
Reinforcement Learning

in the Multi-Robot Domain

Maja J Matari�c

Volen Center for Complex Systems

Computer Science Department

Brandeis University

Waltham, MA 02254

tel: (617) 736-2708 fax: (617) 736-2741

maja@cs.brandeis.edu

Abstract

This paper describes a formulation of reinforcement learning that

enables learning in noisy, dynamic environemnts such as in the com-

plex concurrent multi-robot learning domain. The methodology in-

volves minimizing the learning space through the use behaviors and

conditions, and dealing with the credit assignment problem through

shaped reinforcement in the form of heterogeneous reinforcement func-

tions and progress estimators. We experimentally validate the ap-

proach on a group of four mobile robots learning a foraging task.

1 Introduction

Developing e�ective methods for real-time learning has been an on-going

challenge in autonomous agent research and is being explored in the mobile

robot domain. In the last decade, reinforcement learning (RL), a class of

approaches in which the agent learns based on reward and punishment it

receives from the environment, has become the methodology of choice for

learning in a variety of domains, including robotics.

1



In this paper we describe a formulation of reinforcement learning that

minimizes the state space through the use of behaviors and their associated

conditions, and shapes reinforcement with heterogeneous reinforcement func-

tions and progress estimators that take advantage of implicit domain knowl-

edge in order to both enable and accelerate learning. Our approach was

validated on a group of four mobile robots given the task of automatically

synthesizing an e�ective strategy for collective foraging, i.e., �nding pucks

and delivering them to a speci�ed area. The main challenges of the validation

domain included sensing and acting uncertainty, inconsistent reinforcement,

the lack of a world model, and the need to deal with concurrent goals.

This paper is organized as follows. Section 2 introduces the challenges

for learning in multi-robot domains. Section 3 describes our formulation of

the learning problem in response to those challenges. Section 4 describes the

experimental environment. Section 5 describes the learning task, Section 6

the learning and control algorithms, and Section 7 gives the experimental

results and their evaluation. Section 8 overviews related work and Section 9

concludes the paper.

2 Challenges

This work is inspired by the challenges of learning in noisy, dynamic envi-

ronments, like the ones mobile robots exist in. We are particularly interested

in the complex case of concurrent multi-robot learning and will use it in this

paper as an instance of the broader learning problem and the experimental

domain of choice.

We classify the many challenges of learning in dynamic environments into

two main categories: 1) managing complexity in the size of the state space

and 2) dealing with structuring and assigning reinforcement. In this section

we discuss each in general, and in the next we describe our speci�c approaches

to both.

2.1 State and Action Representation

The world of a mobile robot is partially observable through its noisy sensors

which provide the input state consisting of a combination of discrete and

continuous sensory inputs, ranging from infra red sensors, to (x,y) positions,

2



to wheel velocities. While mobile robots are largely considered to be sensory-

impoverished for the purposes of control, their input state is typically very

large for the purposes of learning. The problem is made worse in the multi-

robot case where the state also includes information about other robots in

the environment. Consequently, some form of input generalization or state

clustering becomes necessary for most non-trivially sized learning problems.

Various statistical approaches to input state clustering have been explored,

and connectionist methods for state generalization have been successfully

used, and a small subset of the work was applied to mobile robots (Mahade-

van & Connell 1990, Asada, Uchibe, Noda, Tawaratsumida & Hosoda 1994).

In this paper we describe a method for state clustering through the use of

behaviors and conditions.

Regardless of the state representation used, reinforcement learning algo-

rithms rely on their dynamic programming roots for clean theoretical con-

vergence properties (Watkins & Dayan 1992, Barto, Bradtke & Singh 1993)

which in turn require large numbers of learning trials that are prohibitive in

physical robot domains. Model-based approaches (Atkeson, Aboaf, McIntyre

& Reinkensmeyer 1988, Atkeson 1989, Moore 1992, Schaal & Atkeson 1994)

have been e�ective at cutting down the number of learning trials, but in

discrete mobile robot domains such models may be very di�cult to obtain.

From the perspective of a learning mobile robot, in particular one situated

in a dynamic environment, state transitions are largely externally induced

and asynchronous, and their causes cannot always be sensed, and the results

of actions are often inconsistent. Consequently, building a predictive model

of such a world and deriving realistic state transition probabilities can be

very slow, given that it must be obtained empirically, whether it is done by

the robot through a learning process, or statistically by the designer. As

a result, for certain problems in such domains, it is much more e�cient to

learn a policy for some �xed set of goals of the robot(s). In this paper we

discuss and demonstrate an example of just such a policy-learning model-free

system.

2.2 Reinforcement

A typical mobile robot environment does not provide a direct source of im-

mediate reinforcement so the problem of assigning appropriate delayed credit

and blame is endemic. The situation is worse in multi-robot systems since

3



a given event that induces reinforcement may be due to any of a robot's

past actions which could have been either i) attempts to reach the goal or ii)

reactions to the presence and/or behavior of another robot. Consequently,

the interaction between the robot and its complex environment produces a

confounding credit assignment problem. In this paper we discuss how this

problem can be addressed through the use of shaped reinforcement in the

form of heterogeneous reward functions and progress estimators.

Reinforcement learning tasks are typically implemented using a mono-

lithic reinforcement function that enables the learner to eventually acquire

the optimal policy. Constructing such a reinforcement function can be a com-

plicated task in the mobile robot domain, since the environment may provide

some immediate rewards, some intermittent reinforcement, and a handful or

fewer of very delayed signals associated with reaching one or more high-level

goals. In this paper we discuss how such heterogeneous multi-modal reinfor-

cement can be combined and utilized to accelerate the learning process.

3 Formulating the Learning Problem

As discussed above, two main challenges arise when applying RL to a multi-

robot domain: 1) a prohibitively large state space, and 2) credit assignment.

This section describes how we addressed each one.

3.1 Behaviors and Conditions

Our work can be classi�ed as behavior-based since it involves the use of be-

haviors as the basic representation level for control and learning. Behaviors

are goal-driven control laws that achieve and/or maintain particular goals

(Matari�c 1994a). Behaviors with achievement goals, such as homing, termi-

nate when the goal is reached, while behaviors with maintenance goals, such

as wall-following, continue execution as long as their conditions are satis�ed.

Both kinds of behaviors can be externally terminated. They are designed

(or learned) so as to provide the desired outputs while abstracting away the

low level details of control. Well-designed behaviors utilize the dynamics of

the system and its interaction with the world in order to achieve robust and

repeatable performance (Matari�c 1994a).

Behaviors are triggered by conditions, predicates on sensor readings that

4



map into a proper subset of the state space. Each condition is de�ned as the

part of the state that is necessary and su�cient for activating a particular

behavior. For instance, the necessary and su�cient conditions for picking

up a puck are that a puck is in the robot's gripper. The truth value of a

condition determines when a behavior can be executed and when it should be

terminated, thus providing a set of events for a learner's control algorithm.

In general, conditions for execution of any behavior are given by the formal

speci�cation of that behavior (Matari�c 1994a). Thus, if a �xed behavior set

is used by a learning robot, its condition set can be computed o�-line. This

set is typically much smaller than the robot's complete state space.

Behaviors abstract away the details of the low-level controllers driving the

robot, while conditions abstract away the details of the agent's state space.

Combined, the two de�ne the learning space at a higher level of description.

3.2 Shaped Reinforcement

Reformulating states and actions into conditions and behaviors e�ectively

reduces the learning space. This is of particular importance for making

learning possible in the complex multi-robot domain. The next step is to

make learning e�cient, by using appropriate reinforcement.

Simplifying and minimizing reinforcement, as practiced by some early

RL algorithms (Sutton 1988), diminishes programmer bias, but also greatly

handicaps and in some domains completely debilitates the learner. We pro-

pose shaped reinforcement as a means of taking advantage of as much in-

formation as is available to the robot at any point. Shaping is based on

principled embedding of domain knowledge in order to convert intermittent

feedback into a more continuous error signal using two types of reinforcement:

heterogeneous reward functions and progress estimators.

Heterogeneous reward functions combine multi-modal feedback from the

available external (i.e., sensory) and internal (i.e., state) modalities. The

combination is a weighted sum of inputs from the individual event-driven

functions. The more subgoals the system recognizes, the more frequently

reinforcement can be applied, and the faster the learner can converge. In our

representation of the system, each behavior provides a goal whose achieve-

ment can be detected as an event, and can also be directly translated into

a reinforcement signal. The inputs from these signals contribute to the het-

erogeneous reward function.

5



These reward functions, much like most typically used in reinforcement

learning, deliver reinforcement in response to events, i.e. between behaviors.

In contrast, progress estimators are evaluation metrics relative to a current

goal that the robot can estimate during the execution of a behavior. Progress

estimators diminish brittleness of the learning algorithm in the following

three ways:

� They decrease sensitivity to noise by strengthening appropriate condition-

behavior correlations. Noise-induced events are not consistently supported

by progress estimator credit, and thus have less impact on the learner. The

domain knowledge behind progress estimators provides a continuous source

of reinforcement to counter intermittent and potentially incorrectly assigned

credit.

� They encourage exploration by using lack of progress to terminate be-

haviors principally. A robot may have no impetus for terminating a behavior

and attempting alternatives, since any behavior may eventually produce a

reward, and can last arbitrarily long until some event terminates it. Progress

estimators provide a non-arbitrary method for behavior termination.

� They decrease fortuitous rewards that may be received for an inappro-

priate behavior that happened to achieve the desired goal in the particular

situation, but would not have that e�ect in general. Progress estimators

achieve this e�ect incrementally, because behaviors have some measurable

duration that allows the estimators to contribute reinforcement, and thus

give less credit to intermittent and fortuitous success.

The learning algorithm, described in section 6, combines the credit from

both sources, i.e., from heterogeneous reward functions and from progress

estimators.

4 The Experimental Environment

The learning experiments were performed on a group of four fully autonomous

IS Robotics R2 mobile robots with on-board power and sensing. Each robot

has a di�erentially steerable wheeled base and a gripper for grasping and

lifting objects. The robots' sensory capabilities include piezo-electric bump

sensors for detecting contact-collisions and monitoring the grasping force on

the gripper, and a set of infra-red (IR) sensors for obstacle avoidance and

grasping (Figure 1).

6



IR IR

bump

bump

bump
bump

bump

bump

bump

p
re

ss
u

re

radio

Figure 1: The robot's sensory capabilities include piezo-electric bump and

gripper sensors used to detect collisions and to grasp pucks, infra-red sensors

for collision avoidance, and a radio transmitter for absolute positioning and

message passing.

The robots are also equipped with radio transceivers, used for determining

absolute position and for inter-robot communication. Position information

is obtained by triangulating the distance computed from synchronized ultra-

sound pulses from two �xed beacons. Inter-robot communication consists of

broadcasting 6-byte messages at the rate of 1 Hz. In the experiments de-

scribed here, the radios are used to determine the presence of other nearby

robots. The robots are programmed in the Behavior Language (Brooks 1990)

and tested in the workspace shown in Figure 2.

5 The Learning Task

The learning task consists of �nding a mapping from conditions to behaviors

into the most e�ective policy for group foraging. Individually, each robot

learns to select the behavior with the highest value for each condition, in or-

der to �nd and take home the most pucks. Foraging was chosen because it is

a complex and biologically inspired task, because it serves as a canonical ab-

straction of a variety of real-world applications (such as demining and toxic

waste clean up), and because our previous group behavior work (Matari�c

1992b, Matari�c 1993) provided the basic behavior repertoire from which to

learn behavior selection. That repertoire, given to the robots a priori, con-

sisted of the following �xed behavior set:

7



Figure 2: A typical environment state during the course of a learning exper-

iment. The home region is in the upper right corner of the workspace.

� safe-wandering - keeps the robot moving about without colliding with

any objects, including other robots.

� dispersion - achieves and maintains a minimum distance between all

robots within sensing range of each other.

� resting - intended as a part of a regular recharging cycle, keeps the

robot parked at home for a �xed period of time (Figure 3).

� homing - takes the robot to a particular location.

The robots were given the task of learning the appropriate conditions

for triggering each of the above behaviors. By considering only the space

of conditions necessary and su�cient for triggering the behavior set, the

state space is reduced to the power set of the following clustered condition

predicates:

� have-puck? - based on the state of the gripper sensors.

� at-home? - based on the robot's (x; y) position.

� near-intruder? - based on the distance between the robot and its near-

est neighbor.

� night-time? - based on the state of an internal clock that imposes a

cyclic schedule of \day-time" and shorter \night-time" periods.

8



Utility behaviors for grasping and dropping were also included in the

robots' capabilities, but their conditions were built-in, so they do not con-

stitute a part of the learning space. As soon as a robot detects a puck in

the gripper, it grasps it. Similarly, as soon as a robot reaches the home

region, it drops the puck if it is carrying one. Finally, whenever a robot

is too near an obstacle, it avoids. The rationale for building in those par-

ticular behaviors and learning the rest was based on the fact that they are

easily programmed and can be potentially damaging to the robot to learn.

Building-in the above behaviors does simplify our learning task; however, we

will demonstrate that learning the remaining behaviors in this robot domain

is su�ciently challenging to illustrate our approach.

As described, the foraging task may appear quite simple, since its learning

space has been appropriately minimized. In theory, an agent should be able

to quickly search it and learn the optimal policy. In practice, however, such

quick and uniform exploration is not possible. Even this relatively small

learning space presents a challenge for reinforcement learning in this highly

dynamic, uncertain environment.

6 The Learning Algorithm

The algorithm learns a value function that maps conditions c to behaviors

b. This function is used by the behavior selection algorithm to choose the

most \appropriate" behavior for each condition the robot �nds itself in. The

learning system is table-based and maintains a matrix A(c; b) whose entries

re
ect a normalized sum of the reinforcement R received for each condition-

behavior pair over time t:

A(c; b) =
TX
t=1

R(c; t)

The values in the matrix 
uctuate over time based on received reinfor-

cement. They are collected during the execution of a behavior and updated

and normalized when behaviors are switched.

The following events produce immediate positive reinforcement:

� Ep: grasped-puck

� Egd: dropped-puck-at-home

9



� Egw: woke-up-at-home1

The following events result in immediate negative reinforcement:

� Ebd: dropped-puck-away-from-home

� Ebw: woke-up-away-from-home

The events are combined into the following heterogeneous reinforcement

function:

RE(c) =

8>>>>>>>><
>>>>>>>>:

p if Ep

gd if Egd

bd if Ebd

gw if Egw

bw if Ebw

0 otherwise

p; gd; gw > 0; bd; bw < 0

Two progress estimating functions are used: I and H. I is associated

with minimizing interference and is triggered whenever a robot is close to

another. If the behavior being executed has the e�ect of increasing the

physical distance to the neighbor, the robot receives positive reinforcement.

Conversely, lack of progress away from the neighbor is punished, and after a

�xed time period of no progress, the current behavior is terminated.

Formally, I is the intruder avoidance progress function such that:

RI(c; t) =

(
i distance to intruder increased

d otherwise

near intruder 2 c; i > 0; d < 0

The other progress estimator, H, is associated with homing, and is initi-

ated whenever a puck is grasped. If the distance to home is decreased while

H is active, the robot receives positive reinforcement, status quo delivers no

reinforcement, and movement away from home is punished.

1\Waking-up" refers to the event of the internal clock indicating the end of night-time

and the beginning of day-time.

10



Formally, H is the homing progress function such that:

RH(c; t) =

8><
>:

n nearer to home

f farther from home

0 otherwise

have puck 2 c; n > 0; f < 0

The simplest learning algorithm that uses the above reinforcement func-

tions was implemented and tested. The algorithm simply sums the reinforce-

ment over time. The in
uence of the di�erent types of feedback was weighted

by the values of the feedback constants. This is equivalent to weighting their

contributions to the sum, as follows:

R(c; t) = uRE(c; t) + vRI(c; t) + wRH(c; t)

u; v; w � 0; (u+ v + w) = 1

Binary-valued and several real-valued RE, RH , and RI functions were

tested. Our results showed that an even distribution of the weights was the

most stable but that relatively small di�erences and variations did not result

in faster or more stable learning. This is likely the case because the subgoals

in the foraging task are independent and thus their learning speed should

not be correlated. Large relative di�erences in the weights may have had a

more signi�cant e�ect. We also experimented with scaling the reinforcement

values in the individual functions, but since all of the values in the A(c; b)

matrix were renormalized between behaviors, small changes had no noticeable

e�ects.

6.1 The Control Algorithm

The following is the complete control algorithm used for learning foraging.

Behavior selection is induced by events, each of which is a change in the

condition predicates. Events are triggered:

1. externally: e.g., a robot gets in the way of another. External events

include: Ep, Egd, and Ebd.

2. internally: e.g., the internal clock indicates night-time. Internal events

include: Egw and Ebw.

11



Figure 3: An example of the resting/recharging behavior, triggered by their

internal clocks. In this case, the robots have all learned to go home to rest.

The �gure shows a late stage in the learning, as demonstrated by the small

number of remaining pucks.

3. by progress estimators: e.g., the interference estimator detects a

lack of progress and terminates the current behavior. Estimator events

are triggered by: RI(c; t) < intruder threshold and

RH(c; t) < homing threshold.

Whenever an event is detected, the following control sequence is executed:

1. the current condition-behavior pair is reinforced

2. the current behavior is terminated

3. another behavior is selected, according to the following rule:

(a) choose an untried behavior if one is available,

(b) otherwise choose the \best" behavior.

Choosing untried behaviors �rst encourages exploration. The \best" be-

havior b for a given condition c is de�ned to be the one with the highest

associated value, MaxA(c; b). We did not �nd any need to add random-

ness to the selection mechanism, most likely for the following reasons. First,

the intrinsic noisiness of the environment and the robots' sensors and e�ec-

tors provide enough nondeterministic behavior selection without our explicit

control. Second, progress estimators serve to further induce exploration.

12



Condition Behavior

near-intruder? have-puck? at-home? night-time?

0 0 0 0 safe-wandering

0 0 0 1 homing

0 0 1 0 safe-wandering

0 0 1 1 resting

0 1 0 0 homing

0 1 0 1 homing

0 1 1 0 safe-wandering

0 1 1 1 resting

1 0 0 0 safe-wandering

1 0 0 1 safe-wandering

1 0 1 0 dispersion

1 0 1 1 resting

1 1 0 0 homing

1 1 0 1 homing

1 1 1 0 safe-wandering

1 1 1 1 resting

Table 1: A part of the desired foraging policy. Only the top-ranked behavior

is shown for each condition. The full table contains a total ordering for each

condition, resulting in 64 entries.

13



Figure 4: A typical environment state after learning. Most pucks have been

collected and brought to the home region. The robots have all learned when

to go get the pucks, and are thus competing for those remaining to be moved.

Learning is continuous and incremental over the lifetime of the robot. Fig-

ure 4 shows the environment toward the end of the experiment, when most of

the pucks have been collected. The learning process consists of adjusting the

values in a table accessible to all basic behaviors and reinforcement functions

concurrently. The table consists of 64 entries: 24 conditions � 4 behaviors.

The table is initialized to the average of the minimumand maximumpossible

A(c; b) values. The desired policy, shown in Table 1, was derived by hand,

based on empirical data from the hard-coded foraging experiments in which

it was independently tested and compared to alternative solutions (Matari�c

1994a).

7 Experimental Results and Evaluation

The e�ectiveness of the proposed reinforcement functions was evaluated by

testing three di�erent types of reinforcement. The following three approaches

were compared:

1. A monolithic single-goal (puck delivery to the home region) reward

function R(c; t) = REgd
(c; t), using the Q-learning algorithm.

14



2. A heterogeneous reward function using multiple goals: R(t) = RE(t),

using the reinforcement summation algorithm A(c; b) =
PT

t=1R(c; t).

3. A heterogeneous reward function using multiple goals R(t) = RE(t)

and two progress estimator functions RH(c; t) and RI(c; t),

using the reinforcement summation algorithm A(c; b) =
PT

t=1R(c; t).

Data from sixty trials, twenty of each of the three strategies, were collected

and averaged. The experiments were run with groups of four robots, and no

signi�cant robot-speci�c di�erences were found. Data from runs in which

persistent sensor failures occurred were discarded. The data were based on

values of A(c; b), which were collected twice per minute during each learning

experiment, and once at the completion of the experiment. All experiments

lasted 15 minutes. The 15 minute threshold was empirically derived, since the

majority of the learning trials reached a steady state after about 10 minutes,

except for a small number of rare conditions, discussed below.

Evaluating robot performance is notoriously di�cult at least in part be-

cause standard metrics for evaluating learning mechanisms, such as absolute

time to convergence, do not directly apply. The amount of time required

for a robot to discover the correct policy depends on the frequency of ex-

ternal events that trigger di�erent states in its learning space. Additionally,

noise and error can make certain parts of the policy 
uctuate so waiting for

a speci�c point of absolute convergence is not feasible. Instead, we de�ne

convergence as a particular desired policy.

The performance of the three approaches is compared in Figure 5. As

described above, Q-learning was tested on the reduced learning space using

the enumerated conditions and behaviors and positive reinforcement when a

puck is delivered in the home region. This single goal provides insu�cient

feedback for learning all aspects of foraging, in particular those that rely

on accurate delayed credit assignment. The performance of Q-learning was

vulnerable to interference from other robots, and declined most rapidly of

the three approaches when tested on an increased group size. It is important

to note that Q-learning is unable to take advantage of reward discounting in

this domain because there is no particularly useful ordering to the sequence

of behaviors an agent executes at any time, since the agent's behavior is

dependent on the behavior of the others that interact with it during that

time.

15



0

10

20

30

40

50

60

70

80

90

100

R(t) = P(t) R(t) = E(t) R(t) = I(t) + H(t) + E(t)

 

Figure 5: The performance of the three reinforcement strategies on learning

to forage. The x-axis shows the three reinforcement strategies. The y-axis

maps the percent of the correct policy the robots learned in 15 minutes, aver-

aged over twenty trials. The error bars show the best and worst performance,

and the histograms plot the average value.

16



The use of heterogeneous reward functions results in better performance

but also su�ers from the credit assignment problem. The non-deterministic

environment, induced by the behaviors of the other agents, does not provide

consistent rewards over time. Furthermore, this strategy does not prevent

thrashing, so certain behaviors are active for an unnecessarily long time.

For example, safe-wandering and grasping are pursued persistently, at the

expense of behaviors with delayed reinforcement, such as homing. With

around 60% of the correct policy learned on the average, it demonstrates

that additional structure is necessary to aid the learner in acquiring the rest.

The addition of progress estimators maximizes the use of potentially avail-

able information for every condition-behavior pair. As predicted, thrashing

is eliminated both in the case of learning the conditions for dispersion and

homing because the progress estimator functions encourage exploration. Fur-

thermore, the impact of fortuitous rewards is minimized. The implicit do-

main knowledge is e�ectively spread over the reinforcement in order to guide

the learning process continually, thus maximizing the utility of each of the

learning trials and consequently speeding up the learning.

Each robot's estimate of its position and the proximity of others was

frequently inaccurate due to radio transmission delays. These errors re-

sulted in faulty homing and interference progress estimates. Nonetheless,

all condition-behavior pairs that involved carrying a puck converged quickly

and did not oscillate. Conversely, the set of conditions associated with �nd-

ing pucks uniformly took longer to learn, since they had no direct progress

measure. Furthermore, the learned values initially tended to oscillate, since

the di�erences between the behavior alternatives were not great, again due

to a lack of intermediate rewards. Empirical results showed that noise- and

error-induced inconsistencies in the progress estimators did not signi�cantly

diminish the bene�t of their use in this domain.

Rareness of occurrence of some combinations of conditions was a source

of di�culty. In particular, the condition consisting of the onset of night-time

while a robot is carrying a puck and avoiding another robot rarely occurred.

Consequently, the correct mapping was di�cult to learn since the robots

did not get a chance to explore all behavior alternatives. This accounts for

the incomplete policy even in the case of the most successful reinforcement

strategy.

We evaluated the three reinforcement alternatives on groups of three and

four robots and found that interference was a detriment in all cases. In

17



general, the more robots were learning at the same time, the longer it took for

each individual to converge. This was particularly pronounced for condition-

behavior pairs without directly associated progress estimators, such as those

involved in the conditions that did not involve carrying a puck.

In an ideal scenario, the presence of other agents would speed up rather

than slow down individual learning. However, such synergy requires an en-

vironment where individuals bene�t from each other's experience and inter-

act according to mutually bene�cial social rules. Learning such rules is a

challenging problem since they may not necessarily have immediate or even

delayed payo� to the individual. Our more recent work has successfully

demonstrated an extension of the described approaches to learning such so-

cial rules, including yielding, proceeding, and broadcasting (Matari�c 1994b).

8 Related Work

Very few demonstrations of group behavior on physical robots have been per-

formed to date. This section reviews the most relevant multi-robot learning

work as well as the related work on applying reinforcement learning to a

single robot.

Kaelbling (1990) used a simple mobile robot to validate several RL al-

gorithms using immediate and delayed reinforcement applied to learning ob-

stacle avoidance. Maes & Brooks (1990) applied a statistical reinforcement

learning technique using immediate reward and punishment in order to learn

behavior selection for walking on a six-legged robot. The approach was ap-

propriate given the appropriately reduced size of the learning space and the

available immediate and accurate reinforcement derived from a contact sen-

sor on the belly of the robot, and a wheel for estimating walking progress.

More delayed reinforcement was used by Mahadevan & Connell (1991a)

in a box-pushing task implemented on a mobile robot, in which subgoals

were introduced to provide more immediate reward. Mahadevan & Con-

nell (1991b) experimented with Q-learning using monolithic and partitioned

goal functions for learning box-pushing, and found subgoals necessary. Lin

(1991a) used reinforcement learning on a simulated robot by breaking the

navigation task into three behaviors in a similar fashion. Pomerleau (1992)

used a supervised connectionist learning approach to train steering control

in an autonomous vehicle based on generalizing visual snapshots of the road

18



ahead. Thrun & Mitchell (1993) demonstrated a connectionist approach to

learning visual features with a camera mounted on a mobile robot. The

features are not assigned by the designer but are instead selected by the

network's intermediate representations and thus well suited for the robot's

navigation task.

Mill�an (1994) implemented a connectionist RL scheme on a mobile robot

learning navigation in o�ce corridors based on dead-reckoning. The approach

utilizes several methods for improving the learning rate, including a coarse

codi�cation, or generalization, of the sensory inputs, a hard-wired set of

basic re
exes in situations of incorrect generalization, a modular network,

and constrained search of the action space. Parker (1994) implemented a

non-RL memory-based style of parameter-learning for adjusting activation

thresholds used to perform task allocation in a multi-robot system.

Asada et al. (1994) demonstrated coordination of behaviors learned using

vision-based reinforcement on a soccer-playing mobile robot shooting at a

goal. Tan (1993) explored reinforcement learning in a situated multi-agent

domain utilizing communication to share learned information. Lin (1991b)

studied reinforcement learning in a group of simulated agents.

The formulation we described is a direct extension of behavior-based con-

trol (Matari�c 1992a, Brooks 1991, Brooks 1986). The presented heteroge-

neous reward functions are related to subgoals (Mahadevan & Connell 1991a)

as well as subtasks (Whitehead, Karlsson & Tenenberg 1993).

9 Summary

This paper described an approach to formulating reinforcement learning for

applying it in noisy, dynamic domains. The concurrent multi-robot learning

domain was chosen as the validation environment for the task of learning

to forage in a group of four robots. Conditions and behaviors were used to

e�ectively diminish the otherwise prohibitively large learning space. Shaped

reinforcement in the form of heterogeneous reward functions and progress

estimators, both based on multi-modal sensory feedback, was used to prici-

pally provide richer and more continuous reinforcement. Experimental results

showed that, in the given test domain, both were crucial given the complexity

of the environment-robot and robot-robot interactions.

The described formulation is general and compatible with other reinfor-

19



cement learning algorithms, and should serve to make learning more e�cient

for a variety of robotic tasks.

References

Asada, M., Uchibe, E., Noda, S., Tawaratsumida, S. & Hosoda, K. (1994),

Coordination of Multiple Behaviors Acquired by A Avision-Based Rein-

forcement Learning, in `Proceedings, IEEE/RSJ/GI International Con-

ference on In telligent Robots and Systems', Munich, Germany.

Atkeson, C. G. (1989), Using Local Models to Control Movement, in `Pro-

ceedings, Neural Information Processing Systems Conference'.

Atkeson, C. G., Aboaf, E. W., McIntyre, J. & Reinkensmeyer, D. J. (1988),

Model-Based Robot Learning, Technical Report AIM-1024, MIT.

Barto, A. G., Bradtke, S. J. & Singh, S. P. (1993), `Learning to Act using

Real-Time Dynamic Programming', AI Journal.

Brooks, R. A. (1986), `A Robust Layered Control System for a Mobile Robot',

IEEE Journal of Robotics and Automation RA-2, 14{23.

Brooks, R. A. (1990), The Behavior Language; User's Guide, Technical Re-

port AIM-1227, MIT Arti�cial Intelligence Lab.

Brooks, R. A. (1991), Intelligence Without Reason, in `Proceedings, IJCAI-

91'.

Kaelbling, L. P. (1990), Learning in Embedded Systems, PhD thesis, Stan-

ford University.

Lin, L.-J. (1991a), Programming Robots Using Reinforcement Learning and

Teaching, in `Proceedings, AAAI-91', Pittsburgh, PA, pp. 781{786.

Lin, L.-J. (1991b), Self-improving Reactive Agents: Case Studies of Reinfor-

cement Learning Frameworks, in `From Animals to Animats: Interna-

tional Conference on Simulation of Adaptive Behavior', The MIT Press.

Maes, P. & Brooks, R. A. (1990), Learning to Coordinate Behaviors, in

`Proceedings, AAAI-91', Boston, MA, pp. 796{802.

20



Mahadevan, S. & Connell, J. (1990), Automatic Programming of Behavior-

based Robots using Reinforcement Learning, Technical report, IBM T.

J. Watson Research Center Research Report.

Mahadevan, S. & Connell, J. (1991a), Automatic Programming of Behavior-

based Robots using Reinforcement Learning, in `Proceedings, AAAI-91',

Pittsburgh, PA, pp. 8{14.

Mahadevan, S. & Connell, J. (1991b), Scaling Reinforcement Learning to

Robotics by Exploiting the Subsumption Architecture, in `Eighth Inter-

national Workshop on Machine Learning', Morgan Kaufmann, pp. 328{

337.

Matari�c, M. J. (1992a), Behavior-Based Systems: Key Properties and Impli-

cations, in `IEEE International Conference on Robotics and Automa-

tion, Workshop on Architectures for Intelligent Control Systems', Nice,

France, pp. 46{54.

Matari�c, M. J. (1992b), Designing Emergent Behaviors: From Local Interac-

tions to Collective Intelligence, in J.-A. Meyer, H. Roitblat & S. Wilson,

eds, `From Animals to Animats: International Conference on Simulation

of Adaptive Behavior'.

Matari�c, M. J. (1993), Kin Recognition, Similarity, and Group Behavior,

in `Proceedings of the Fifteenth Annual Conference of the Cognitive

Science Society', Boulder, Colorado, pp. 705{710.

Matari�c, M. J. (1994a), Interaction and Intelligent Behavior, Technical Re-

port AI-TR-1495, MIT Arti�cial Intelligence Lab.

Matari�c, M. J. (1994b), Learning to Behave Socially, in D. Cli�, P. Husbands,

J.-A. Meyer & S. Wilson, eds, `From Animals to Animats: International

Conference on Simulation of Adaptive Behavior', pp. 453{462.

Mill�an, J. D. R. (1994), Learning Reactive Sequences from Basic Re
exes,

in `Proceedings, Simulation of Adaptive Behavior SAB-94', The MIT

Press, Brighton, England, pp. 266{274.

21



Moore, A. W. (1992), `Fast, Robust Adaptive Control by Learning only For-

ward Models', Advances in Neural Information Processing 4 pp. 571{

579.

Parker, L. E. (1994), Heterogeneous Multi{Robot Cooperation, PhD thesis,

MIT.

Pomerleau, D. A. (1992), Neural Network Perception for Mobile Robotic

Guidance, PhD thesis, Carnegie Mellon University, School of Computer

Science.

Schaal, S. & Atkeson, C. C. (1994), `Robot Juggling: An Implementation of

Memory-Bassed Learning', Control Systems Magazine 14, 57{71.

Sutton, R. (1988), `Learning to Predict by Method of Temporal Di�erences',

Machine Learning 3(1), 9{44.

Tan, M. (1993), Multi-Agent Reinforcement Learning: Independent vs. Co-

operative Agents, in `Proceedings, Tenth International Conference on

Machine Learning', Amherst, MA, pp. 330{337.

Thrun, S. B. & Mitchell, T. M. (1993), Integrating Inductive Neural Network

Learning and Explanation{Based Learning, in `Proceedings, IJCAI-93',

Chambery, France.

Watkins, C. J. C. H. & Dayan, P. (1992), `Q-Learning', Machine Learning

8, 279{292.

Whitehead, S. D., Karlsson, J. & Tenenberg, J. (1993), Learning Multiple

Goal Behavior via Task Decomposition and Dynamic Policy Merging, in

J. H. Connell & S. Mahadevan, eds, `Robot Learning', Kluwer Academic

Publishers, pp. 45{78.

22


