan & Rumel-

hart 1992). Learning control has been applied to a variety of domains and has used

a number of di�erent learning methodologies. Connectionist algorithms are most

popular, (see Miller, Sutton & Werbos (1990) for a representative collection), but

1Note: not all maps are explicit and declarative. See Matari�c (1990a) for examples.
2Author's bias: declarative learning can be further divided into as many interesting categories,

but is not the area pursued here.

108

other approaches have also been studied (e.g., Atkeson, Aboaf, McIntyre & Reinkens-

meyer (1988), Atkeson (1990), Schaal & Atkeson (1994)). Adaptive control problems

typically deal with learning complex dynamical systems with non{linearly coupled

degrees of freedom usually involved in moving multi{jointed manipulators, objects,

and physical bodies.

6.2.3 Learning New Behaviors

Learning new behaviors deals with the problem of acquiring strategies for achieving

particular goals. Because the notion of behavior is not well de�ned, neither is the

behavior learning problem.

We de�ned behavior to be a control law with a particular goal, such as wall{

following or collision avoidance. The de�nition is general and meant to refer to a

level of description above basic control without specifying what that level is, since

it varies with the domain. Furthermore, the concept of behavior contains informal

notions about generality and adaptivity that are di�cult to state precisely without

domain{speci�c grounding.

Consequently, most learning control problems appear to be instances of behavior

learning, such as learning to balance a pole (Barto, Sutton & Anderson 1983), to play

billiards (Moore 1992), and to juggle (Schaal & Atkeson 1994). Furthermore, work on

action selection, deciding what action to make in each state, can be viewed as learning

a higher{level behavior as an abstraction on the state{action space. For example, a

maze{learning system can be said to learn a speci�c maze{solving behavior.

Genetic learning has also addressed learning behaviors in simulated worlds (Koza

1990). Since learning behaviors requires �nding appropriate parameter settings for

control, it can be cast as an optimization problem, for which genetic algorithms are

particularly well suited (Goldberg 1989). However, since genetic algorithms operate

on an abstract encoding of the learning problem, the encoding requires a good model

of the agent and the environment in order to generate useful behaviors. Since the

problem of modeling situated worlds is notoriously di�cult, only a few genetic al-

gorithms have produced behaviors that successfully transferred to physical systems

(Steels 1994b, Cli�, Husbands & Harvey 1993, Gallagher & Beer 1993).

However, none of the above learning approaches can be said to learn new behaviors

according to the precise de�nition of the problem. The posed \behavior learning

problem" (Brooks & Matari�c 1993) requires that the agent acquire a new behavior

using its own perceptual and e�ector systems, as well as to assign some semantic label

to the behavior, in order to later recognize and use it as a coherent and independent

unit. Behavior learning appears to require bridging the elusive signal{to{symbol gap,

109

even for the most limited notion of \symbol."

Given this de�nition, no existing work performs behavior learning. Learning con-

trol and learning action selection are not strictly instances of behavior learning be-

cause in both cases, by de�nition, only a single behavior is learned and no further

abstraction is performed. Similarly, genetic algorithms do not address the stated

behavior learning problem either, because in their domain the semantics are also

provided by the designer.

The signal{to{symbol problem is one of the hallmark challenges in AI. Because it

bridges a gap between two already estranged communities, it has not received much

attention. Another challenge of the problem is setting it up to avoid biasing the

learner inappropriately, but still be able to evaluate its performance. It is unlikely

that \behaviors", \concepts", and \symbolic representations" that are automatically

generated by a situated agent will map neatly from the agent's sensorium into the

human observer's semantic space. Nonetheless, the situated domain is particularly

well suited for this type of work as it allows for grounding the agents' learning in

physical behavior that is observable and thus can be evaluated externally from its

mechanism and representation.

6.2.4 Learning to Select Behaviors

If learning new behaviors is learning how to do something, then learning to select

behaviors is learning when to do it. Behavior selection has not been extensively

studied so far, largely due to the lack of formalization of \behavior" as a building

block for control. The work that has been done on the topic has used reinforcement

learning techniques (e.g., Maes & Brooks (1990) and Maes (1991)). Learning behavior

selection is by de�nition a reinforcement learning problem as it is based on correlating

the behaviors the agent performs and the feedback it receives as a result.

6.3 Reinforcement Learning

Reinforcement learning (RL) is a class of learning methodologies in which the agent

learns based on external feedback received from the environment. The feedback is

interpreted as positive or negative scalar reinforcement. The goal of the learning

system is to maximize positive reinforcement (reward) and/or minimize negative re-

inforcement (punishment) over time. Traditionally, the learner is given no explicit

built{in knowledge about the task. If the learner receives no direct instruction or

answers from the environment the learning is considered unsupervised (Barto 1990).

The learner produces a mapping of states to actions called a policy.

110

Reinforcement learning originated in Ivan Pavlov's classical conditioning experi-

ments (Gleitman 1981). Embraced by behaviorism, stimulus{response learning be-

came the predominant methodology for studying animal behavior in psychology and

biology. Ethology, the study of animals in their natural habitats, developed in re-

sponse to the tightly controlled laboratory experimental conditions commonly used by

behaviorists. In the mean time, RL was adopted and adapted by the computational

community, and applied to various machine learning problems.

Maze{learning was formulated as a reinforcement learning problem based on re-

ward and punishment in the �rst well known application of RL (Minsky 1954). Soon

thereafter, the problem of learning a scoring functions for playing checkers was suc-

cessfully addressed with an RL algorithm (Samuel 1959). Subsequently, RL was

applied to a variety of domains and problems, most notably in the Bucket Brigade

algorithm used in Classi�er Systems (Holland 1985), and in a class of learning meth-

ods based on Temporal Di�erencing (Sutton 1988). Reinforcement learning has been

implemented with a variety of algorithms ranging from table{lookup to neural net-

works, and on a broad spectrum of applications, including tuning parameters and

playing backgammon.

Our work is concerned with reinforcement learning on situated, embodied agents.

In particular, it is focused on issues that arise when traditional models of RL, and

algorithms applied to those models, are used in the complex multi{agent domain we

are working with. To address these issues, we begin by describing the most commonly,

but not exclusively, used RL model.

6.3.1 Markov Decision Process Models

Most computational models of reinforcement learning are based on the assumption

that the agent{environment interaction can be modeled as a Markov Decision Process

(MDP), as de�ned below:

1. The agent and the environment can be modeled as synchronized �nite state

automata.

2. The agent and the environment interact in discrete time intervals.

3. The agent can sense the state of the environment and use it to make actions.

4. After the agent acts, the environment makes a transition to a new state.

5. The agent receives a reward after performing an action.

111

While many interesting learning domains can be modeled as MDPs, situated

agents learning in nondeterministic, uncertain environments do not �t this model.

The next section describes the reasons why, by addressing each of the model assump-

tions in turn.

6.3.2 State

Most RL models are based on the assumption that the agent and the environment

are always in a clearly{de�ned state that the agent can sense. In situated domains,

however, the world is not readily prelabeled into appropriate states, and the world

state is not readily and consistently accessible to the agent. Instead, the world is

continuous and partially observable.

Continuity

The state of a situated agent consists of a collection of properties, some of which are

discrete, such as the inputs from binary sensors, others continuous, like the velocities

of wheels. Even for the simplest of agents, a monolithic descriptor of all state prop-

erties is prohibitively large. It scales poorly with increased sensory capabilities and

agent complexity in general, and results in a combinatorial explosion in standard RL.

Most models to date have bypassed continuous state by presuming higher{level

sensory operators such as \I see a chair in front of me." But such operators have

been shown to be unrealistic and largely unimplementable in systems using physical

sensors (Agre & Chapman 1990, Brooks & Matari�c 1993). In general, the problem of

partitioning continuous state into discrete states is hard (Ko�seck�a 1992), and even if

a reasonable partitioning of the world is found, there may be no mapping from the

space of sensor readings to this partitioning.

Observability

Although continuous and often complex, sensors have limited abilities. Instead of

providing descriptions of the world, they return simple properties such as presence of

and distance to objects within a �xed sensing region. Consequently, they cannot dis-

tinguish between all potentially relevant world states. The collapse of multiple states

into one results in partial observability, i.e. in perceptual aliasing, a many{to{one

mapping between world and internal states. The inability to distinguish di�erent

states makes it di�cult and often impossible for the learning algorithm to assign ap-

propriate utility to actions associated with such states (Whitehead & Ballard 1990).

Partially Observable Markov Decision Processes (POMDPs) have been developed

112

by the operation research community for dealing with this problem. Partial observ-

ability is added into a Markov model by introducing a discrete probability distribution

over a set of possible observations for a given state. POMDPs have been studied and

successfully applied to theoretical learners (Cassandra, Kaelbling & Littman 1994),

but have not yet been used empirically largely due to the fact that observability

models of situated systems are not generally available.

Generalization

Any learner is caught in a paradox: it must disambiguate the relevant inputs, but it

also must discard all irrelevant inputs in order to minimize its search space. However

it may be structured, the learner's space in traditional RL is exponential in the size

of the input, and thus marred by the curse of dimensionality (Bellman 1957). Some

form of input generalization, or collapsing of states into functional equivalence

classes, is necessary for almost all problems.

Human programmers perform generalization implicitly whenever they use clever

orderings of rules, careful arbitration, and default conditions, in crafting control

strategies. They minimize ambiguity and maximize parsimony by taking advantage

of their domain knowledge.

In RL, in the absence of domain knowledge, state generalization has been ad-

dressed with statistical clustering methods using recursive partitioning of the state

space based on individual bit relevance (Chapman & Kaelbling 1991, Mahadevan &

Connell 1991a, Moore 1991, Moore 1993). It is also confronted in Classi�er Systems

that use binary strings as state descriptors (Holland 1986). The state can contain

wild cards (#'s) that allow for clustering states, with the
exible grouping potential of

full generality (all #'s) to full speci�city (no-#'s). Generalization results in so-called

\default hierarchies" based on the relevance of individual bits changed from #'s to

speci�c values. This process is analogous to statistical RL methods (Matari�c 1991).

The input generalization problem is also addressed by the connectionist RL lit-

erature. Multi{layer networks have been trained on a variety of learning problems

in which the hidden layers constructed a generalized intermediate representation of

the inputs (Hinton 1990). While all of the RL generalization techniques are non{

semantic, the table{based methods and Classi�er System approaches are somewhat

more readable as their results are a direct consequence of explicit hand{coded criteria.

Connectionist approaches, in contrast, utilize potentially complex network dynamics

and produce e�ective but largely inscrutable generalizations.

All of the described generalization techniques are e�ective but require large num-

bers of trials to obtain su�cient statistical information for clustering states. As such,

they are an incremental improvement of the overwhelmingly slow exponential learning

113

algorithms. Our work will explore a di�erent alternative, one that takes principled

advantage of domain knowledge instead of purely statistical generalization.

Paradoxically, the unwieldy fully{exponential3 state{action search space used by

standard RL models gives them one of their main positive properties: asymptotic

completeness. While hand coded reactive policies take advantage of the cleverness

of the designer, they are rarely provably complete. Most irrelevant input states are

easily eliminated, but potentially useful ones can be overlooked. On the other hand,

complete state spaces guarantee that, given su�cient time and su�ciently rich re-

inforcement, the agent will produce a provably complete policy. Unfortunately, this

quality is of little use in time{bounded situated domains.

6.3.3 State Transitions

Simple MDP{based models employ discrete, synchronized state transitions. In con-

trast, in situated domains the world state and the agent state change asynchronously

in response to various events. In dynamic domains, only a subset of those events are

directly caused by the agent's actions or are in agent's control. In general, events

can take di�erent amounts of time to execute, can have delayed e�ects, and can

have di�erent consequences under identical conditions. In short, situated domains

are di�cult to model properly.

Deterministic models do not capture the dynamics of most situated domains,

so nondeterministic alternatives have been considered (Lin 1991). Unfortunately,

most are based on unrealistic models of sensor and e�ector uncertainty with overly

simpli�ed error properties. They are typically based on adding Gaussian noise to each

sensed state and each commanded action. However, uncertainty in situated domains

does not follow Gaussian distributions but instead results from structured dynamics

of interaction of the system and the environment. These dynamics play an important

role in the overall behavior of the system, but are generally at a description level too

low to be accurately modeled or simulated.

As an example, consider the properties of realistic proximity and distance sen-

sors. The accuracy of ultrasound sensors is largely dependent on the incident angle

of the sonar beam and the surface, as well as on the surface materials, both of which

are di�cult and tedious to model accurately. Infra{red and vision sensors also have

similarly detailed yet entirely di�erent properties, none of which are accurately rep-

resented with simple models. Simple noise models are tempting, but they produce

arti�cial dynamics that, while potentially complex, do not model the true complexity

3In the number of state bits.

114

of realistic physical systems. Consequently, many elegant results of simple simulations

have not been successfully repeated on more complex agents and environments.

Given the challenges of realistic modeling, it is generally very di�cult to obtain

transition probabilities for nondeterministic models of situated domains. Models for

such domains are not readily available, and must be obtained empirically for each

system by a process analogous to learning a world model. It is di�cult to estimate

if obtaining a world model for a given domain requires any more or less time than

learning a policy for some set of goals. Consequently, insightful work on learning

world models for more intelligent exploration (Sutton 1990, Kaelbling 1990) is yet to

be made applicable to complex situated domains.

We have argued that accurate models of situated domains are di�cult to obtain

or learn. Instead, we will focus in this work on learning policies in systems without

explicit world models. The next section describes the general form of RL algorithms

that have been used for such policy learning.

6.3.4 Algorithms

Reinforcement learning algorithms have the following general form (Kaelbling 1990):

1. Initialize the learner's internal state I to I0.

2. Do Forever:

a. Observe the current world state s.

b. Choose an action a = F (I; s)

using the evaluation function F .

c. Execute action a.

d. Let r be the immediate reward for

executing a in world state s.

e. Update the internal state I = U(I; s; a; r)

using the update function U .

The internal state I encodes the information the learning algorithm saves about

the world, usually in the form of a table maintaining state and action data. The

update function U adjusts the current state based on the received reinforcement, and

maps the current internal state, input, action, and reinforcement into a new internal

state. The evaluation function F maps an internal state and an input into an action

based on the information stored in the internal state. Di�erent RL algorithms vary

in their de�nitions of U and F .

115

The predominant methodology used in RL is based on a class of temporal di�er-

encing (TD) techniques (Sutton 1988). All TD methods deal with assigning credit or

blame to past actions by attempting to predict long{term consequences of each action

in each state. Sutton's original formalization of temporal di�erencing (TD(�)) deals

with such predictions in Markovian environments, and covers a large class of learning

approaches. For example, Bucket Brigade, the delayed reinforcement learning method

used in Classi�er Systems, is an instance of TD (Matari�c 1991). Q-learning (Watkins

1989), the most commonly known and used TD algorithm, is de�ned and explained

in Appendix A, as background for subsequent comparison.

6.3.5 Learning Trials

Performance properties of various forms of TD applied to Markovian environments

have been extensively studied (Watkins & Dayan 1992, Barto, Bradtke & Singh 1993,

Jaakkola & Jordan 1993). Provable convergence of TD and related learning strategies

based on dynamic programming is asymptotic and requires in�nite trials (Watkins

1989). Generating a complete policy, however incorrect, requires time exponential in

the size of the state space, and the optimality of that policy converges in the limit

as the number of trials approaches in�nity. In practice, this translates into hundreds

of thousands of trials for up to ten{bit states. Thus, even in ideal Markovian worlds

the number of trials required for learning is prohibitive for all but the smallest state

spaces.

The situated learning problem is evenmore di�cult, however. Assuming an appro-

priately minimized state space, a learner may still fail to converge, due to insu�cient

reinforcement.

6.3.6 Reinforcement

Temporal credit assignment, assigning delayed reward or punishment, is considered

to be one of the most di�cult and important problems in reinforcement learning4.

Temporal credit is assigned by propagating the reward back to the appropriate pre-

vious state{action pairs. Temporal di�erencing methods are based on predicting the

expected value of future rewards for a given state{action pair, and assigning credit

locally based on the di�erence between successive predictions (Sutton 1988).

Reward functions determine how credit is assigned. The design of these functions

is not often discussed, although it is perhaps the most di�cult aspect of setting up

4The �rst statement of the problem is due to Samuel (1959), whose checkers{learning program

learned to reward moves that eventually lead to \a triple jump."

116

a reinforcement learning algorithm. The more delayed the reward, the more trials

the learning algorithm requires, the longer it takes to converge. Algorithms using

immediate reinforcement naturally learn the fastest.

Most reinforcement learning work to date has used one of the following two types

of reward: immediate or very delayed. We postulate, however, that situated domains

tend to fall in between the two popular extremes, providing some immediate rewards,

plenty of intermittent ones, and a few very delayed ones. Although delayed reinforce-

ment, and particularly impulse reinforcement that is delivered only at the single goal,

eliminates the possibility for biasing the learning, it usually makes it prohibitively

di�cult. Most situated learning problems do not resemble mazes in which the reward

is only found at the end. Instead, some estimates of progress are available along

the way. These estimate can be intermittent, internally biased, inconsistent, and

occasionally incorrect, but if used appropriately, can signi�cantly speed up learning.

The approach presented in the next chapter takes advantage of such intermediate

estimates to shape reinforcement and accelerate learning.

6.3.7 Multiple Goals

We have argued that impulse reinforcement related to a single goal makes learning

prohibitively slow. Furthermore, single goal agents are rare in situated domains.

Instead, situated agents are best viewed as having multiple goals, some of which are

maintained concurrently, while others are achieved sequentially. For example, in our

previously described foraging task, an agent maintains a continuous low{level goal

of collision avoidance, also keeps a minimal distance from other agent in order to

minimize interference, may attempt to remain in a
ock, and may be heading home

with a puck.

Most RL models require that the learning problem be phrased as a search for a

single goal optimal policy, so that it can be speci�ed with a global reward function.

Not surprisingly, if the world or the goal changes, a new policy must be learned, using

a new reward function. The existing policy will con
ict with the new learning and

will need to be \forgotten."

In order to enable learning of a multi{goal policy, the goals must be formulated

as subgoals of a higher{level single optimal policy. Therefore they must be sequential

and consistent. To enforce a speci�c goal sequence, the state space must explicitly

encode what goals have been reached at any point in time, thus requiring added

bits in the input state vector (Singh 1991). Although a natural extension of the RL

framework, this method requires the state space to grow with each added goal, and

cannot address concurrent goals. Sequences of goals fail to capture the dynamics of

117

complex situated worlds and agents that may have one or more high{level goals of

achievement, and also a number of maintenance goals, the interaction of which has

important e�ects on the agents' behavior and rate of learning.

A more general solution to multiple goals within the traditional framework is to use

separate state spaces and reinforcement functions for each of the goals and merge them

Whitehead, Karlsson & Tenenberg (1993). However, merging policies assumes that

the necessary information for utility evaluation is available to the agent. However,

as previously discussed in relation to game{theoretic approaches (see Section 2.4.7),

that assumption may not hold in many situated domains.

6.3.8 Related Work

Work in computational RL has been active since the �fties and has become particu-

larly lively in the last decade. The majority of the contributions have been theoretical

in nature. For thorough reviews of reinforcement learning as applied to well{behaved

learning problems see Watkins (1989) and Sutton (1988). For more recent work on im-

proved learning algorithms for situated agents, largely applied to simulated domains,

see Kaelbling (1990) and Whitehead (1992). This section will focus on empirical

learning work with situated agents.

Whitehead & Ballard (1990) and Whitehead (1992) addressed the perceptual alias-

ing problem in situated RL. They proposed an approach to adaptive active perception

and action that divided the control problem into two stages: a state identi�cation

stage and a control stage, and applied appropriate learning methods to each. The

approach was demonstrated on a simulated block stacking task, but has not been

tested in an embodied domain.

Kaelbling (1990) used a simple mobile robot to validate several RL algorithms

using immediate and delayed reinforcement applied to learning obstacle avoidance.

Maes & Brooks (1990) applied a statistical reinforcement learning technique using

immediate reward and punishment in order to learn behavior selection for walking on

a six{legged robot. The approach was appropriate given the appropriately reduced

size of the learning space and the available immediate and accurate reinforcement

derived from a contact sensor on the belly of the robot, and a wheel for estimating

walking progress.

More delayed reinforcement was used by Mahadevan & Connell (1991a) in a box{

pushing task implemented on a mobile robot, in which subgoals were introduced to

provide more immediate reward. Mahadevan & Connell (1991b) experimented with

Q{learning using monolithic and partitioned goal functions for learning box{pushing,

and found subgoals necessary.

118

Chapman & Kaelbling (1991) and Mahadevan & Connell (1991a) demonstrated

complementary approaches for generalization. Chapman & Kaelbling (1991) started

with a single most general state and iteratively split it based on statistics accumulated

over time. Splitting is based on the relevance of each state bit; when one is found to

be relevant, the state space is split in two, one with that bit on, and the other with

it o�. In contrast, Mahadevan & Connell (1991a) started with a fully di�erentiated

speci�c set of states, and consolidated them based on similarity statistics accumulated

over time.

Aside from traditional unsupervised reinforcement learning methods described

above, other techniques have also been explored. Pomerleau (1992) used a supervised

connectionist learning approach to train steering control in an autonomous vehicle

based on generalizing visual snapshots of the road ahead.

Thrun &Mitchell (1993) demonstrated a connectionist approach to learning visual

features with a camera mounted on a mobile robot. The features are not assigned by

the designer but are instead selected by the network's intermediate representations.

Not surprisingly, the result is not semantically meaningful to a human observer, but

is nonetheless well suited for the robot's navigation task.

The work presented here is, to the best of the author's knowledge, the �rst at-

tempt at applying reinforcement learning to a collection of physical robots learning

a complex task consisting of multiple goals. Parker (1994) implemented a non{RL

memory{based style of parameter{learning for adjusting activation thresholds used

to perform task allocation in a multi{robot system. Tan (1993) has applied tradi-

tional RL to a simulated multi{agent domain. Due to the simplicity of the simulated

environment, the work has relied on an MDP model that was not applicable to this

domain. Furthermore, Tan (1993) and other simulation work that uses communi-

cation between agents relies on the assumption that agents can correctly exchange

learned information. This often does not hold true on physical systems whose noise

and uncertainty properties extend to the communication channels.

6.4 Summary

This chapter has overviewed the key properties of reinforcement learning strategies

based on Markov Decision Process models, and their implications on learning in situ-

ated domains. Learning algorithms based on dynamic programming and traditionally

applied to such Markovian domains were also discussed. Finally, related robot learn-

ing and reinforcement learning work was reviewed.

Two main problems arise when the standard MDP formulation is applied to our

multi{agent domain: 1) the state space is prohibitively large, and 2) delayed rein-

119

forcement is insu�cient for learning the foraging task. The next chapter introduces a

method of reformulating the learning problem in order to make learning both possible

and e�cient in the complex domain used in this work.

120

Chapter 7

The Learning Approach

This chapter describes a formulation of the proposed reinforcement learning problem

in order to make learning possible and e�cient in the complex situated domain at

hand, as well as in situated domains in general.

In order to deal with the complexity and uncertainty of situated domains, a learn-

ing algorithm must use an appropriate level of description. A learner using too low

a level of description will result in a state space so large as to make the learning

prohibitively slow. In contrast, a learner based on too corse a level of description

cannot discover any novel and potentially useful strategies outside the structured

space allowed by the coarse representation.

An appropriate representation shapes the state space into an expressive but tractable

learning space. An e�ective learning algorithm, then, searches this learning space ef-

�ciently. Thus, given the complexities of situated agents and environments, as well as

those of reinforcement learning algorithms, any approach to situated learning should

have the following properties.

A model for situated learning should:

1. minimize the learner's state space

2. maximize learning at each trial

This chapter will address each of the desired properties in turn. First, an approach

will be described for minimizing the state space in order to make the learning problem

tractable. Second, an approach for shaping reinforcement will be proposed that makes

learning more e�cient. In both cases, the traditional primitives of reinforcement

learning (states, actions, and reinforcement) will be reformulated (�!) into subtly

121

di�erent but pragmatically more e�ective counterparts, as follows:

1. states & actions �! conditions & behaviors

2. reinforcement �! multi{modal feedback

7.1 Reformulating the Problem

Traditional state{action models used by many RL approaches tend to be based on a

level of description inappropriate for complex situated domains. Their representations

abstract away important control details, but still must search excessively large state

spaces representing the agent's entire world. A large state space is not so much a sign

of a di�cult problem as it is of a poorly formulated one. We propose the following

reformulation that uses a more appropriate representation for the problem of learning

in noisy and inconsistent worlds:

Reinforcement learning in situated domains can be formulated as learning

the conditions necessary and su�cient for activating each of the behav-

iors in the repertoire such that the agent's behavior over time maximizes

received reward.

This formulation accomplishes the desired goal of diminishing the learning space

by using conditions and behaviors instead of states and actions, with the e�ect of

elevating the level of description of the learning problem.

7.1.1 Behaviors

The �rst part of the thesis has argued that behaviors are an intuitive and e�ective level

of description for control, and described a methodology for selecting and combining

basic behaviors for a given domain and set of goals. Behaviors were de�ned as goal{

driven control laws that hide the details of control. The same reasons that made

behaviors a useful abstraction in control make them an appropriate and e�cient

basis for learning.

Behaviors are more general than actions because they are not tied to speci�c

detailed states but instead triggered by a set of general conditions. For instance, a

wall-following behavior applies to any environment and any wall that the agent can

sense, and is not dependent on the agent's exact state including such information as

its (x; y) position, whether it is carrying a puck, and what is in front or behind it.

It can be said that much of the RL literature already uses behaviors without

labeling them as such. For example, an action called \left" which transports an

122

agent to the next square on a grid and turns it by 90 degrees, requires a complex

control sequence. It is a control law that guarantees an output, such as the agent's

position and orientation, and is thus identical in e�ect to our de�nition of behavior.

Such a behavior, however, may not be realistic in continuous, noisy domains. In

general, atomic actions of simulated grid worlds can translate into arbitrarily complex

behaviors on embodied systems. Consequently, situated, embodied agents often use

a very di�erent set of behavior primitives, speci�cally designed for the particular

dynamics of the agent and its interaction with the world.

Behaviors elevate control to a higher and more realizable level. However, the

complexity of reinforcement learning lies in the size of the learning space, which is

traditionally exponential in the state space of the agent. In order to signi�cantly

accelerate learning, we must minimize this space as well. We propose to do so by

abstracting the learning space to a higher level, structured by the granularity of the

conditions necessary for executing each of the behaviors.

Using behaviors abstracts away the details of the low{level controller, while still

using realizable units of control, and thus guaranteeing the results, or postconditions,

of each behavior. Similarly, conditions abstract away the low{level details of the

agent's state space, and de�ne the learning space at a higher level, by state clustering.

7.1.2 Conditions

Conditions are predicates on sensor readings that map into a proper subset of the

state space. Each condition is de�ned as the part of the state that is necessary

and su�cient for activating a particular behavior. For instance, the necessary and

su�cient conditions for picking up a puck are that a puck is between the �ngers of

the robot.

The space of conditions is usually much smaller than the complete state space of

the agent, resulting in a smaller space for the learning algorithm. Furthermore, the

fewer state elements need to be sensed the less the system will su�er from error and

uncertainty. Finally, the only events relevant to the agent are those that change the

truth value of the predicates, i.e. the current condition. Those events are used to

trigger and terminate behaviors.

Reformulating states and actions into conditions and behaviors e�ectively reduces

the state space to a manageable size, thus making learning possible in a complex do-

main. The next step is to make learning e�cient, by using appropriate reinforcement.

123

7.2 Reinforcement for Accelerated Learning

The amount and quality of the reinforcement determines how quickly the agent will

learn. In nondeterministic uncertain worlds, learning in bounded time requires shap-

ing of the reinforcement in order to take advantage of as much information as is

available to the agent.

In general, reinforcement learning can be accelerated in two ways: 1) by building{

in more information, and 2) by providing more reinforcement. The reward function

implicitly encodes domain knowledge and thus biases what the agent can learn. Sim-

plifying and minimizing reinforcement, as practiced by some early RL algorithms

(Sutton 1990), does diminish this bias, but it also greatly handicaps, and in situated

domains, completely debilitates the learner.

Domain knowledge can be embedded through a reward{rich and complex rein-

forcement function. This approach is e�ective, but the process of embedding seman-

tics about the world into the reward function is usually ad hoc. In the ideal case,

reinforcement is both immediate and meaningful. Immediate error signals that pro-

vide not only the sign but also the magnitude of the error result in fastest learning.

As in supervised learning, then provide the agent with the correct answer after each

trial. In learning control (Jordan & Rumelhart 1992, Atkeson 1990, Schaal & Atke-

son 1994), such error signals are critical as the learning problem is usually �nding a

complex mapping between a collection of input parameters and the desired output.

Immediate reinforcement in RL is typically a weak version of an error signal, reduced

to only the sign of the error but not the magnitude or the direction.

We propose an intermediate solution based on shaping as a version of an error

signal based on principled embedding of domain knowledge.

7.2.1 Heterogeneous Reward Functions

Monolithic reward functions with a single high{level goal, when applied to situated

domains, require a large amount of intermediate reinforcement in order to aid the

agent in learning. Intuitively, the more subgoals are used the more frequently rein-

forcement can be applied, and the faster the learner will converge. We have already

argued that situated agents maintain multiple concurrent goals, and that such goals

can be achieved and maintained by using behaviors as the basic unit of control and

learning. Thus, a task in a situated domain can be represented with a collection

of such concurrent goal{achieving behaviors. Reaching each of the goals generates

an event1 that provides primary reinforcement to the learner. The following is the

1A change in the conditions.

124

general form of such event{driven reinforcement functions:

Re(c; t) =

8><
>:

r if the event E occurs

0 otherwise
e 6= 0

Event{driven reinforcement for any event E is a function of conditions c and time

t. The received reinforcement r may be positive or negative.

If necessary information about the task and the appropriate sensors are avail-

able, each of the goals can be further broken down into one or more subgoals, with

associated secondary reinforcement. In general, the speci�cation of a high{level be-

havior provides a collection of subgoals that need to be achieved and maintained. If

the achievement of a subgoal can be detected, it can be directly translated into a

reinforcement function.

A general heterogeneous reward function has the following form:

Re(c; t) =

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

rE1 if event E1 occurs

rE2 if event E2 occurs

: :

: :

: :

rEn if event En occurs

0 otherwise

The complete reward function is a sum of inputs from the individual event{driven

functions. Thus, if multiple events occur simultaneously, appropriate reinforcement

for all of them is received from multiple sources.

Even{driven reinforcement functions are illustrated with the following example:

� A robot receives reward Ra whenever it avoids an obstacle, and reward

Rh whenever it reaches home.

� The corresponding reward function appears as follows:

R(c; t) =

8>>>><
>>>>:

ra if an obstacle is avoided

rh if home is reached

0 otherwise

� If the robot happens to be avoiding an obstacle and reaches home at the

125

same time, it receives reinforcement from both sources concurrently:

R(c; t) = ra + rh

As the above example illustrates, each of the heterogeneous reward functions

provides a part of the structure of the learning task, and thus speeds up the learning.

Event{driven reward functions associate reinforcement with the achievement of

goals and subgoals through the application of associated behaviors. They deliver

reward or punishment in response to events, i.e. between behaviors. The next section

describes a shaping mechanism for providing reinforcement during the execution of a

behavior.

7.2.2 Progress Estimators

Many goals have immediately available measures of progress, since few tasks need to

be de�ned as long sequences of behaviors without any feedback. Progress estimators

use domain knowledge to measure progress during a behavior and, if necessary, to

trigger principled behavior termination.

Feedback as a learning signal can be received from a one or more goals. Consider

the following example:

� The robot's task is to learn to take pucks home.

� Having found a puck, the robot can wait until it accidentally �nds home

and then receives a reward.

� Alternatively, it can use a related subgoal, such as getting away from the

food/puck pile, for feedback.

� In such a scheme, the longer the robot with a puck stays near food, the

more negative reinforcement it receives.

� This strategy will encourage the behaviors that take the robot away from

the food, one of which is homing.

While immediate reinforcement is not available in many domains, intermittent

reinforcement can be provided by estimating the agent's progress relative to its cur-

rent goal and weighting the reward accordingly. Measures of progress relative to a

particular goal can be estimated with standard sensors, and furthermore feedback is

available from di�erent sensory modalities.

The following are the two general forms of progress estimator functions.

126

Rp(c; t) =

8><
>:

m if c 2 C
0
^ progress is made

n if c 2 C
0
^ no progress

m > 0; n < 0; C
0
� C

Rs(c; t) =

8>>>>><
>>>>>:

i if c 2 C
0
^ progress is made

j if c 2 C
0
^ regress is made

0 otherwise

i > 0; j < 0; C
0
� C

C is the set of all conditions, and C
0 is the set of conditions associated with the

given progress estimator, i.e. those conditions for which the given progress estimator

is active.

Rp and Rs have di�erent dynamics. Rp is a two{valued function that monitors

only the presence and absence of progress. Rs is a three{valued function that monitors

the presence and absence of progress, as well as negative progress or regress.

Progress estimators diminish brittleness of the learning algorithm in the following

ways:

� decrease sensitivity to noise

� encourage exploration in the behavior space

� decrease fortuitous rewards

Each is described in turn.

Decreasing Sensitivity to Noise

Progress estimators provide implicit domain knowledge to the learner. They strengthen

appropriate condition{behavior correlations and serve as �lters for spurious noise.

Noise{induced events are not consistently supported by progress estimator credit,

and thus have less impact on the learner. Consider the following example:

� Agent A is executing behavior B in condition c and receives positive

reinforcement rp by the progress estimator Rp.

� A receives negative reinforcement re from Re as a result of an event in-

duced by a sensor error.

� The impact of the negative reinforcement is diminished by the continuous

reinforcement received from Re throughout the execution of B.

127

The domain knowledge behind progress estimators provides a continuous source

of reinforcement to counter intermittent and potentially incorrect credit.

Encouraging Exploration

Exploration versus exploitation is one of the critical tradeo�s in machine learning.

The agent must do enough exploration to discover new and potentially more e�cient

condition{behavior combinations, but must also optimize its performance by using

the best known pairings. Ine�ective exploration results in thrashing, repeatedly at-

tempting of one or more inappropriate behaviors.

Since situated environments are event{driven, any given behavior may persist for a

potentially long period of time. An agent has no impetus for terminating a behavior

and attempting alternatives, since any behavior may eventually produce a reward.

The learning algorithmmust use some principled strategy for terminating behaviors in

order to explore the condition{behavior space e�ectively. Progress estimators provide

such a method: if a behavior fails to make progress relative to the current goal, it is

terminated and another one is tried. By using domain knowledge to judge progress,

progress estimators induce exploration by terminating behaviors according to common

sense, rather than according to an arbitrary internal clock or some ad hoc heuristic.

Decreasing Fortuitous Rewards

A fortuitous reward is one received for an inappropriate behavior that happened to

achieve the desired goal in the particular situation, but would not have that e�ect in

general. Consider the following scenario:

� The agent has a puck and is attempting various behaviors.

� While executing avoidance in safe�wandering, A fortuitously enters the

home region.

� Without a progress estimator, A will receive a reward for reaching home,

and will thus positively associate the avoiding behavior with the goal of

getting home. It will require repeated trials in order to discover, implicitly,

that the correlation is based on the direction it is moving rather than on

safe � wandering.

� Now suppose a progress estimatorH is added into the learning algorithm.

H generates a reward when the agent decreases its distance to home. If

it fails to do so in a given time interval, the behavior is terminated.

� Although A can still receive fortuitous rewards, their impact will be

smaller compared to that of the consistent progress estimator. The con-

tinuous reward for approaching home will have a discounting e�ect on any

128

fortuitous rewards the agent receives. Thus, H will bias the agent toward

behaviors that decrease the distance to home.

In general, the only way to eliminate fortuitous rewards is to know the relevance of

context a priori. Progress estimators achieve this e�ect incrementally, because behav-

iors have some measurable duration which allows progress estimators to contribute

reinforcement.

7.3 Summary

This chapter has introduced a formulation of reinforcement learning based on con-

ditions, behaviors, and shaped reinforcement in order to: 1) make learning possible

and 2) make learning e�cient in complex situated domains.

The described formulation is a direct extension of behavior{based control (Matari�c

1992a, Brooks 1991b, Brooks 1986). The presented heterogeneous reward functions

are related to subgoals (Mahadevan & Connell 1991a) as well as subtasks (White-

head et al. 1993). However, unlike previous work, which has focused on learning

action sequences, this work used a higher level of description. The proposed subgoals

are directly tied to behaviors used as the basis of control and learning. Similarly,

progress estimators are mapped to one or more behaviors, and expedite learning of

the associated goals, unlike a single complete external critic used with a monolithic

reinforcement function (Whitehead 1992).

Elevating the description, control, and learning level of the system to one based on

perceptual conditions and behaviors instead of perceptual states and atomic actions

greatly diminishes the agent's learning space and makes learning tractable. The use of

heterogeneous reward functions and progress estimators builds in domain knowledge

and contextual information thus making learning more e�cient.

The proposed reformulation forms a better foundation for situated learning, but

does not impose any constraints on the kind of learning algorithm that can be ap-

plied. Indeed, it is completely general and compatible with any reinforcement learning

approaches.

The next chapter demonstrates how this formulation was applied to the task of

learning foraging in a situated, multi{robot domain.

129

Chapter 8

Learning Experiments

This chapter describes the learning experiments conducted to test the presented ap-

proach to setting up the learning space to enable learning, and shaping reinforcement

to accelerate learning in situated domains.

8.1 The Robots

The learning experiments were performed on a group of up to four fully autonomous

R2 mobile robots with on{board power and sensing (Figure 8-1). Each robot consists

of a di�erentially steerable wheeled base and a gripper for grasping and lifting objects

(Figure 8-2). The robots' sensory capabilities include piezo{electric bump sensors for

detecting contact{collisions and monitoring the grasping force on the gripper, and a

set of infra{red (IR) sensors for obstacle avoidance and grasping (Figure 8-3).

Finally, the robots are equipped with radio transceivers, used for determining ab-

solute position and for inter{robot communication. Position information is obtained

by triangulating the distance computed from synchronized ultrasound pulses from two

�xed beacons. Inter{robot communication consists of broadcasting 6{byte messages

at the rate of 1 Hz. In the experiments described here, the radios are used to deter-

mine the presence of other nearby robots. As in the �rst set of robot experiments,

the robots are programmed in the Behavior Language (Brooks 1990a).

8.2 The Learning Task

The learning task consists of �nding a mapping of all conditions and behaviors into

the most e�ective policy for group foraging. Individually, each robot learns to select

130

desirable, and we hope to address it in future work.

8.7 Summary

The goal of the described learning work has been to bring to light some of the im-

portant properties of situated domains, and their impact on reinforcement learning

strategies. We have described why MDP models of agent{world interactions are not

e�ective in the noisy multi{agent domain, how the traditional notions of state and

action present an inappropriately low level of system description for control and learn-

ing, and how delayed reinforcement is not su�cient for learning in our domain and

other domains of similar level of complexity.

We introduced a higher{level description of the learning system, based on condi-

tions and behaviors, that greatly diminishes the learner's state space and results in

more robust control. We also introduced a methodology for shaping reinforcement in

order to take advantage of more information available to the agent. In our domain

shaping was necessary given the complexity of the environment{agent and agent{

agent interactions. The approach consists of two methods: one that partitions the

learning task into natural subgoals (behaviors) and reinforces each separately, and

one that employs progress estimators to generate more immediate feedback for the

agent.

The proposed formulation was evaluated on a group of physical robots learning to

forage and was shown to be e�ective as well as superior to two alternatives. The ap-

proach is general and compatible with the existing reinforcement learning algorithms,

and should thus serve to make learning more e�cient in a variety of situated domains

and with a variety of methodologies.

150

Chapter 9

Summary

The aim of this thesis has been to gain insight into intelligent behavior by increas-

ing the level of complexity of the systems being designed and studied. In contrast

to many AI systems that have focused either on complex cognition situated in sim-

ple worlds, or vice versa, the work described here has addressed situated, embodied

agents coexisting and interacting in a complex domain (Figure 9-1). We hope that

the methodologies and results presented here have extended the understanding of

synthesis, analysis, and learning of group behavior.

Selection of the appropriate representation level for control, planning, and learning

is one of the motivating forces behind this work. We have proposed a methodology

for using constraints in order to derive behaviors, control laws that guarantee the

achievement and maintenance of goals. Furthermore, we described a methodology for

selecting basic behaviors, a basis set of such behaviors to be used as a substrate for

control and learning for a given agent and environment.

We demonstrated these ideas on the problem of synthesizing coherent group be-

havior in the domain of planar spatial interactions. We devised a basic behavior set

and showed that it meets the de�ning criteria, including no mutual reducibility and

simple combination. We then showed how basic behaviors and their conditions can

be used as a substrate for learning. Furthermore, we described a methodology for

shaping reinforcement by using heterogeneous reinforcement functions and progress

estimators in order to make learning possible and more e�cient in dynamic multi{

agent domains.

The main idea behind this work is the approach to combining constraints from

the agent, such as its mechanical and sensory characteristics, and the constraints for

the environment, such as the types of interactions and sensory information the agent

can obtain, in order to construct constraint{based primitives for control. At the

151

Figure 9-1: A family photo of the physical experimental agents used to demonstrate
and verify the group behavior and learning work described in this thesis.

sensory end we called these primitives conditions and at the action end we referred

to them as behaviors. In both cases they are a clustering of constraints that provide

an abstraction at a level that makes control and learning e�cient.

We have dealt with a complexmulti{agent domain and a complex learning problem

in order to fully confront the issues in selecting the right abstraction and representa-

tion level for situated agents. The complexity of our chosen environment, combined

with the requirement of acting in real time, enforced the necessity for using a repre-

sentation level that was not so low as to be computationally intractable or so high as

to remove the potential of novel behavior strategies to be designed or learned by the

agents.

This work is intended as a foundation in a continuing e�ort toward studying

increasingly more complex behavior, and through it, more complex intelligence. The

work on basic behaviors distills a general approach to control, planning, and learning.

The work also brings to light some theoretically and empirically challenging problems

and o�ers some e�ective solutions to situated learning. Future work should both

analytically tighten and experimentally broaden our understanding of all those issues.

The demonstrated results in group behavior and learning are meant as stepping stones

toward studying increasingly complex social agents capable of more complex learning,

152

ultimately leading toward better understanding of biological intelligence.

153

