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Robot Spatial Perception by Stereoscopic Vision
and 3D Evidence Grids

Abstract

Very encouraging results have been obtained from a new program that derives a dense three-dimensional
evidence grid representation of a robot’s surroundings from wide-angle stereoscopic images. The pro-
gram adds several spatial rays of evidence to a grid for each of about 2,500 local image features chosen
per stereo pair. It was used to construct a 256x256x64 grid, representing 6 by 6 by 2 meters, from a hand-
collected test set of twenty stereo image pairs of an office scene. Fifty nine stereo pairs of an 8 by 8 meter
laboratory were also processed. The positive (probably occupied) cells of the grids, viewed in perspec-
tive, resemble dollhouse scenes. Details as small as the curvature of chair armrests are discernible. The
processing time, on a 100 MIPS Sparc 20, is less than five seconds per stereo pair, and total memory is
under 16 megabytes. The results seem abundantly adequate for very reliable navigation of freely roaming
mobile robots, and plausibly adequate for shape identification of objects bigger than 10 centimeters. The
program is a first proof of concept, and awaits optimizations, enhancements, variations, extensions and
applications.

1 Introduction

This report describes a new program that transforms stereoscopic images, as could be obtained from
a camera-equipped roving robot, into dense three-dimensional maps of the robot’s immediate sur-
roundings. The program generates 100 to 1,000 times as much good map data as previous systems
relying on 2D or sparse 3D representations, suggesting that the statistical reliability of navigation
programs using on it should be very high. The program was tested with 20 stereo image pairs of an
office, and a second data set of 59 stereo pairs of a larger laboratory. The resulting 3D maps show ob-
ject details to a scale of about 10 cm. By using higher resolution grids, features of a few centimeters
can be resolved.

Before mapping, the stereo camera fixture is calibrated. The fixture is leveled, and positioned, with
reasonable accuracy, perpendicularly a known distance in front of a screen patterned with a precise
square array of about 400 black spots on a white background. A program, designed to deal with the
fish-eye distortion of wide angle lenses, finds the spots in the cameras’ digitized images, and con-
structs a rectification function for each camera that corrects for the distortion and small mounting mis-
alignments. In use, the rectification functions are compiled into image-sized lookup tables, which
geometrically transform raw camera images so they appear to have come from a specified ideal op-
tical geometry.

During mapping, a sequence of stereo image pairs is processed. The results accumulate in a three-
dimensional array called an evidence grid, whose cells represent regions of space. Each grid cell accu-
mulates evidence, positive and negative, that its region is occupied. The grid cells are initialized to
zero, indicating no evidence for or against the cell being occupied. After sufficient data has accumu-
lated, blocks of negative cells indicate free space, while positive cells define objects. The program’s
computationally efficient additive “weight of evidence” metric can be interpreted in probability the-

ory as Bayesian combination using a  “log-odds” representation of probability.p
1 p–
------------log
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Processing of each stereo pair begins with image rectification. An interest operator then selects about
2,500 local features in the two images, each chosen to be a good candidate for locating in the other
image of the pair. For each feature, a correlator scans the possible corresponding locations in the other
image, producing a curve of goodness of match. The peaks in this curve each correspond to a possible
distance for the feature. For each of the possibilities, the program throws two rays of evidence into
the grid, one from each camera position towards the inferred feature position. The rays have positive
evidence of occupancy at the feature, and negative evidence between the camera and feature posi-
tions, and are weighted for the estimated overall probability of correctness of each peak.

Our main example used a grid 256 cells wide by 256 cells deep by 64 cells high, scaled to represent a
volume 6 meters by 6 meters by 2 meters. The 40 images in the data set were obtained by moving the
tripod-mounted stereo fixture, tilted down about 15 degrees, by hand, to vertices on a 50 cm floor
grid, maintaining parallel camera orientations. The resulting evidence grid was displayed in multiple
2D X, Y and Z slices, with probabilities shown in gray scale. A more wholistic viewing method gen-
erated perspective 3D images of the positive cells of the grid, with cells in about a dozen box-shaped
regions, containing major objects, distinctively colored. The latter display clearly shows the shape of
furniture sized objects in the scene, with a level of detail reminiscent of doll-house pictures.

Results from a second, larger, dataset of 59 stereo pairs of an 8 by 8 meter laboratory are shown in the
appendix.

The existing program succeeds as a proof of concept, but awaits improvement in nearly every detail.
Some of the work will likely be accomplished by a learning procedure, that adjusts many program
parameters to maximize a quality criterion. A promising criterion is a comparison of some of the orig-
inal images of the scene with corresponding “virtual” images of the grid. The grid will first be col-
orized in original scene colors, by back-projecting other original images into the grid’s occupied cells.

2 Research Background

The results described here build on 25 years of work in mobile robot perception. From 1971 to 1983
the author and colleagues developed stereo-vision-guided robots that drove through clutter by track-
ing a few dozen features, presumed to be parts of objects, in camera images. Through several ver-
sions, the control program gained speed and accuracy, but a brittle failure mode persisted,
misdirecting the robot after approximately 100 meters of travel, when chance clusters of tracking er-
rors fooled geometric consistency checks [Moravec83].

We invented the so-called evidence grid approach in 1983, to handle data from inexpensive Polaroid
sonar devices, whose wide beams leave angular position ambiguous. Instead of determining the lo-
cation of objects, the grid method accumulated the “objectness” of locations, arranged in a grid, slow-
ly resolving ambiguities about which grid cells were empty or filled, as the robot moved. The first
implementation worked surprisingly well, showing none of the brittleness of the old approach. It
could repeatedly map and guide a robot across a cluttered test lab [Moravec-Elfes85]. It worked on a
tree-lined path, in a coal mine, with stereo vision range data, combined stereo and sonar, and with
probability theory replacing an ad-hoc formulation. Its first failure, in uncluttered surroundings with
smooth walls, led us to a major extension, the learning of sensor evidence models. The evidence con-
tributed by individual sonar readings had originally been hand-derived from the sensor’s signal pat-
tern, a poor model for interaction with mirrorlike walls. We are now able to train the program to work
nicely in mirror surroundings, and superbly elsewhere [Moravec-Blackwell93]. A summary of the
work to date is found in [Martin-Moravec96].

Past work was with 2D grids of a few thousand cells, all that 1980s computers could handle in near
real time. In 1992 we wrote a very efficient implementation of the central operation for three dimen-
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sions, that can throw thousands of evidence rays per second into 3D grids with several million cells,
on 100 MIPS computers. The work described in this report combines that program with several new
components into a complete robot stereoscopic 3D mapping package.

3 Camera Calibration and Image Rectification

The flatfish calibration program assumes its images come from solid state cameras with geometrical-
ly precise imaging surfaces, and good quality optics whose distortions are rotationally symmetric
about their optical axis. The program constructs rectification functions that transform slightly off-cen-
ter, rotated fish-eye images from imperfectly mounted wide-angle cameras into images exhibiting
specified simple projective geometry, suitable for direct use by stereoscopic vision programs. Though
designed for wide-angle optics, it also works with narrow angle lenses exhibiting little distortion.

For each camera, the program inputs an image of a calibration spot pattern, an aim point on the pat-
tern, the measured distance between the lens center and the pattern, and the desired angular field of
view of the rectified image. It produces a file of calibration parameters which contains the necessary
information to rectify images from the same camera to specifications. The program also contains code
which implements the rectification. A version of this rectification code is packaged in fisheye, a set
of image processing routines, where it is used to compile a lookup table for rapidly applying the rec-
tification. A side effect of running flatfish is a trace file and about ten black and white and color im-
ages showing its working stages.

The calibration pattern is a wall-mounted square array of dark spots on a light background (figure 1),
with one additional spot at a half-grid position at the center, serving as an absolute position reference.
We have used dark magnetic spots on a steel whiteboard, and also a 2 meter by 1.5 meter computer
printout. The program expects the pattern to be 15 to 35 spot spacings wide, and the spot spacing to
be about twice the spot diameter, with wide tolerances. The expectations are defined by program pa-
rameters.

The calibration spot input image is assumed to come from a moderately accurate physical setup, with
the camera line of sight as perpendicular as possible to the plane of the spot pattern arrayed in front
of it, and its pixel axes nearly parallel to the rows and columns of the spot array. The program uses
first-order corrections to remove the remaining angular errors in azimuth, elevation and roll, as well
as scaling and recentering the result to the desired field of view, after removing radial fish eye distor-
tion and non-unity aspect ratio. To calibrate a pair of stereo cameras, both cameras, held in their ste-
reoscopic mounting configuration, are aimed at the same calibration pattern, as in figure 1. The
flatfish program is run for each resulting image, with only the aim point on the calibration pattern
specified differently for the two calibrations. The aim point for each camera defines the rectified view
direction, and the separation of the two aim points on the pattern is specified equal to the physical
separation of the cameras.

Flatfish begins by applying a spot operator to its image. At each pixel position this operator weighs
hypotheses that there is a spot of a range of radii centered at the pixel. For each radius hypothesis,
the operator calculates the means and variances of the intensities of the spot interior and an annular
surrounding region. The score for the hypothesis is the outer minus the inner mean, minus fractions
of the variances. The variance fractions define the program’s tolerance for non-uniform lighting and
glare in the background and spot areas. The “spotness” value for the pixel is the maximum score for
all the radius hypotheses. That spotness value, and the corresponding radius, are recorded for each
pixel. The program applies the operator up to the edge of the image by giving zero weight to portions
of the spot mask that lie beyond the image boundaries. For a wide range of settings of the spot size
range and variance fractions, the operator is positive in small central areas of all spots in a calibration
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image, and negative elsewhere. It is usually negative everywhere when applied to general scenes not
containing properly sized spot patterns. It is a very trustworthy operator.

After calculating spotness at every pixel, the program catalogs local maximum spot values and the
corresponding spot radius, thus identifying each spot in the image. It finds the central spot in the pat-
tern by noting which is closest to four other spots, relative to their spot sizes. It links the remaining
spots into a grid, starting with a spot near the middle of the image, and using a rough idea of the spot
spacing based on spot size to repeatedly find horizontally and vertically adjacent neighbors. At each
step it uses the size and direction of the previous steps to adjust its rough idea of the local spot spacing
and orientation. By this means it tracks the significant scale and orientation distortions found in the
edges and corners of wide-angle images. The program assigns [row, column] coordinates to spots.
The central spot has coordinates [0,0], the spot to its lower right is [0.5, 0.5], the spot below that is [1.5,
0.5], and so on. Via interpolation, each pixel in the image is then identified both by these “spot coor-
dinates” as well as its original pixel coordinates.

The program locates the optical axis in the image by finding the image location OA (and incidentally
also the aspect ratio adjustment) that minimizes the scatter when the radial distance of each spot from

FIGURE  1 A stereo camera assembly being calibrated.
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OA, measured in pixel coordinates, is plotted against the same radial distance measured in spot co-
ordinates. The shape of the spot versus pixel radius curve characterizes the fish-eye distortion, and is
represented in the program by a least-squares best-fit polynomial. With a 90 degree field of view lens
(figure 3), we found that the pixel coordinates of the optimum OA remained stable within a few hun-
dredths of a pixel as the camera was moved to various positions in front of a calibration grid. The
root-mean-square deviation of the pixel versus spot radius scatter diagram, when OA was chosen
randomly near the center of the image was about 2.5 pixels. The rms error was reduced to less than
0.5 pixels at the optimum OA.

In another least-squares step, the program then finds and applies the image rotation (roll) that most
nearly makes the fish-eye corrected spot pattern line up with the pixel rows and columns. It also shifts
and scales the image to bring the requested aim point to the exact center, and to provide exactly the
requested field of view across the width of the image raster. The largest source of error is probably in
the user’s estimate of the distance between the lens center and the test pattern, which affects the true
angle of view. We use the lens iris ring position as an estimate for the lens center. The uncertainty
diminishes as the pattern and the camera distance are made larger, or the lens is made smaller.

The final result is encoded as parameters for an image rectification program. These parameters are
read in before stereoscopic processing, and expanded into rectification tables, which have, for each
pixel in the rectified image, the coordinates of the corresponding source pixel in the raw image. Dur-
ing a mapping run, each image  digitized by a particular camera is transformed into a rectified image
via the table corresponding to that camera.

Figures 2, 3, 4 and 5 on the following two pages show the results of applying flatfish to images from
60, 90, 30 and 120 degree field of view cameras, respectively. The A figures are the original images, B
show the regions where the spot operator is positive (small light splotches in the center of the black
spots, visible especially in the isolated center spot), and the coordinate grid resulting from linking the
spot operator maxima. The C and D graphs are plots of pixel coordinate radius versus spot coordi-
nate radius for all the spots, C for an arbitrarily chosen center marked by a small X on a spot near the
center in each B image, D from the position that minimized the scatter in the graph, marked by a large
X. The program assumes the scatter-minimizing center marks the true optical axis. The shape of the
curve defined by the scatter diagram is the radial distortion function. The E images are the original
spot image rectified by the function constructed by flatfish, and overlaid with a grid whose spacing
should match the spacing of the spots in the rectified image. Figure 5, derived from an image whose
field of view was 120 degrees, was rectified to only 100 degrees of view, to eliminate the vignetted
corner black areas.
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FIGURE  2 Calibrating 60 degree optics FIGURE  3 Calibrating 90 degree optics
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FIGURE  4 Calibrating 30 degree optics FIGURE  5 Calibrating 120 degree optics
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4 Stereoscopic Mapping Framework

The main image set used in this report was obtained with a pair of Sony XC-999 color cameras, with
6 mm lenses, mounted securely in parallel 15.6 cm apart on an aluminum bar. Twenty stereo pairs of
images were collected reasonably carefully by hand, 40 images in total, of one end of an office, in par-
allel directions from locations on an approximately 50 cm grid on the floor, with the cameras 1.25
meters high, angled 14 degrees down. The scene included portions of walls, two office chairs, two
large cabinets and an open door with furniture beyond. One of the cabinets was fully open, and con-
tained a long raincoat and several shelves with small objects. The pictures were originally digitized
in color, to a resolution of 768 by 576 pixels, then reduced to grayscale. The resulting images
scan.*.L.pgm and scan.*.R.pgm along with a description of their imaging geometry encoded in a file
run1.nav, and the two camera rectification files mentioned above sony60.L.cal and sony60.R.cal,
were processed by the stereo mapping program, currently named crayfish into a 256 by 256 by 64 cell
evidence grid representing a volume 6 meters by 6 meters by 2 meters high.

Crayfish is invoked with the name of a .nav file. Its overall flow is as follows:

    begin
    Read .nav file
    Read and expand .calib files (indicated in .nav file)
    Assign image storage
    Initialize 3D evidence grid and sensor models
    Loop on images indicated in .nav file
        {
        Read L and R image
        Apply Interest Operator to find distinctive areas in both images
        Loop on windows selected by Interest Operator
            {
            Correlate interest window with possible locations in other image
            Extract probability-weighted peak list from correlation curve
            Loop on correlation peak list
                {
                Calculate 3D location for this peak
                Throw two probability-weighted evidence rays
                }
             }
         }
    Write out 3D evidence grid
    end

A program wrapfish takes the 3D evidence grid made by crayfish and generates viewable images.
As of August 1996, it makes X, Y and Z “slice” images showing all grid planes parallel to the coordi-
nate planes, with very high occupancy probability cells shown in white, very low probabilities shown
in black, and intermediate probabilities in shades of gray. It also produces three-dimensional views
of the occupied cells of the grid, and a 3D Open Inventor file of the occupied cells that can be viewed
interactively on Silicon Graphics workstations. The visual quality of the 3D presentations is greatly
enhanced by a colorization step that spotlights about a dozen manually selected box-shaped regions
covering objects like the floor, walls, cabinets and chairs. In each of these boxes, a region-specific dis-
tinctive color is given to all the occupied cells, helping human observers of perspective views distin-
guish the contents from foreground and background.
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The flayfish program, derived from crayfish, includes additional code to optimize (learn) good pa-
rameters shaping the sensor model that defines the evidence rays. It repeats the crayfish outer loop
and its immediate initialization with different settings of sensor model parameters looking for com-
binations that maximize a map-quality measure.

Crayfish invokes the separately compiled procedures in files fisheye and volsense. Volsense con-
tains code for manipulating 3D evidence grids. Fisheye has procedures for expanding calibration
files into rectification tables, and for applying the rectifications to images. It also holds interest operator
and correlator procedures for stereoscopic processing. Following sections describe crayfish’s major
components.

5 Interest Operator

Stereoscopy in crayfish is done by matching small windows in both images of a stereo pair. The po-
sition of the matching window in either image defines a 3D ray from the camera, and the relative dis-
placement of the window from one picture to the other defines a 3D position along that ray. The
program interprets such matches as evidence for the existence of a visible feature in that 3D location.

Not all locations in an image are suitable for matching. Large areas of blue sky or white wall, for in-
stance, look identical, as do linear regions along simple edges, with no way to distinguish one partic-
ular small patch from a nearby one. An interest operator is applied to an image to select regions likely
to be unambiguously matched in its stereo partner. We invented the concept of the interest operator
in 1974, along with the idea of correlation through a coarse-to-fine image pyramid, and used them in
the first round of work leading to the present results [Moravec81]. Interest operators and image pyr-
amid correlation are now widely used in the initial registration steps of digital photogrammetry
[Hellwich&al94] [Stunz-Knopfle-Roth94]. Mobile robot stereoscopy is much sloppier than photo-
grammetric stereoscopy because robots, immersed in their scene, encounter visual occlusions, per-
spective scale and view angle distortions, oblique featureless and specular surfaces, enormous depth
ratios and other complications.

After a stereo pair of images is rectified, the program applies an interest operator to the left half of the
right camera’s image, and to the right half of the left camera’s image. Features chosen from those half-
images are most likely to be present in the other camera’s image, while together still covering the full
field of view. A quirk of the approach is that a narrow stripe the width of the camera separation, run-
ning to infinity, is seen in both half images, and thus examined doubly.

The interest operator is a variant of one used in our early research. It subdivides the image into a grid
of non-overlapping 8x8 windows, and on each computes the sum of squares of differences of pixels
adjacent in each of four directions: horizontal, vertical and right and left diagonals. The raw interest
measure for each window is the minimum of these four sums, representing the weakest directional
variation. If this weakest direction has some contrast, the feature is neither a uniform area nor a sim-
ple edge.

Our 1974 interest operator picked only the local maxima of the raw interest measure. The 1996 pro-
gram applies a high pass filter over the array of interest windows, subtracting the average interest
value of the eight surrounding neighbors from the value of each window. Windows are chosen for
ranging if they are positive after the high pass operation. The idea in both cases is to cover the image
as uniformly as possible, while picking the best possible features in each area. The 1974 program
found less than 50 features per stereo set, the 1996 program extracts about 2,500 (figure 6).
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The nominal displacement of matching features between the image pairs, from perfectly horizontally
mounted and aligned stereo cameras, is purely horizontal - the so-called epipolar constraint. If true,
it eliminates the need for vertical correlation search, and allows the use of any features with horizon-
tal variation, for instance simple vertical or diagonal edges. The flatfish calibration and rectification
process is intended to simulate perfect horizontal geometry, but we have possibly observed that lens
iris and focus adjustments can cause image shifts on the order of one pixel, spoiling perfect calibra-
tions. Mechanical shocks might have a similar effect. We are able to detect and correct tiny vertical
misalignments after calibration by occasionally permitting a small vertical extent in the horizontal
correlation searches, and noting the vertical offset of each best match. A histogram of these offsets
from the features from any of the 20 stereo pairs in the data set of this report has a peak at about 3/4
scanline offset. Shifting one image of each pair by one scanline approximately compensates for the
misalignment. After the shift, we treat the images as perfectly aligned.

Crayfish exploits the perfect alignment to get more features from the image and to minimize the cor-
relation search. Rather than the full interest operator described above, it uses a version that measures
only horizontal variation (figure 7). Unlike the full interest operator, the horizontal-only version
strongly registers simple vertical edges, which are very common in indoor scenes.

FIGURE  6 Full (omnidirectional) Interest Operator
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Figures 6 and 7 show interest operators applied to a stereo pair. Each image is the juxtaposition of the
left half of a right camera image, and the right half of a left camera image of a stereo pair, a configu-
ration which minimizes out-of-bounds problems in correlation searches. In each 8x8 window, an X
indicates a very strong interest measure, a dot indicates a positive but weak measure. Figure 6 shows
the full interest operator, which requires variation in all directions, used to determine fine vertical
alignments of images. Figure 7 shows the horizontal-only interest operator, used to interpret aligned
stereo images

6 Correlation

The correlator locates image patches in one image that correspond to interest operator choices in the
other image of a stereo pair. As with interest operators, there are two kinds of correlator in fisheye,
one which searches horizontal and vertical extents, and the other which searches only horizontally.
The former is used in occasional image fine alignment steps, the latter is used routinely to interpret
stereo scenes.

FIGURE  7 Horizontal-direction only Interest Operator
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 Omitting complications, described below, the correlator computes a match value between a patch in
one image and a corresponding patch around every pixel position in a search area in the other image
of a stereo pair. In the existing code, the patches are 7x7 pixel squares. Other sizes also work, and soon
we may try circular shapes. The comparison measure is the sum of squares of differences of corre-
sponding pixels, with the window means subtracted:

with a and b, implicitly subscripted 1 to n, representing the n pixels in two overlaid windows.

The horizontal-only correlator returns a “match curve” array of correlation values, one for each pixel
position in its search. Traditional stereo programs simply select the best match in such curves, but our
program processes multiple candidate matches. The full-area correlator searches a rectangle in an im-
age, but returns more information about the horizontal direction. For each horizontal position, it
searches the vertical range for the best match, and returns that value in the “match curve” array. A
parallel array gets the vertical offset that produced that best match.

The known camera separation, position and orientation for each set of rectified images determines
the bounds of the correlation search and the interpretation of the results. Each candidate match is in-
terpreted as a possible 3D surface feature at a particular heading and distance. The evidence ray
thrower, described in the next section, adds evidence to 3D grids along narrow cones from the camera
positions to the surface feature. With 20 image pairs and 2,500 correlation searches per pair, the
amount of evidence accumulated in our 4 million cell grid is substantial, allowing for quite sensitive
statistical evaluations of small changes in the program. A very simple such measure is the count of
the number of positive cells found in the floor plane of the grid, many produced by weak correlations
on the subtle smudges in our uniform gray carpet. About 11,000 floor cells are normally found, but
the number drops rapidly with very small deteriorations of the correlator quality. For instance, if the
correlation match measure is changed from the means-adjusted version:

to a simple sum of squares of differences:

the number of floor cells drops to about 4,000. Simply rounding the correlation window means from
16 to 8 bits reduces the floor count from 11,000 to 7,000.

The means adjustment is not uniformly beneficial. It costs computation in the inner loop, and it dis-
cards information about the absolute brightness of windows, sometimes finding a best match be-
tween a white patch with a black one. In an experiment with a wider than usual correlation search,
where only best matches were considered, for 20 high contrast windows drawn randomly from the
data set, the simple and adjusted measures both made six errors in twenty correlations, but only three
in common. In the cases where the simple measure was correct and the adjusted measure wrong, an
absolute brightness difference overrode a spurious similarity in variations. In cases where the adjust-
ed was right and the simple wrong, an overall difference in brightness between the pictures overrode
a match in subtle contrast. The simple measure fared worse with low contrast windows, making 12
errors in 20 against the adjusted’s 10 errors. Still, the simple measure was correct in one low contrast
case where the adjusted measure was in error.
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Optical and electronic adjustment differences, and automatic gain changes with changing views, en-
sure that the images from the two cameras will rarely match each other exactly in brightness. Sub-
tracting out the window means usually improves the correlation by removing such differences.
Sometimes it removes too much, and allows a very dark patch to match a very light one. We found a
solution to this problem that has the added benefit of speeding up the correlation. A comparison of
the means of the a and b windows in a correlation can be used as a preliminary discriminant: too dif-
ferent, and a match between the windows can be rejected without doing the expensive  cal-
culation. The means can be precomputed for the entire images very efficiently by a sliding sum
technique. A preliminary test of the idea showed that about half of the square sums could be elimi-
nated by this approach, while the number of errors in the high contrast example above dropped from
6 to 4 out of the 20.

FIGURE  8 Correlation of an unanbiguous feature.

Σ a b–( )2
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The program extracts multiple peaks from the remaining correlation curve, each representing a hy-
pothesis of distance to the feature, and translates the match value of each peak into a relative proba-
bility using the formula:

Cscale is an adjustable constant, which will probably be optimized by a future learning process that
will also adjust other program parameters. It is in units of grayscale steps, and values of 0.5 to 2.0
seem to give good results. Each  is divided by the sum of  over all the peaks, to give a
normalized probability. The normalized probabilities are used to weight evidence rays thrown for
each distance hypothesis. For the examples in this report, the program generated rays for a maximum

FIGURE  9 Correlation with ambiguous matches.
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of four hypotheses per correlation search. As Cscale is made much smaller than 1, the probabilities
for weaker correlations diminish relative to the strongest, eventually leaving only one peak per cor-
relation.

The above scheme was derived from the following reasoning. Good information about correlation
trustworthiness seems to be contained in the array of match values produced by a correlation search.
All but (at most) one of the match values are simply from samples of the source window compared
against unrelated patches of search image. A histogram of these values looks like a probability distri-
bution with an exponential tail tapering down towards perfect match. A distribution fitted to the his-
togram, then integrated over matches better than a given one, estimates the probability that the given
match is simply a chance coincidence. One minus that probability, is the probability that the match is

not random, i.e. correct. Our  function for weighting evidence rays approximates this latter
probability.

Figures 8 and 9 illustrate results from the horizontal-only correlator. The large pictures show the im-
ages being searched. In each, the small square inset, from the other image of the stereo pair, contains
the window being searched for: it is the tiny square at the center of the cross of bounding lines. Two
vertical lines running the height of the picture mark the horizontal bounds of the search. The narrow
horizontal band between these lines is the track of the search window. The graph at the top of the

image between the vertical lines is the match value  for each horizontal po-

sition, with zero, the best possible match, at the top of the image. Gaps in this curve are locations

where the match value was not calculated because the window means,  and , differed by more

than about 10% of the total brightness range. The bar graph at the right of the image is a histogram
of the match values in the curve. The graph at the bottom of the image shows the probability assigned
to peaks in the correlation curve by our exponential model. Above a threshold indicated by the
dashed line, each peak results in two rays of evidence, one from each camera position, weighted by
the probability. Figure 8 shows an unambiguous match where one correlation peak dominates. In
figure 9, the black edge of the chair finds close matches in at least four locations, even though half the
search area is eliminated because of overly disparate brightness.

7 Evidence Ray Throwing

The heart of crayfish is the evidence ray code. In 1990 we noted that efficient two-dimensional evi-
dence grid programs were able to insert hundreds of thirty degree sonar beams per second into 2D
grids sized 64 cells by 64 cells using 1 to 10 MIPS of computation, fast enough for real time use on
robots of the day. Three-dimensional grids promised a much richer world map, with not only an ex-
tra dimension, but higher resolution. Horizontal 2D maps conflate the surroundings at different
heights, failing to distinguish projecting handles or overhanging tabletops from basic surfaces, for in-
stance. For this reason, in typical environments, little is gained by choosing 2D grid resolutions better
than about 10 cm. The world is consistent in 3D, however, and could usefully be mapped at 1 cm res-
olution. A high resolution 3D grid, covering an area similar to our several-thousand-cell 2D grids,
would contain several million cells. With so many occupancy values to determine, the grid would
also be hungry for proportionally more sensor data. This reasoning suggested that 3D grids would
be a thousand times as computationally demanding as their 2D counterparts. The author started a
1992 sabbatical year at supercomputer manufacturer Thinking Machines Corporation with this ex-

e match–

a b–( )2∑ Σa Σb–( )2

n
---------------------------–

n
-----------------------------------------------------------

Σa
n

------ Σb
n

------



16  Robot Spatial Perception by Stereoscopic Vision and 3D Evidence Grids

pectation, intending to gain some early experience with 3D grids using a CM-5 supercomputer. A se-
ries of innovations and approximations, implemented with efficient representations and coding in an
intense seven-month programming effort, resulted instead in a program volsense that was about a
hundred times faster than anticipated, sufficiently fast for a conventional computer. This speed made
crayfish possible in 1996.

The focal point of volsense is a procedure to add precomputed evidence functions representing sin-
gle sensor readings, collectively called a sensor model, to 3D map grids. Each element of a sensor mod-
el is a spatial evidence pattern representing the occupancy information implied by a possible reading,
for instance a particular range from a sonar ping or stereoscopic triangulation. The evidence accumu-
lation operation is a simple integer addition, representing a Bayesian update, with quantities inter-

preted as probabilities in log-odds form, i.e. .

In original conception, the sensor models for 3D grids would themselves be smaller 3D grids, which
would be positioned and rotated relative to the map grid, corresponding to the position and orienta-
tion of the physical sensor. A first innovation noted that almost every sensor we considered, includ-
ing sonar, stereo, laser rangefinders and various proximity and touch sensors, could be
approximately represented by evidence patterns symmetric about a view axis. The symmetry allows
sensor models to be simple 2D grids, with one dimension radius r from the axis of view, the other
distance d along it. In use, the rd planes are swept about the axis into cylinders as they are added to
the map grid. A 3D grid map can be seen as a series of xy planes layered in the z direction. An rd cyl-
inder intersects successive xy planes in a series of ellipses. The effective z direction can be chosen
from among the three grid axes to minimize the eccentricity of these ellipses.

If the xy coordinates of each plane are shifted to put its origin at the center of its ellipse, the mapping
between xy and rd coordinates on successive planes becomes very regular. Each particular xy has
identical r on successive planes, and its d simply increases by a constant from one plane to the next.
This allows an xy -> rd addressing ellipse to be precomputed for one plane, and repeatedly reused to
fill the cylinder. With all coordinates precombined into single address words in a table representing
this ellipse, the inner evidence accumulation loop requires only ten single-cycle operations, mostly
integer additions, per cell updated. This approach is at least 10 times faster than straightforwardly
combining arbitrarily rotated 3D grids.

Another factor of 4 efficiency came from considering only the cells that change the map, typically a
cone radiating from the sensor. A cone has one quarter the volume of its bounding box. At the time
rd sensor models are generated, the sensor model builder also stores a profile of the maximum r of
significant data for each d value. For each ray cast, the slice precalculation sorts the xy -> rd address-
ing table into increasing r order. The mapping geometry assures each xy slice is updated from a V-
shaped wedge in the rd array. For each slice, the evidence accumulation inner loop terminates when
the r value in the addressing table reaches the profile’s maximum r in the current wedge.

A factor of 2.5 speedup was obtained for “free” from optimization level O3 in the 1992 vintage
GnuCC compiler. This was far better than the optimizations provided by earlier compilers of 2D grid
programs. Additional efficiencies occur in the addressing slice precomputation. The xy -> rd table is
put into r order by a linear-time bucket sort. The program exploits a four-way skew symmetry in the
intersection ellipse, and gets advantages from various coding and incremental computation tech-
niques. For the special case of “thin-rays” never more than one grid cell wide, the program employs
much simpler code, about twice as fast as the general “fat-ray” method described above.

p
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In 1992, on a 25 MIPS Sparc-2 workstation, the program was able to throw about 200 wide-beam so-
nar, or 4000 narrow-beam stereo-vision rays per second through a 128x128x128 world. In 1996, on a
100 MIPS Sparc-20, the speeds are four times as high.

FIGURE  10 A picture summarizing a stereoscopic sensor model. Slices of evidence rays, destined to be swept into
cylinders, are shown as thin dark vertical lines running downwards from the top of the image, ending in
a bright spot. The dark lines are the “empty” parts of the rays, the bright spots are the “occupied”
range. There is one sensor model for each pixel of possible stereo disparity. Large disparities,
representing short distances (about a meter) are on the left. Small disparities, representing large
distances, are on the right, truncated at a distance the program calculates will always be beyond the
grid boundaries. Rays in the left of the image have a radius of one pixel. Two bands are seen on the
right, with beams two pixels and three pixels in radius. The latter will be swept into cylinders about five
grid cells in diameter. The gray banding effects are caused by the conical shape of the rays. The radius
two and three rays are “contaminated” by zero evidence regions outside their narrow starting points,
that are gradually eliminated as the ray expands along its length. Zero evidence is represented by a
probability of 1/2, which is rendered as a gray value half way between black “empty” and white
“occupied”, and so lightens the early parts of these rays.
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8 Constructing Stereo Rays

In 1992 volsense contained a procedure for constructing sensor models inspired by our sonar expe-
riences. A sensor model was shaped by 15 parameters, designed to be adjusted by a learning process,
controlling evidence cone angle, depth of empty interior, height and thickness of occupied range sur-
face, and how these values changed with distance.

Stereoscopic ranging fit the generic model poorly. Stereo distances and uncertainties are well defined
by the geometry of the stereo triangulation. A procedure for constructing stereo-specific sensor mod-
els was added to volsense. The models it generates contain one evidence pattern for each possible
stereo disparity. The beam angle can be varied from that representing a single image pixel, to the
width of a correlation window. The examples in this paper were generated with the latter setting. The
depth range uncertainty is geometrically derived assuming a single horizontal pixel of correlation
uncertainty. The evidence rays have a hand-chosen negative occupancy evidence from the imaging
position to the beginning of the range uncertainty region, and a much stronger positive value along
the region, diluted by the volume of uncertainty. These parameters and many others will be grist for
a future learning process, which will vary them to produce better 3D grid maps. Figure 10 shows a
graphic representation of a stereoscopic sensor model.

Crayfish throws two rays for each correlation peak, one from each camera position, intersecting at
their calculated range. Multiple hypotheses derived from a correlation curve are translated into mul-
tiple superimposed pairs of rays. The evidence in each pair is weighted by its match probability. This
is accomplished efficiently by selecting one of several precomputed sensor models with variously di-
minished evidence values. We typically configure the program to generate 8 or 16 complete sensor
models, coarsely representing probabilities 0 to 1.

9 Program Speed

On a 100 mips Sparc 20, a typical run of crayfish reports the following average timings per stereo pair
processed for the program’s major steps. Each pair generates about 2,500 correlations, each resulting
in 2 to 8 evidence rays, depending on cscale, and limited by another program parameter.

Rectification of two images: 0.2 seconds

Interest Operator: 0.1 seconds

Correlator: 0.9 seconds

Ray Throw: 0.7 to 2.5 seconds, depending on cscale

10 The Office Scan

Crayfish was developed with a data set collected using a pair of Sony XC-999 color cameras, with 6
mm lenses, mounted securely in parallel 15.6 cm apart on a tripod-mounted aluminum bar. Twenty
stereo pairs of images were collected reasonably carefully by hand of one end of an office, in parallel
directions, from locations on an approximately 50 cm grid on the floor, with the cameras 1.25 meters
high, angled 14 degrees down. Figure 11 is a view from the back of the data set, and encompasses
most of the scene. Figure 12 shows the placement of the cameras in the room.
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Wrapfish produced figures 13-16 from the 3D evidence grid output by a crayfish run on the room
images. Figures 13-15 show slices through the evidence grid. Black means “empty”, white signals
“occupied”, while middle gray indicates no evidence. Each image consists of a number of black-bor-
dered frames representing successive slices through scene, in the sequence left to right and top to bot-
tom. Tick marks around the frames represent 1 meter distances in the scene.

Figures 13 and 14 are horizontal slices in the same orientation as figure 12. Each frame maps 3 1/8
vertical centimeters. Figure 13 covers 0 to 19 cm high. The first three slices in Figure 13 are covered
with a dense mat of white spots representing the floor. The three or four prominent parallel lines on
the left come from correlations on grooves in the tiled floor outside the office door. There are no cor-
responding perpendicular traces because the interest operator rejects features with only horizontal
variation as unsuitable for matching by horizontally separated cameras. The two five-pointed stars
seen in the latter three frames are the wheeled bases of the two chairs. Other prominent features are
the open cabinet door, the base of a wall at the bottom of the images and the black swath of “empti-
ness” radiating out of the office door. Small but strong features include the office door frame, the

FIGURE  11 An overview of the room first imaged by crayfish. Twenty pairs of images were processed, from the view
position of this illustration and forward, stopping at the location of the chairs.
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rumpled raincoat in the open cabinet, and the base of the tall table. Figure 14 contains slices from 38
to 56 cm above the floor, and shows the seats and some of the backs of the chairs.

Figure 15 shows vertical slices 2.3 cm thick, parallel to the wall containing the door, from 15 cm out-
side to 35 cm inside the office. Prominent features are the door frame, the portion of wall with the
light switch, the raincoat, and cabinet shelves with several small items. The raincoat’s many wrinkles
and shadows made it an especially effective subject for the interest operator and correlator.

Figure 16 is a 2D projection of the 90,000 “occupied” cells of the 3D grid. Much information is left out
in this image, including the relative strengths of the occupied cells, all the contents of the 1.5 million
“empty” and 2.5 million “unknown” cells, as well a an entire dimension of separation. Some depth
cues are restored by “spotlighting” 3D volumes in distinctive colors. All the occupied cells in about
a dozen box-shaped volumes have been given box-specific colors. One box colors the floor layers cy-
an. Each of the chairs is enclosed in a box of black color, the door frame is in a magenta box, the coat
is encased in red, and so on. Occupied cells outside the major colored areas, probably the result of
correlation errors, are colored yellow, and give the image a noisy background. The result lacks the
precision and details of the slice images, but does a much better job of presenting the totality of the
grid.
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FIGURE  12 A schematic overview of the room mapped in the first runs of crayfish. Camera positions are marked by
camera-pair icons, looking to the left. The image in figure 11 was taken by the camera just left and
below the Y = 2 meter mark.
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FIGURE  13 Horizontal slices representing the first 19 cm above the office floor, oriented as in figure 12.  The
carpet, grooves in tiles, the base of the chairs, a cabinet door, a long wall, the office door frame, a
raincoat, the base of the tall table and other features are discernible.
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FIGURE  14 Horizontal slices 38 to 56 cm above the floor. The seats, backs and arm rests of the chairs make an
appearance.
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FIGURE  15 Vertical slices moving towards the camera positions, from just outside the office door to just inside.
The door frame, the raincoat and the cabinet shelves and their contents are visible.
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Wrapfish produces an even more dramatic display, in an Open Inventor 3D data file that can be
viewed on Silicon Graphics workstations. A scene similar to Figure 16 results, that can be interactive-
ly rotated in 3D to give a much better sense of the volume relationships.

11 Work in progress: Learning 3D Sensor Models

Crayfish produced encouraging results in its first runs, with correlation and sensor models hand-
chosen with modest thought and no experience. It can surely be improved, for instance in back-
ground noise level and object surface definition, with better sensor models. A learning process, opti-
mizing a handful of parameters, made a dramatic improvement in a sonar/2D grid experiment
[Moravec-Blackwell93], and we hope for similar gains in the new 3D context.

FIGURE  16 A 2D projection of the 90,000 occupied cells in the 4 million cell 3D evidence grid of the office.
About a dozen box-shaped regions have been “spotlighted” in color for clarity - a clarity
unfortunately reduced in monochrome reproductions.
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Automatic learning requires a criterion to optimize. In the sonar/2D example we were able to hand-
construct an “ideal map”, or ground-truth model, against which reconstructed grids were compared.
The 2D ideal was simple, containing only a few walls and doors at low resolution. The same approach
is impractical in our high resolution 3D scenes, which contain tens of thousands of tiny details at the
scale of the grid. Ground truth could perhaps have been derived from a high quality scanning laser
rangefinder, but none was available while our scenes existed, nor is it now.

Several weeks of experimentation failed to produce a good learning criterion among measures that
compute various kinds of local solidity in the grid data. Some drove the grid to zero density, others
filled it with noise. Some had parameters that could be adjusted between these extremes, or to achieve
some specified average density, but none were convincingly measures of the correct answer. We con-
sidered hand-massaging the best 3D grids encountered to stand in for ground truth, but a more
broadly useful approach has suggested itself.

There is a kind of ground truth in the original images of the scene, albeit in 2D projection and with
surface color. The grid, on the other hand, is 3D, and has no color. It is easy to project the grid’s 3D
cells into 2D pictures (figure 17), recreating the geometry of the original images, but without color the
grid projections convey little information. But original colors for the grid can also be obtained from
the images!

We plan to evaluate trial 3D grid maps by dividing the images from which they were derived into a
“coloring” set and an “evaluation” set. In the 20-pair office data, images from more forward positions
are probably best for coloring, and those looking from the back for evaluation.

We will scan the 3D grid from far to near and make a list of positive (“occupied”) cells in scan order.
Typically there are a manageable 90,000 occupied cells out of the 4 million total cells. Each element
of this list will get the grid coordinates of the cell, and also an, initially blank, “cell color”.

The cells in the list will be rendered into the viewing geometry of each of the “coloring” images, pro-
ducing corresponding synthetic images, with each pixel indicating the identity of the closest occu-
pied cell visible at that position, or nothing, if no cell projects there. The program will scan the
synthetic images, and, at each non-empty pixel, average the color of the corresponding location in its
“coloring” image into the “cell color” variable of the indicated cell. When done, each cell in the “oc-
cupied” list will have an associated color, averaged over the images in which its was visible.

Then the program will project the newly colorized grid into the geometry of the “evaluation” images,
and compute similarity. The similarity test is like the colorization, but instead of averaging the orig-
inal image color with the cell color, the two are compared.

The evaluation is very similar to a human test of a reconstructed grid: it asks the question, “does it
look right?”. The approach uses information, and measures interesting qualities, in the source images
not used in constructing the original grid. For the initial implementation, we will probably use mono-
chrome images, averaged down to half size, to do the (grayscale) coloring and evaluation. Color im-
ages also exist, and we could use those later. A very interesting side benefit of the colorization process
is a grid with the original scene colors, which should be exciting to view.

12 Things to Twiddle

The 3D sensor-grid’s many unexplored directions will surely provide years of amusement. A work-
ing learning process and a sensitive map-quality criterion will provide the opportunity to optimize
all parts of the process.
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FIGURE  17 An original image and a synthetic image with the same imaging geometry. The synthetic scene colors
were chosen by hand. When the learning program is complete, the colors will be natural, derived from
other images of the scene.
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Many variations in the basic stereoopsis suggest themselves. Would it be better to preprocess the im-
age for features like edges? Should the correlation window be round to maximize the number of pix-
els for statistical significance, while minimizing the distance from the center? Should the windows be
taller than wide, because a horizontal change in viewpoint causes more horizontal than vertical im-
age variation? Should they vary in size? Would pre-adjusting the brightness and contrast of the im-
ages on the basis of the strong correlations improve the weak correlations? How would this interact
with the brightness-difference cutoff threshold in the correlation search? Could the minimum dis-
tance considered in  correlation searches for weak features be modified from image to image, or even
region to region, on the basis of strong correlations from the same area? The search costs and error
rates are minimized if the search is narrowed as much as possible. How much improvement can be
achieved by using other interest operators? Should they return more or fewer points? What about dif-
ferent comparison measures? How should evidence rays be weighted as a function of correlation
quality? And many more.

Even more fundamental to the grid function is the sensor model, i.e. the shapes and weights of the
evidence rays. The existing program uses a very simple, ad hoc sensor model for stereo evidence. An
evidence ray, which is often a line, but can become a cone a few cells in diameter, consists of a hand-
picked negative value from the camera to the region of stereo range uncertainty, followed by a posi-
tive value covering the length of the uncertainty. The positive value is another hand-chosen constant
divided by the size of the positive volume. The weights are scaled by the correlation probability. The
evidence grid approach derives trustworthy conclusions from very noisy data by accumulating large
amounts of it for each spatial location. The accumulation process is compromised if the individual
evidences have systematic biases. A good sensor model is a bias-free representation of the average
true information from each kind of measurement. A learning process that adjusts angles, weights, siz-
es, shapes, dependence on distance and correlation and many other subtleties should converge on
such a sensor model. Our simple hand-picked model is unlikely to be very close.

For some purposes, including producing synthetic images, it is necessary to classify evidence values
into empty, occupied and unknown. The threshold values for these classifications could be optimized
during learning.

Some important improvements are beyond the reach of simple learning. This report’s data set was
collected by hand, with tripod mounted cameras. The camera positions cameras varied at least a frac-
tion of a centimeter from nominal, and the pan and tilt angles may have varied by more than one de-
gree. The latter errors, especially, mean measurements from different views were not perfectly
registered. Images from moving robots are likely to have even larger position and orientation uncer-
tainties. We and others [Yamauchi96], [Schultz-Adams-Grefenstette96] have had good success in past
registering sonar/2D grids of the same area made from viewpoints, whose relationship is known
only approximately, by searching for best map match over a range of relative positions and orienta-
tions. The large number of cells in the grids allow registration accurate to a fraction of a cell, by inter-
polation of the discrete matches. This works even when one of the grids is built with only a few dozen
sonar readings from a single robot position. The statistically stabilizing multitude of cells in the 3D
grids assures us that the approach will work even better there. The only question is speed: our grid
has four million cells, and a search over large ranges of 6 degrees of freedom could easily take trillions
of computations! Fortunately there are many strategies for enormously reducing the cost. For a mo-
bile robot on a flat floor, only 3 degrees of freedom vary very much, so the search extent in the other
three can be very small. Even the unconstrained position and angle searches can be kept small by us-
ing dead-reckoning information. The search can be reduced almost to its logarithm, by a coarse-to-
fine strategy, where approximate answers are computed first at the small end of a pyramid of shrunk-
en grids. Coarse-to-fine has worked very well for us in past, in unconstrained stereoscopic correlation
and in matching 2D grids. Well-chosen samples could substitute for the whole: for instance, the un-
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known areas of a grid could be skipped, or the occupied cells of one grid could be mapped to the en-
tirety of the other. A branch and bound strategy might cut short some of the comparisons, when their
accumulating partial errors exceed the best previous comparison, a method that works best if the
most likely registrations are searched first.

We hope to implement an image-pair to scene registration step soon after the learning code is work-
ing. It is likely to tighten up the office scene, and will prepare the way for stereo/3D grid use on real
robots.

13 Hardware Helpers

Quirks in our office scene reconstruction suggest some easy hardware alterations likely to significant-
ly improve performance. The dense coverage the correlator obtains on the slightly textured carpet,
and more heavily textured raincoat, compared to its sparseness on plain surfaces like doors and
walls, suggests that coverage would be greatly increased by the artificial addition of texture across
the scene. This could be accomplished simply by mounting a randomly textured floodlight with the
cameras, perhaps infrared to minimize effects on humans.

More speculatively, wide angle sonar could provide the range to the nearest feature in the scene, to
narrow the correlation search to that range and beyond, boosting speed and accuracy. A preliminary
stereoscopic preprocessing of strong features might give similar information without extra hardware.

Precise image rectification allows the correlation search to be exclusively in the direction of the axis
horizontal joining the two cameras. The points to be searched for, selected by an interest operator,
need thus have only horizontal variations. As a result, the program picks out a dense coverage of fea-
tures along vertical wall and furniture boundaries, but entirely misses the horizontal boundaries.
This problematic blindness could be eliminated by adding a third camera to the stereo pair, vertically
displaced from the original two. The trio could be used in pairs, with points selected by interest op-
erators specific to each pair’s separation direction.

The 60 degree field of view cameras, though placed on most of the open floor area of the office, saw
only a tiny portion of the left wall and none of the right, and viewed other elements of the scene from
a very narrow range of angles. The grid might be much enhanced if objects were viewed from many
directions. Wider angle lenses would help, as would panning the cameras from side to side during
operation, or having several camera pairs looking in different directions. The latter option is probably
best, as manufacturers begin to market high quality, inexpensive single-chip cameras with integrated
optics, for applications like hand-held videoconferencing. Simply processing more images would
also help, which will surely happen when the cameras are used on a mobile robot that can acquire
new sets of images perhaps every second.

Before the fast ray-throwing code was written, speed seemed the bottleneck for 3D grids. Now cray-
fish is quite speedy, but encounters memory limits. Experiments with existing data and small grid
extents (see the appendix) show that scene details improve as grid cell size is reduced, even to below
1/2 centimeter. The speed cost for increased resolution is modest. For a wide range resolutions, most
stereo rays remain one cell in width, and the time to throw rays grows only slightly more than linear-
ly with grid resolution. The image processing steps are unaffected, so total runtime grows perhaps
50 percent per resolution doubling. Memory usage, on the other hand, grows dramatically. Our
256x256x64 grid has four million two-byte cells, consuming about half the program’s 16 megabytes.
Doubling the resolution balloons the grid to 64 megabytes. Lowering the cell size to 1/2 centimeter
would require a gigabyte of grid. Memory costs are dropping, and sizes increasing with a time con-
stant of about 2 years, so even such numbers should soon be within reach. It’s comforting to know
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that the existing approach will produce even better results in future, simply through hardware
progress.

14 Future Extensions and Applications

Crayfish builds 3D maps from a set of image files, a first step to myriad goals. Its descendents will
process real-time images from moving robots. The robots will use their 3D understanding of the sur-
roundings to navigate confidently, to locate and interact with objects, eventually to plan and execute
complex tasks involving locomotion and manipulation. To do all that, they will need application pro-
grams to extract specific answers from the 3D grids. Here are few answer extractors on our “to do”
list:

14.1 Obstacle avoidance
 Our 3D grids contain over 100 times as much information about robot surroundings as the 2D maps
or sparse 3D models derived by previous mobile robot programs. Since robots can be made to ma-
neuver reasonably well with the sparser information, we have very high expectations for 3D-grid
based local navigation. In particular, corners, horizontal projections and inconveniently placed small
obstacles, that can be missed or misinterpreted by the simpler approaches, sometimes with serious
consequences, appear clearly and unambiguously, in shape and position, in a 3D grid, ready to be
noticed by a path-planning program. Finding paths in a 3D grids need not be extremely computation-
ally costly. Since the grid specifically marks empty volumes, the frequent case of an unimpeded path
from source to local destination can be quickly detected, by sweeping a 3D grid volume in the shape
of the robot along a straight path in the 3D map. The collision probability at each position is found by
multiplying the products of occupancy probabilities of corresponding map and robot cells.  The outer
product becomes a more tractable a sum by taking the logarithm of the inner products. This compu-
tation can be made very cheap by a coarse-to-fine strategy, which refines the resolution only for those
few cells where coarse comparison detects a possible conflict. A full path planner could be construct-
ed by embedding such a measure in an A* search. By doing its work in 3D, the planner could produce
paths that scoot the robot under overhangs and squeeze its shape through commensurate gaps.

14.2 Navigation
Nearly every indoor mobile robot task requires the robot to return to previous locations. Existing
commercial delivery and cleaning robots do this with the help of buried wires, wall or floor mounted
beacons or markers, or painstaking handmade site-specific maps of walls and openings, whose fre-
quent encounter corrects odometric dead-reckoning. Experimental robots that navigate with auton-
omously made 2D maps (e.g. [Koenig-Simmons96], [Schultz-Adams-Grefenstette96], [Yamauchi96]),
are not quite reliable enough for commercial use, which demands months of operation without nav-
igational failure. Using million-cell 3D maps, with 100,000 surface cells, instead of thousand-cell 2D
maps, containing at most a few hundred surface points, should decrease the failure probabilities
enormously. Suppose we want a robot to autonomously repeat routes shown it on a guided tour.
During the tour, the robot would build and store a sequence of 3D map “snapshots” of the journey.
When on its own, it would match these snapshots against its fresh 3D. The relative position and ori-
entation of best match would tell the robot its location relative to its tour route--to a fraction of a cell,
if it interpolates. The matching can be done efficiently using the same coarse-to-fine and selective
sampling techniques suggested in the last section for precisely registering new data to old in a devel-
oping map. The 3D grids contain so huge a mass of detail, at large and small scales, that the proba-



30  Robot Spatial Perception by Stereoscopic Vision and 3D Evidence Grids

bility of a good match between two maps of the same area, at other than the correct placement, should
be astronomically small. By contrast, with simple line maps or blurry 2D grid maps, the probability
of a false match, and consequent serious navigational error, is significant. Enormous reduction in
navigational and shape confusion probabilities is a major 3D grid promise.

14.3 Object recognition
Volumetric matching, as suggested for navigation, might also be used at smaller scales, and possibly
higher resolutions, to detect objects by shape. Grid prototypes of objects can be matched to map areas
in the same way maps are matched to each other. At a given resolution, the number of cells in a small
object, and thus the reliability of the match, will be lower. Reliability can be improved by increasing
the grid resolution, in an approach we may call “fine-to-finer”. Stereoscopic data collected for navi-
gation can be used again to map small volumes at sub-centimeter resolution, as shown by the chair
example in the appendix. There are complications. Office chairs, for instance, have parts that move
with respect to one another. The back, seat and base of the chair could be sought volumetrically sep-
arately, and their match values combined in a formula, with measures of the relative geometric posi-
tions, in a hybrid “chair operator” that could be applied to likely positions in the scene. Scene colors
could also weigh in the formula. Experience may suggest a bag of such recognition techniques, which
can perhaps be orchestrated by an object description language, to conveniently construct operators
for even changeable objects like chameleons. A similar approach should work for general navigation.
Experience with the language may then suggest how to automate the object and route description
processes.

14.4 Scene Motion
The data sets for crayfish were accumulated over several hours, with no regard to intervening chang-
es in the scene. If there had been changes, the “before” and “after” states would have been averaged
together. At each location, the program accumulates a weight of evidence of occupancy. If a given
location has been identified as occupied many separate times, this weight can become very large. If
a physical scene rearrangement subsequently empties the location, it will take very many additional
observations to erase the weight in the grid, and replace it with a negative one. We could deal with
overly persistent memories by a deliberate “forgetting” process. As each update is made, affected
cells would have a small proportion of their old evidence trimmed, thus exponentially decaying ev-
idence over the number of sensings of an area, and giving new measurements relatively higher
weight. An object moving through a repeatedly sensed area would then show up as a fading streak
in the grid, just like the slow-phosphor trail of a moving object on an old-style radar screen. Decay
over sensings would leave recently unsensed map areas unchanged. There are reasons to decay those
also, but probably at a different rate. If, in its wanderings, the robot steadily accumulates navigational
errors, the registration of very old data with new will become uncertain. This could be accounted for
by spatially blurring the old data - we have demonstrated this in 2D grids [Elfes87]. All these tech-
niques will become more effective as increasing computer speed allows us to do more frequent sens-
ings. With 500 MIPS, it should be possible to process stereo images about once per second. When
computer power and memory several times greater becomes available, it will become possible to take
the grid idea into the fourth dimension, with 4D grids representing the local spacetime. Doing so
would replace motion blurs with a stack of instantaneous frames of the scene, from which detailed
moving object dynamics could be derived. For the next several years, however, we will have our
hands full with 3D grids.
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15 Conclusion

Since 1984, two-dimensional grids have proven effective in turning mobile robot sense readings into
reliable maps, even when individual readings are very ambiguous or noisy. The grid approach cata-
logs the surroundings by location, a division independent of individual measurements or their er-
rors, allowing arbitrarily many individual readings to be accumulated before any conclusions need
be drawn. It tames sensor noise with large-number statistics. Most competing approaches are much
less tolerant of noise, because they must decide on interpretations, for instance about surfaces, with
far less data. The grid approach threatened to require more memory and computation than prior
methods, but its simplicity and regularity allow very efficient implementations. Many experimental
mobile robots today are controlled by real-time 2D grid programs.

Two dimensional grids offer, at best, a blurry view of a slice of the world. We have considered them
a prelude to 3D grids, which could represent the complete surroundings in precise detail, and consti-
tute the basis of a high-quality robotic sense of space. Their apparent 1,000 times higher computation-
al cost delayed the effort to try 3D until 1992, when a supercomputer became available. Work towards
a supercomputer implementation produced instead a surprisingly fast uniprocessor program for the
key 3D evidence-ray throwing step. A complete prototype 3D system, described in this report, was
finally completed in 1996.

Though it uses unoptimized ad-hoc sensor models, the 3D grid program clearly demonstrates the ef-
fectiveness of the approach, and that 500 MIPS would suffice for a real-time version. From stereo-
scopic range data with 20 to 50 percent errors, it constructs maps that, imaged, look like doll-house
replicas of the sensed area. The existing program is good enough to feed a highly reliable robot nav-
igator, but we anticipate increasingly better results, as nearly every portion is scrutinized and opti-
mized.

16 Appendix

The nice results from our initial office image set encouraged us to collect a second, larger, example.
At the beginning of August 1996, Christopher Priem collected 59 stereo pairs of images of a busy 8
meter by 8 meter laboratory, with the stereo cameras at a height of 75 cm, aimed horizontally. In part
of the data set, the cameras looked from the back of the laboratory towards the front. In a second por-
tion, they looked in a 45 degree diagonal direction, in a third set they looked from the side, and three
stereo pairs looked backward from the front. Images from the diagonal and backward-looking sets
are shown in Figure 18.

Though the physical area mapped in the second data set was larger that the 6 meter room of the first
set, memory limitations prevented us from using a larger grid. The resolution of the 256x256x64 lab-
oratory grid cells is thus only 3 1/8 cm in all three axes. Figures 19 and 20 show horizontal slices
through the resulting grid, at floor and chair-seat heights, with the same encoding as figures 13 and
14. Figure 21 contains horizontal slices, as seen from the front of the room looking back, through a
chair, two boxes and cabinets. Figure 22 is a colorized projection of the approximately 90,000 occu-
pied cells of the entire grid.

The reduced grid resolution results in a lower quality reconstruction. Memory limitations prevented
us from increasing the entire grid size, be we did an experiment with higher resolution, by using all
the data to map only a small portion of the lab volume, namely the cubic meter enclosing the chair at
the middle front of the room. A 128x128x128 grid for this volume has cell resolution of 0.78 cm.
Figure 23 is a projection of the high-res occupied cells. We hope, in future, to map larger areas at such
resolution.
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FIGURE  18 Views of the laboratory imaged in the second crayfish test. Fifty nine pairs of images were
processed, looking forward, left-forward diagonally (as in the top image), from the left side, and
three pairs facing backward (bottom image).
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FIGURE  19 Horizontal slices representing the first 19 cm above the laboratory floor. The front of the laboratory is
to the right, the door is at the bottom.
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FIGURE  20 Horizontal slices 38 to 56 cm above the laboratory floor.
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FIGURE  21 Vertical slices marching towards the front of the room, oriented as if viewed from the front looking
backward. Slices of the chair and small box seen in figure 18 top are visible, as is a larger box, out of
view in figure 18. The prominent vertical features running top to bottom in the first frames are
cabinets that can just be made out on the left of figure 18 bottom.
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FIGURE  22 A 2D projection of the 90,000 occupied cells in the 4 million cell 3D evidence grid of the laboratory.
About a dozen box-shaped regions have been spotlighted in color for clarity. (Apologies to readers with
monochrome versions.)
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FIGURE  23 A 2D projection of the 10,000 occupied cells in the high resolution grid of the chair.
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After rolling a meter it stopped, took some pictures and thought about them for a long
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mented as part of an autonomous mobile robot navigation system called Dolphin. The ma-
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tioned. The system is also situated within the wider context of developing an advanced
software architecture for autonomous mobile robots.

[Moravec-Blackwell93]
Author Moravec, H.P.; Blackwell, M.; Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
Title Learning Sensor Models for Evidence Grids
Source CMU Robotics Institute 1991 Annual Research Review, 1993, pp.8-15.

Abstract Evidence grids (aka. occupancy, probability and certainty grids) are a probabilistic, finite-
element representation of robot spatial knowledge. The grids allow the efficient accumula-
tion of small amounts of information from individual sensor readings into increasingly ac-
curate and confident maps. Each sensor measurement is translated, via a sensor model,
into a spatial evidence distribution that is added to a grid representing the robot’s sur-
roundings. In our first applications of the method, on a mobile robot with a ring of 24 Po-
laroid sonar transducers autonomously navigating a cluttered room, we constructed the
sensor model from a cursory examination of the Polaroid literature. Despite the ad-hoc
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model, the grid approach worked far better than an older program, a decade in develop-
ment, that used a geometric model. It successfully navigated cluttered rooms, most hall-
ways, a coal mine and outdoors. The original program failed in a smooth-walled narrow
corridor, where most sonar pulses, deflected by mirrorlike walls, indicated overlong rang-
es. The evidence grid method might be able to slowly accumulate evidence from such data,
if only the sensor model accurately represented the modest information contained in a
reading, as our ad-hoc model did not. This paper reports on a learning program that finds
good models automatically. The sensor model is formulated as a closed form expression
shaped by several parameters. The parameters are adjusted, in a hill-climbing process, that
maximizes the match between a hand-constructed ideal map and a map built by the model
with data from a robot test run in the mapped area. Using this approach with a 9- param-
eter function a program using several weeks of Sparc1+ workstation search time was able
to produce a crisp, correct map of the difficult smooth hallway, from data that produces an
unrecognizable splatter when interpreted by our original ad-hoc sensor model.

[Hellwich&al94]
Author  Hellwich, O.; Heipke, C.; Liang Tang; Ebner, H.; Mayr, W.;  Tech. U. Munchen, Germany
Title Experiences with automatic relative orientation
Source ISPRS Commission III Symposium Spatial Information from Digital Photogrammetry and

Computer Vision; Munich, Germany; 5-9 Sept. 199 Sponsored by:  SPIE; Proceedings of the
SPIE - The International Society for Optical Engineering; Proc. SPIE - Int. Soc. Opt. Eng.
(USA); vol.2357, pt.1; 1994; pp. 370-8

Abstract A report on recent experiences with a new procedure for automatic relative orientation is
given. A hierarchical approach provides conjugate points using image pyramids. The im-
plemented method is based on feature extraction by an interest operator, feature matching
between the two images, area based image correlation, a robust least squares bundle ad-
justment and feature tracking through several levels of the image pyramid. The automatic
procedure proved to be successful for various combinations of terrain relief surface cover
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project dependent parameters can be reliably predicted for certain classes of images.
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Abstract The comprehensive utilization of the information content provided by remote sensing sat-
ellites requires the multitemporal and multisensoral analysis of the image data. Prior to
this analysis, processing is necessary to correct for geometric distortions. To handle the
large amount of data and the high data rates, the traditional approach of visual identifica-
tion of control or tie points is not an acceptable solution. The paper describes two develop-
ments at the German Remote Sensing Data Centre, which aim at the automatic generation
of tie points for optical sensors and radar images, and the operational utilization of auto-
matic tie pointing for ERS-1 SAR data. A concept for the multitemporal registration of sat-
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ellite images from optical sensors is described. This approach comprises the detection of
distinct points by a so-called interest operator in one image. By cross correlation, the cor-
responding points in the other images are traced. Subpixel accuracy is achieved by a least
squares technique for digital image matching. Practical results are shown, where multitem-
poral image data from the Landsat TM sensor are used. The paper also describes the oper-
ational utilization of an automatic tie pointing which has been realized for the geocoding
of the ERS-1 SAR data at the German Processing and Archiving Facility. Significant fea-
tures are extracted from reference data sets. The procedure is described as well as the ac-
curacy achieved. An outlook is given concerning several automatic approaches being
investigated.
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Abstract Navigation methods for office delivery robots need to take various sources of uncertainty
into account in order to get robust performance. In previous work, we developed a reliable
navigation technique that uses partially observable Markov models to represent metric, ac-
tuator and sensor uncertainties. This paper describes an algorithm that adjusts the proba-
bilities of the initial Markov model by passively observing the robot’s interactions with its
environment. The learned probabilities more accurately reflect the actual uncertainties in
the environment, which ultimately leads to improved navigation performance. The algo-
rithm, an extension of the Baum-Welch algorithm, learns without a teacher and addresses
the issues of limited memory and the cost of collecting training data. Empirical results
show that the algorithm learns good Markov models with a small amount of training data.
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Abstract Dead reckoning provides a simple way to keep track of a mobile robot’s location. However,
due to slippage between the robot’s wheels and the underlying surface, this position esti-
mate accumulates errors over time. In this paper, we introduce a method for correcting
dead reckoning errors by matching evidence grids constructed at different times. A hill-
climbing algorithm is used to search the space of possible translations and rotations used
to transform one grid into the other. The transformation resulting in the best match is used
to correct the robot’s position estimate. This technique has been tested on a real mobile ro-
bot and has demonstrated robustness to transient changes (moving people) and lasting
changes (rearranged obstacles) in dynamic environments.
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Abstract The evidence grid representation provides a uniform representation for fusing temporally
and spatially distinct sensor readings. However, the use of evidence grids requires that the
robot be localized within its environment. Odometry errors typically accumulate over
time, making localization estimates degrade, and introducing significant errors into evi-
dence grids as they are built. We have addressed this problem by developing a new meth-
od for ``continuous localization’’, in which the robot corrects its localization estimates
incrementally and on the fly. Assuming the mobile robot has a map of its environment rep-
resented as an evidence grid, localization is achieved by building a series of ``local percep-
tion grids,’’ also represented as evidence grids, based on localized sensor readings and the
current odometry, and then registering the local and global grids. The registration produc-
es an offset which is used to correct the odometry. Results are given on the effectiveness of
this method, and quantify the improvement of continuous localization over dead reckon-
ing. Further results show that maps built of the room using evidence grids while the robot
is performing continuous localization show no appreciable systematic errors due to odo-
metric error; it appears that maps of the room can simultaneously be learned and used for
continous localization.
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Abstract The evidence grid representation was formulated at the CMU Mobile Robot Laboratory in
1983 to turn wide angle range measurements from cheap mobile robot-mounted sonar sen-
sors into detailed spatial maps. Whereas most older approaches to mapping considered the
location of objects, the grid approach weighs the “objectness” of locations. It accumulates
diffuse evidence about the occupancy of a grid of small volumes of nearby space from in-
dividual sensor readings into increasingly confident and detailed maps of a robot’s sur-
roundings. It worked surprisingly well in first implementation for sonar navigation in
cluttered rooms. In the past decade its use has been extended to range measurements from
stereoscopic vision and other sensors, sonar in very difficult specular environments, and
other contexts. The most dramatic extension yet, from 2D grid maps with thousands of
cells to 3D grids with millions, is underway. This paper presents the mathematical and
probabilistic framework we now use for evidence grids. It gives the history of the grid rep-
resentation, and its relation to other spatial modeling approaches. It discusses earlier for-
mulations and their limitations, and documents several extensions. A list of open issues
and research topics is then presented, followed by a literature survey.


