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Abstract
This work is dedicated to mobile robot navigation. It presents a solution to the

navigation problem using a simple world model based on a new approach to
behaviours' mapping. This new theory of behaviours' mapping proposes a general
solution not only to mobile robots' navigation but to the control of a wide range of
autonomous (intelligent) behaviour based systems.

Based on the phenomena of bifurcation and non-continuity of a behaviour or a
group of behaviours that consist an autonomous behaviour based system, the new
behaviours' space mapping theory enables direct mapping of the system's existing space
to a graph. The latter mapping creates a world model that is made exclusively in terms
of behaviours.

We believe that an intelligent system require a world model to plan and to
predict the result of its actions. We also believe that behaviours' based systems cope
more successfully with the dynamics and changes of the real world. Combining the two
poses a real problem in the creation of autonomous intelligent systems. The world
modelling in behaviours' terms permits the cohabitation of the classic AI planning and
the behaviours' based execution and control.

A new approach to navigation that demonstrates the feasibility and efficiency of
the latter theory was developed. This navigation system takes advantage of the well
known and developed Voronoi Diagram and combines it with a simple and robust
behaviour that follows the centre of the free space to realise an efficient and robust
navigation system for a mobile robot.

A new technique of optimal planning within the graph frame exploits the classic
AI side of the behaviours' space mapping theory. The near optimal path finder finds a
path close to the optimal theoretic path without exact geometric calculations and
optimisation using information that attribute to the graph nodes and arcs.

To extract the skeleton of the free space which is used to create the Voronoi
diagram, an improvement to Rosenfeld Kak (RK) and Wang Zhang (WZ) thinning
algorithms was developed.

To conclude, this works covers the problem of autonomous robot navigation
from the presentation of a new behaviours space mapping theory and a new approach
toward navigation, to the development of optimisation technique, skeltonising
algorithm and basic behaviour. This work proves that the two rival approaches, the
classic and the behaviour based AI can cohabit and even contribute each to its rival in
order to create more successful and  intelligent systems.
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Everything should be made as simple as possible,
but not simpler

- Albert Einstein

1. Introduction
This work is dedicated to mobile robot navigation. Trying to comply with the

citation above it presents a solution to the navigation problem using a simple world
model based on a new approach to behaviours' mapping.

 One can look at the navigation problem as a representative problem for
autonomous (intelligent) systems. In navigation an autonomous mobile robot tackles a
wide range of problems arising from the operation in a real or almost real world.

The classic approach defines the term navigation  by three questions that should
be answered: [Lev-Law 90]

1. Where am I ?
2. Where are other places relative to me ?
3. How do I get there (to the other places) ?

The answer to the first question can be a geometric position, a sensorial state or
it can be defined in symbolic terms. In some systems and approaches this question is
omitted on the irrelevance basis, as is the case in pure reactive systems. The answer to
the second question is given in geometric terms or topological terms (graph) in the
classical systems. In the reactive and behaviour based systems the answer is combined
with the answer to the third question and is given in terms of actions. The answer to the
third question is planning.

For many years the approach and the methods that control the Artificial
Intelligent community were the general problem solver or alike. That approach gained
control from the Dartmouth conference in summer 1956 [McCor 79]. Among the
participants we find some of the greatest names in the field like John McCarthy, Marvin
Minsky, Clod Shannon, Newel, Simon and others. They laid the base to the new science
for which McCarthy gave the name Artificial Intelligence. They have seen the problems
to be tackled as formal and logical. In fact all the AI community followed them by
developing systems that play chess, prove mathematical laws based on axioms and
rules or play in the well-defined world of blocks.

Finally as Brooks claimed at IJCAI in 1992 the Classical AI became a problem
of search and not of intelligence [Broo 91]. When it comes to Autonomous Systems
that operate in the 'real' world many others share the same opinion, the classical
approach is not the answer to the complicity the real world presents [Chap 91] [Mill 91]
[Such 87]. They and others that tried to embody intelligent systems have found out that
the classic approach of modelling the world, planning and generating a priori plans for
systems that operate in the real world is quite impossible.

The reaction to this failure of the classical planning was something like back to
sources. Based on the ideas of the Cybernetics, a science founded by N. Wiener [Mas
90] [Wiener 48] and faded out at the mid 70's, the reactive machines became 'in' in the
second half of the 80's. Brooks, one of the leaders of that movement went to the
extreme while he coined the slogan "The world is its best model"  [Broo 90].

McDermott [McDer 92] argues that the creatures of brooks use a world model,
an implicit model that lies in the behaviours and in the mind of their creator, [Gat-Rod
92] share this point of view. Their success in dealing with the immediate problems and
uncertainties of the real world led many of their supporters to believe that the behaviour
based purely reactive or situated action systems are the only solution to autonomous
systems. They threw away all the knowledge, experience and successes of the planning
approach but could not deliver something better to solve complicated problems.
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The answer to the question whether a model is essential to intelligence or not
depends on how one defines intelligence. Since there is not a widely accepted definition
of intelligence [Lec 94] the best thing that we can do is to examine already existing
intelligent entities. We can take insects as our objects of reference and produce systems
that will demonstrate behaviours similar to the insects' behaviours. This approach has
two severe drawbacks: (1) we know some creatures that are widely accepted as more
intelligent than insects and (2) we do not know whether insects have and use world's
models.

In contrary the human race is generally accepted to be the most intelligent entity
that we know. As well, a lot of work has been done on world modelling in humans.
Jean Piaget [Piaget 67] [Bring 77] had shown that children develop a world model
based on their experience. On the basis of this model they reason about the results of
actions as well as about which action to choose to achieve a certain goal.

Let's go back to navigation which is one of the most critical problems an
autonomous system faces. Navigation is the problem of arriving from the current
position to a target that can be specified in terms of perceptive situation [Rod 94] [Mat
90] or in geometric terms [Lat 90].

A purely reactive approach system can assure target achieving if it has already
made the way and learned it or if it was designed to follow a certain path. On the other
hand the classic plan based navigation is assured to find the path if it has all the
necessary information but not to realise it. The planning approach has the advantage of
foreseeing, something that the reactive approach lacks completely.

A lot of effort was invested to bridge that gap. Behaviours' based systems with
planning capability are the goal. They combine the efficiency of planning with the
flexibility and adaptive ability of the reactive systems. Some possess learning capability
and can re-execute a trajectory they have already followed. These systems store the
trajectories that connect landmarks they can recognise as actions [Rod 94]  [Mat 90 91]
or sequence of actions [Hayes-Roth 93]. Planning is a search of a graph or other type of
data base that hold the information already gathered by the system. There is no
reasoning in these systems. A priori information can be introduced to these systems
only in terms of behaviours, actions and perceptive situations that match the systems'
capabilities.

The introducing of the a priori information requires an external system that can
translate the raw data of the world, a work that till now was done manually. AuRa of
Ron Arkin [Ark 90] is an example of a navigation system that use such an a priori
knowledge that was introduced manually and uses behaviours to execute a mission.

The problem is to find a description of the world in terms of behaviours that
enable reasoning about the results of a behaviour before actually exercising it. To find a
description that the system itself would be able to create from raw data like a map or
occupancy grid. This description should be as simple as possible to enable rapid
reasoning and to match the system capabilities. It should be as general as possible to
deal with a variety of behaviours and it should support communication between man
and machine as well as between different machines.

In this work we propose a new approach, a normalisation of behaviours
mapping. This mapping is based on the continuity equivalence and bifurcation of
behaviours. It enables the mapping of reactive behaviours, reasoning about their results
and understanding the relations among them. It also results in what we present as meta-
behaviour that reduces to minimum the basic presentation of the world. Under this
meta-behaviour the world can be represented using a two terms' vocabulary.

This work was done within the frame of the MARS project in the I3A (Institut
d'Informatique et d'Intelligence Artificielle) at Neuchâtel University. Project MARS is
an effort to develop  behaviour based autonomous intelligent system embedded in
mobile robot. A description of the project is given in §2.6.
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A survey of the state of the art in navigation is presented in chapter 2. The first
part describes the classic planning approaches. The second part presents some of the
most known reactive and behaviour based robot systems

The behaviours' mapping approach is presented in chapter 3. A definition of the
behaviours' space mapping is given as well as some behaviours that explain the theory
and demonstrate its applicability.

In chapter 4 a navigation theory based on this approach is presented.

A planning method that enables combining the classic planning approach with
behaviour based execution is presented in chapter 5.

Chapters 6 presents the realisation of this approach in mobile robot navigation
and some experimental results

Chapter 7 concludes this work with survey of its contribution and propositions
for future work.
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2. Survey of Mobile Robot Navigation

2.1  Introduction

The classic approach defines the term navigation  by three questions that should
be answered: [Lev-Law 90]

1. Where am I ?
2. Where are other places relative to me ?
3. How do I get there (to the other places) ?

For most of the navigation systems the answer to (1) is localisation, the answer
to (2) is a map  or a model, and to (3) are path planning  and path following. For some
reactive system only questions (2) and (3) are of interest. For these systems (2) is
answered by attractors that the system senses and (3) is just a movement toward the
attractors controlled by certain reactions and behaviours.

There are two different answers to the path following problem that inflict the
planning as well. The older and so called "classic" is the metric  approach in which the
trajectory is given in geometric terms and the path following is realised by execution of
a sequence of motor pre defined commands. A modern approach is the reactive
navigation in which the robot reacts to the immediate perception demonstrating a
certain behaviour. In this approach the trajectory is described as a sequence of
behaviours.

Consequently, we can speak of two kinds of planning approaches that result in
two different kinds of plans [Agre-Chap 90] [Hayes-Roth 93]:

1. Plan is a program.
2. Plan is not a program.

Plans as programs are the results of the classic planning approaches. The plan is
like a program or computer code to be executed by the robot. The trajectory is given in
a sequence of actions that should be executed and completed. The metric navigation is
the best example of such a plan. Some of these planning techniques are described in
2.3.

Plans that are not programs cover a wide span of planing approaches and
navigation systems. From navigation without any explicit program [Brait 84] [Broo 90]
[MILL 90a], through a program as an advise or a guide [Agre-Chap 90], to a program
as a target's (or targets') definition where the system chooses at each stage the best
behaviour from several possibilities [Ark 90] [Hayes-Roth 93] [Rod 94]. These systems
are described in 2.5.

The first part of this chapter deals with the classic approach. §2.2 describes the
maps and world representation approaches which are basis of the classical methods. In
§2.3 we survey the most important planning methods. §2.4 concludes the first part,
describing some methods of localisation which is a fundamental problem in plans'
execution.

The second part of the chapter describes reactive and behaviours based systems.
§2.5 surveys the history and the state of the art of these systems and §2.6 describes the
project MARS (Mobile Autonomous Robot System) within its frame this research was
done.

2.2 Maps and World Representation

Maps  are the mathematical or geometric representations of the relevant
knowledge that we have about the world. Models  are a higher level of treatment and
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representation in which we give meaning to the knowledge, meaning that enables
planning and localisation.

Most of the graph based planning methods and all the potential field planning
methods use maps of the world as an intermediate level from which an appropriate
world model is generated. However some graph based systems generate the graph
directly from their perception of the world. Table 2.1 summarises the different maps
and the world models that are generated from them.

Table 2.1 Maps and Models

Map Model Navigation System

1. Occupancy  grid Direct Cells graph Moravec Elfes

Voronoi Diagram Mars  Y. Gat

Potential field Barraquand Latombe

2. Polygons Line of Sight

Freeways Brooks

Voronoi Diagram Schwartz Sharir

Potential Field Gambardella

3. Traversability
Zones

Weighted Region Mitchel

Hierarch ica l  Cel l
Connection Graph

Meystel

4. Objects
Geometric

Object topology AuRa  R. Arkin

Toto   M. Mataric

5. Direct Object Topology Mars M. Rodriguez

Figure 2.1 describes the possible relations among maps, models, planning and
execution. The double lines represent the classical approach, the double dotted lines the
purely reactive approach and the bold lines represent our approach in project MARS.
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model

explicit implicit

no planningplanning

reactive execution

program no program

metric execution

world

map

Figure 2.1 The relations among maps, models, plans and execution

The first step toward path planning is the generation of a world representation
that the planning system can work with. There are four general approaches to represent
the world:

1. Occupancy grid:- A 2D or 3D grid is used as the base of the
representation. Each cell of the grid is given a value that indicates the
occupancy state of the cell.

2. Geometric description:- A description of the obstacles or of the free
space is given in geometrical terms mostly polygons

3. Objects:- Here the description of the world is given directly in objects
and their geometric or topologic relations. The objects can also be
symbols or sensorial states.

4. Configuration space:- The world is described in terms of an n-degrees-
of-freedom system's configurations
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2.2.1  The Configuration Space

The configuration space is a technique of creating a map that facilitates
modelling and planning. This representation is applicable to occupancy grids as well as
geometric maps.

The idea of shrinking a dimensional robot to a point, parameterising its
dimensions and kinematics, and mapping the obstacle or the free space into a
multidimensional space was first introduced by Udupa [Udu 77]. It was further
investigated by Lozano-Perez [Loz 79] who also gave the name configuration space. In
this space the robot is represented by a point and each dimension is one of the robot
state variables. We map into the configuration space all the “legal”, non collide,
configurations. The union of all the latter defines the free space. This mapping
transforms the problem of motion planning of dimensional robot into a point motion
planning problem and represents the constraints on the motion in an explicit form.

An example of a configuration space for a round mobile robot in 2D working
space is given in figure 2.2 below. We see there that the borders of the obstacles were
extended by the robot radius Hence the free space (Cfree) describes all the permitted
positions of the robot centre.

φ = 2

obstacle

robot R
r

C-B

CFree

r

R

Figure 2.2 Configuration space for round robot

The formal representation of the configuration space that is described here is
given by Latombe [Lat 91 p7-11] and the same notions he uses will be used throughout
this work.
Let W be an Euclidean space RN  with N =2 or 3, called the workspace
Let A  be the robot that can be described as a compact (i.e. closed and bounded)

subset of W.
Let FA  and FW  be Cartesian frames linked to A  and W   respectively.
Let B  be a closed subset of W  representing the obstacles.

By definition, since A  is rigid, every point a  of A   has a fix position with
respect to FA, but its position in W  depends on the position and orientation of F A
relative to FW. A configuration of an object is a specification of the position of every
point of this object relative to a fix reference frame. Therefore, a configuration q  of A
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is specified by the position P  and the orientation Θ  of FA with respect to FW. The
configuration space of A  is the space C  of all the configurations of A.

Now we can define the free space in C, which we denote Cfree as the union of
all the configuration of A for which  A ∩ B1{ ,..., Bm} = φ{ }. C-B  is the representation

of B1{ ,..., Bm} in C.

2.2.2 Occupancy Grid

The occupancy grid is a direct digitised modelling approach. A grid is imposed
on the working space. Each of the grid cells can have one of the following values:
occupied, free [Bar-Lat 89] [Mitch 88], and in some systems also unknown [Elf 85] [Elf
89] [Weis 87]. This kind of model can be updated easily by updating the value of each
grid cell without having any influence on the values of other cells. Mitchel [Mitch 88]
and Elfes [Elf 89] plan their path directly on the occupancy grid by searching a path
that passes only through empty cells. Mitchel also introduces a refinement to the grid
by using a quadtree. Barraquand and Latombe use the grid as a base on which they
impose a potential field. [Bar-Lat 89] [Lat 91]. The calculation of the potential field
gradient and the search of the path are executed directly within  the grid cells. One of
the main advantages of this representation is that it enables both the integration of the
free space information and direct plans of a path within the same single “chip”. [Crow
87]

2.2.3 Moravec - Elfes probabilistic grid

Moravec and Elfes have developed a navigation system that is based on a
probabilistic occupancy grid and sonar. Their system includes planning, mapping and
localisation all within the occupancy grid [Mor-Elf 85] [Elf 85, 89].

The occupancy grid representation employs a 2D tessellation of the space into
cells, where each cell stores the probabilistic information of its occupancy state.
Formally an occupancy field is a discrete-state stochastic process defined over a set of
continuous spatial co-ordinates, while the occupancy grid is a lattice process, defined
over a discrete spatial lattice [Elf 89]. With each cell C  of the occupancy grid a state
variable s C( ) is associated. s C( )  is defined as a discrete random variable with 2 states
occupied (OCC) and empty (EMP). The cell state is exclusive and exhaustive hence
P s C( ) = OCC[ ] + P s C( ) = EMP[ ] = 1

The information of the occupancy state of each grid cell can be obtained from
several sources and from several readings each of which with a certain accuracy
probability. For an a priori information obtained from a map the reliability depends on
the time that passed from the mapping and the nature of objects. The reliability and
hence the probability decreases with the age of the information. The rate of decrease
depends on the nature of the object. A mountain is more likely to stay in the same place
and shape than a house, which in turn is more stable than a temporary barrier.

For sensing devices, like sonar, IR and other distance sensors, the accuracy
depends mostly on the sensor itself, the distance, and the shape, the texture and the
material of the object to which the distance is measured. To each sensor we denote a
probability density function of the form P r( ) where r   is the measured distance. A
probability function is ascribed to other sources of information. The estimation of the
occupancy probability is done by fusing the information regarding each cell using a
Bayesian estimation procedure.

The occupancy grid here is modelled as a Markov random field of order 0 so
each cell value is estimated independently of the others. To allow an incremental
composition of information a sequential updating formulation of Bayes' theory is
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applied. Given  a current estimate state s of cell Ci at a time t, p t s Ci( ) = OCC[ ] and the

updating information p t + 1s Ci( ) = OCC[ ] the cell state  at t + 1 is evaluated as follow:

p t + 1s Ci( ) = occ[ ] =
p t + 1s Ci( ) = occ[ ]p t s Ci( ) = occ[ ]

p t + 1s Ci( )[ ]p t s Ci( )[ ]
s Ci( )

∑

The above formula is the multiplication of the current probability that the cell is
occupied and the updating probability that the cell is occupied normalised by the sum of
the multiplication of the old and updating probabilities to keep the sum of the new
probabilities equals to 1.

An ideal sensor would have an occupancy probability profile that can be
characterised by:

p r z( ) =
δ r − z( ) ;r ≤ z

0,5 ;r > z





        z is the real distance.

p[s(x)=OCC | r] (x)

1

0.5

0
xr

Figure 2.3 Occupancy probability profile for an ideal sensor

When applied to a grid it is translated to a rectangle of one unite height over one
cell (figure 2.3).
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p[s(x)=OCC | r] (x)

1

0.5

0
xr

Figure 2.4 occupancy probability profile for real sensor

For a real sensor we have to calculate or more often to measure the probability
profile. An example is given in figure 2.4.

2.3 World modelling and Planning Approaches

The ultimate goal of path planning is to find a way for the robot to move from
one location or configuration, its current location, to another location (configuration)
without colliding with any obstacles. A good planning method is evaluated by its
completeness (its ability to find such a path if one exists), its applicability and its
complexity. In many cases we also require that the path will be optimal or at least near
optimal.

A good world model is essential to path planning. A navigation system, and
actually any moving intelligent creature, should transform the physical properties of the
world into some level of symbolic representation from which it would be able to extract
the information relevant to navigation. The symbolic levels of the representation are
varying from almost direct representation of the environment as is the case in
occupancy grids (see for example [Elfes 89] or [Bar-Lat 89]) through intermediate
levels like geometrical description, mathematical description and sensory states'
representation [MAT 90a], to highly sophisticated representation. In the latter the
system is given objects of the world like walls, corridors, doors and roads, their
topologic relations, their geometric location and  attached relevant properties like
passability [Lev-Law 90] [Hors 88] [Mitch 88].

There is a strong coupling between the model and the planning process. A large
number of world modelling methods were developed to solve the path planning
problem. These methods can be divided into two groups according to the planning
method they serve: graph based methods and potential field  methods

The potential field methods impose an artificial potential on the robot working
space. The potential field consists of an attractive field centred at the target
configuration and repulsive potentials on the borders of the obstacles. The robot itself is
represented by a point particle in a configuration  space or a collection of connected
points in the working space moving under the force generated by the combined
potential fields.
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2.3.1 Potential Field Methods

This approach is inspired by fluid mechanics and electromagnetic. The basic
idea is to impose an artificial potential field on the map (a configuration space,
occupancy grid or polygons map) and to consider the robot as a particle (or connected
particles) moving under its influence. The potential field, if adequately chosen, is
supposed to reflect the structure of space in such a way that will cause a particle
moving under its influence to choose a collision free (and normally optimal) path from
the current configuration to the goal configuration.

A “good” potential field is usually a superposition of an attractive force that
pulls toward the goal configuration and several repulsive fields that push the robot
away from obstacles and prevent collisions.

When a potential field, denoted by the potential function U, is imposed on the
configuration space the movement of the robot and hence the path are calculated
consecutively by moving along the line of force that are induced by the potential field
and defined as F q( ) = −∇U q( )  at any point q of the configuration space.

Originally the potential field method was developed by Khatib [Kha 86] as a
real time collision avoidance system. The treatment of the environment is local and the
system acts like fast descending optimisation system. The latter is the cause for local
minima which are the most problematic drawback when applying this approach as a
general path planner. There are two different approaches to deal with the local minima,
the first is the attempt to design an “ideal” potential function that has only one
minimum, at the goal configuration, regretfully this is almost impossible. The second is
to furnish the system with efficient techniques to escape from the undesired minima. It
is impossible to ensure a minimum free potential function in high dimensional (3D and
more) configuration space, therefore most of the existing systems are using a
combination of these two approaches to deal with the local minima's problem.

2.3.1.1 Barraquand Latombe Distributed Representation

J. Barraquand and J-C Latombe [Bar-Lat 89] propose a numerical potential
navigation function based on a grid representation of the configuration space. They
compute the "Manhattan distance" in GCfree (the collection of all grid's free cells)
from the goal to each of GCfree cells. The distance is calculated by a "wave front
expansion" algorithm. The goal cell is denoted the value 0, each of its free neighbours
is given the value 1, each of theirs free non valued neighbours is given the value 2 and
so on. The process terminates when the entire subset of GCfree accessible from goal
cell is explored. A best first search algorithm is used to find the shortest (in "Manhattan
distance") path from the initial cell to the goal cell. A drawback of this method is that it
usually induces paths that rub the Cobstacle.

An improved method that induces paths remote from the Cobstacle is based on
extracting the skeleton of GCfree in the first stage and computing a potential field
guided by the skeleton in the second and third stages. In the first stage the distance from
the borders of G Cfree to each cell c ∈ GCfree  is computed using a wave front
expansion algorithm. Whenever two wave fronts meet, the cell is registered in the
skeleton S.

Next the goal and the shortest path from the goal to S are added to S and the
distance of each cell s ∈ S  from the goal is computed and S  cells are given their
distance as potential value. At the third stage the distance of each cell c
( c ∈ freeGC ∀c ∉S ) from S  is computed in the same wave front expansion method
starting now from S. c  is given a  value based on its distance from S.:

cSd = dist c,s s ∈S( ) where s is the nearest skeleton point to c.

V(c) = V(s) + cSd   (V  stands for the cell's potential value).
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A best first search procedure is applied to find the path, which is not necessarily the
shortest.

2.3.1.2 Discussion

Usually these planning methods are incomplete in the sense that they are not
guarantied to find a solution even when one exists. Their main advantage as motion
planners is their rapidity [Lat 91].

2.3.2 Road Maps (Graph Based Methods)

The road map  approach is a graph representation of the workspace or the
configuration space. The basic general idea is to capture the region connectivity and
represent it in a graph. The search of a path is performed on this graph of “normalised”
paths, hence the problem of path planning is simplified and reduced to graph search.
Several different approaches are used to create the graph, two of them are surveyed here
(i) “visibility graph”   and (ii) "free ways net". A third approach, the retraction
methods, which is the base of the representation used in our theory of navigation, is
surveyed here briefly and discussed in details in chapter 4.

Schwartz & Sharir [Sch-Shar 88] give a definition of retraction that is applicable
to all the road maps' methods (with the necessary adoptions):

Any pair of positions lies in the same connected component of the c-
space (workspace) if and only if their normalised graph representation
lie in the same connected component of the road map.

2.3.2.1 Visibility Graph

This method is among the first used in motion planning. It was firstly introduced
by Nilsson [Nils 69]. When the c-space is given in a polygonal description it can be
shown that if a free path exists between qinit and qgoal then it exists a semi free path (a
path that also touches the borders of the free space) that pass through the vertices of the
obstacles' borders. Moreover, the shortest path will pass through one or more vertices,
unless there is a straight line that connects qinit to qgoal and lies entirely within Cfree
[Lat 91] [Mitch 86] [Mitch 88].

The visibility graph G is then defined as follows:
G’s nodes are qiniit , qgoal and the vertices of C-B, (at finite distance).
Any pair of nodes is connected if and only if the straight line that
connects the vertices they represent lies entirely in Cfree except possibly
its two end points, or it is an edge of C-B [Lat 91 p156].

After constructing G, it should be searched for connected path between qinit and
qgoal. The search can be worked out using various searching techniques. An
improvement to the basic visibility graph is G'   in which all the nodes that represent
concave vertices where deleted. The naive approach to construct the visibility graph is
to check the line segments connecting every pair of convex vertices. If a line segment is
an edge or lies entirely in the free space than it is added to the graph. This method is
very expensive and requires a computation time of O(n3 ) where n  is the number of
convex vertices.

Some more efficient methods where developed which cost 0(k + nlogn) where k
= n2  in the worst case and k =n  in the best case. The biggest problem of this method is
the size of the searching space. An example is given in figure 2.5. The lines of sight
from concave vertices are not considered for the search in order to save time and
computing efforts.
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q
init

goal
q

Figure 2.5 Visibility graph. The lines from the concave vertex are broken. The
calculated path in bold lines

2.3.2.2 Freeway Method

The freeway method, which was presented by Brooks [Brooks 83] is adequate
to solve the problem of translation and rotation of moving polygonal object, in 2D and
3D polygonal space. It is based on extracting straight linear general cylinders from the
free space. These cylinders are called Freeways and connecting them into a graph
creates the freeway representation.

In the 2D case each pair of edges that belong to the free space borders is
checked whether they face each other (meaning that a straight line connecting them
passes entirely in the free space [Lat 91]). Whenever they are, the bisector of the lines
that contain the edges is taken as the axis of the cylinder (figure 2.6). A perpendicular
line is moved along the axis, its intersections with the edges (E1 and E2 in figure 2.6)
define the cylinder section, when it passes the edge end points (convex vertices) it
keeps its length and the cylinder continues till the line intersects another edge. A
transfer from one freeway to another is possible whenever the two intersect and the
intersection is non empty.

A freeways' net is the representation of the possible motion along and between
the cylinder axis. Each freeway is checked for the possible range of free orientation of
the moving object and each intersection is checked for the possibility to transfer from
one freeway to the other. The results are mapped into a connectivity graph that can be
searched for a path from one point to another in the workspace.

The freeways' representation has the advantage of simplicity when solving the
problem for moving polygonal object because it keeps the configuration space
dimension as low as the real world dimension. However this representation is in general
incomplete.



19

bisector

E1

E2

Figure 2.6 Extraction of a freeway

2.3.2.3 Retraction

The retraction methods proceed by retracting the working space or the
configuration space onto a lower dimensional (usually 1D) subspace, while conserving
the connectivity of its components. This reduces the dimension of the problem and
emphasis the essential property of connectivity. When the subspace is one dimensional
the problem of path planning becomes one of graph search.

The most well known and widely used of those methods is the Voronoi diagram
and its variants. Shortly the Voronoi diagram is the union of all point in a given space
that are equidistant from at least two point of a given subset of the space. In navigation
the latter subspace is usually the borders of the obstacles or the borders of the free
space. Being the base tool used by  the navigation presented in chapter 4, a formal
treatment of the Voronoi diagram is discussed there.

The very earliest motivation for the study of the Voronoi diagram stemmed
from the theory of quadratic forms. Gauss (1840) observed that quadratic forms have an
interpretation in the form of the diagram. The idea was exploited by Dirichlet (1850) to
establish a simple proof of the unique reducibility of quadratic forms. A generalisation
to higher dimensions was provided by Voronoi, after whom the diagram is named. A
detailed and good review of the Voronoi diagram and its application in science is given
by F. Aurenhammer [Aur 91].

In robotics, the use of the Voronoi diagram is very popular [Sch-Shar 88]. When
constructing the diagram, on top of conserving the connectivity of the space
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components, the lines that represent the free space are the farthest as possible from the
obstacles. The Voronoi diagram is also used as a base for potential field planning [Bar-
Lat 89] who developed a way to create the diagram from an occupancy grid (see
2.3.1.1.).

2.3.2.4 Constant Traversability Zones (CTZ)

One of the most important parameters for navigation is the traversability of the
areas the robot moves through. A model of the world based on the traversability of each
area is used by several navigation systems [Meys 91] [Mitch 88]. A traversability factor
is computed for each area of the working space. The traversability factor can be defined
in many forms, for example as the ratio between the mean velocity in the area and the
maximum velocity or the inverse of the required propulsion power.

The world is divided into homogenous zones (CTZ Constant Traversability
Zone), each zone is composed of areas with equal traversability factor (within certain
distance from the mean value). The representation can be in a graph where each node
represents the centre of a CTZ and the branches connects neighbouring zones. Another
possible representation is a quadtree [Mitch 88]. This approach enables a world
modelling at any scaling (resolution) hence it supports a hierarchical planning. Another
advantage is the optimisation oriented traversability factor that represents directly the
phenomena relevant to the optimisation.

2.3.2.4.1 Hierarchical Representation and Planning

A three levels nested hierarchical system has been proposed by Meystel [Meys
91]. The system consists of a planner at the top level, a navigator at the intermediate
level and a pilot at the low level. Each of the levels uses a specific world representation
in adequate scale. The planner uses a high scaling low resolution long range CTZ
model from which it derives a path to the goal. The path is define as a sequence of strip
and transmitted to the navigator.

The navigator uses a lower scaling higher resolution representation. It explores
the planner path piecemeal, trying to find a path within the strip's borders. If succeeded
it transmits the path to the pilot that deals with the immediate move control, if failed it
returns the control to the planner that searches another solution. The pilot uses a
detailed representation of the immediate environment to find an obstacle free path,
when failed it returns the task back to the navigator.

2.3.3 Advantages and Disadvantages.

The main advantage of the graph based method is the rapidity of the search and
the compactness of their presentation. From all these methods only the visibility graph
suffers from the same disadvantage usually related to the potential field methods. Any
time the position of the robot or the target is changed the model should be updated. The
other graphs are perhaps a little bit more difficult to construct but once it has been done
they rest unchanged as long as the world does not change.

The main drawback of all the metric planning methods is the rigidity of the
plans. The robot is obliged to follow the planed path very accurately. Whenever the
environment changes or the robot drift from the planed path we are in troubles. The
problem of drift is dealt with by introducing self localisation abilities, that enable the
robot to correct its position based on its sensors (see 2.4)

The problem of a changing world is dealt with partially by obstacle avoidance
systems. The robot makes a detour around unexpected obstacles and then returns to its
original trajectory, but when the changes are more severe than an obstacle on the way,
the map and the model should be updated and re-planning is essential.

The metric planning which is followed by metric execution is limited to static or
quasi static world where everything is known and expected. Brooks argues [Broo 90,
91] that planning as such is not realistic and in his words "cannot be grounded" and
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disconnected from the real world. Chapman in [Chap 91] discusses the combinatorial
explosion of exact planning and argues for plans as communication, in which the plan
is regarded as an advise to the robot who has the ability to take the right actions based
on the perceived situations.

To overcome this drawback most of the current robotics navigation tries to
introduce more flexibility and reactivity in planning and execution. The rest of the
chapter is dedicated to such navigation systems.

2.4 Localisation in Metric Navigation

The answer to the question “where am I” has essential role in navigation, in path
planning as well as in path following. A path can not be planned unless the planner can
situate the robot current position and the goal on the map or in the configuration space.
When executing a pre-planned path the robot position relative to the path should be
known in order to control the robot move. When a path is computed in geometrical
terms the answer to the question should be in the same terms. The robot drift from the
path, hence its ability to arrive to the goal, depends heavily on its localisation accuracy.

2.4.1  Dead Reckoning

Dead reckoning covers all the localisation approaches which rely solely on
internal computation. These navigation systems wander around the world like blinds
and do not use any external feedback to verify and correct their position.

Terrestrial dead reckoning is based almost solely on odometery, which in some
systems is aided by compass  or gyro, especially for outdoor navigation. The position
computation from the odometery output is very simple. The reading of the distance is
integrated using the following formulas:

given:
x, y are the Cartesian co-ordinates
θ is the direction of move in the same co-ordinates system
s is the distance travelled by the robot.
we have:

(1) x s( ) = Cosθ s( )
s
∫ ds

(2) y s( ) = Sinθ s( )
s
∫ ds

The direction of move, θ  can be obtained either directly from an attitude sensor, e.g.
compass or gyro,  from the direction of the wheels or from computation based on the
distance difference between two wheels as in (3).

When sr, sl  are the distances travelled by the right and left wheels respectively
and D  is the lateral distance between the wheels then:

(3) θ s( ) = rs − ls( ) D

2.4.2 Sensorial Based Localisation

The main problem of the odometery based positioning is the error accumulation.
Several methods were suggested to compensate the positioning error using sensors
input that varies from sonar at the lower end to video and image processing at the
higher end.

A. Elfes presented a localisation correcting system that matches a local
occupancy grid with a global one [Elf 89]. The system creates a local occupancy grid
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from current sonar readings. It tries to find a position around the  position known from
the odometery that will give the best matching between the local and the global
occupancy grids.

J. Crowly suggested line segments matching to correct the positioning errors
[Crow 88a]. Line segments are extracted from sonar readings and matched with straight
lines that represent the borders of the free space in the global map. The method is based
on the assumption that the free space is characterised by straight lines and
distinguishable corners hence it is well adapted to indoor navigation. A probability
process corrects the position of the robot and the results are quite good. A work  based
on Crowly's ideas was made by Wang  [Wang 93] in our institute.

The triangulation approach is well known and widely used in navigation. From
the known position of three identified points and the angles between the directions
toward these point the current position is calculated. Only a simple trigonometric
calculation is needed. A reduced method is based on a known global direction, from a
compass for example, and the azimuth to only two known identified points.

Proximity beacons are use as well for localisation. There are active beacons that
transmit a radio or light signal with identification code as well as passive beacons using
for example bar-code identification. While the robot pass closed to a beacon it corrects
its positioning.
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2.5 Reactive Navigation

The classical approach to navigation that is based entirely on planning and on an
explicit symbolic model of the world has exhausted the computation resources all along
the way [Broo 91]. Even more, it does not seem to  operate successfully in a dynamic
changing world. It has difficulties in dealing with sensors' errors as well. The models it
uses are not realistic, it appears that the world is to complicated to be presented
completely. Whenever an attempt to create a complete model that includes all the
essential knowledge needed to deal with the uncertainties and surprises of the real
world, the model became enormously big and the planning too expensive in time and
computer resources as J.P.L found out while developing their Martian robot [Mill 89
91].

The reactive approach to movement control and navigation takes the opposite
extreme. One of the leader of this approach, Rodney A. Brooks stated it clearly and
loudly in a very short sentence "The world is its best model"  [Broo 90 91]. In these
articles he also claims that, all in all, the symbolic system, which is a fundamental
property of the "classical AI" , is in bankruptcy.

To overcome the severe limitation of classical AI the reactive or situated
activity proposes an  alternative dogma based on what Brooks calls the physical
grounding hypothesis. The robot is connected to the world through a set of sensors and
actuators, all the knowledge in the system is extract from physical sensors and all the
goals and desires are expressed in terms of physical actions. The basic module of such a
system is the behaviour that is achieved by direct or almost direct connection of the
sensors to the actuators. The following sections survey some of the reactive robots that
demonstrate behaviours and navigation abilities.

2.5.1 Negative Feedback (Cybernetics)

Situated reactive robots were developed and tested at the late 40s and the
beginning of the 50s. Based on the idea of negative feedback that was developed by
Norbert Wiener and Julian Biglow, Wiener and J. Wiesner built a simple bug robot that
could behave like a moth (e.g. attracted by light) or like a bedbug (e.g. repelled by
light). Two photocells were mounted on a tricycle, one at each side. The output from
the cells, after amplification, reaches the tiller controlling the steering wheel.
Depending on the direction of the output voltage, the cart will go toward or away from
light. [Mas 90].

The same idea was presented by A. Braitenberg [Brait 84] where the light
detectors are connected directly to two motors, each drives a wheel on opposite side of
the robot. The motors' speed is directly proportional to the intensity of the light. When
the left detector is connected to the left motor and the right to the right motor the robot
tends to turn away from a light source. For an external observer the robot seems to b
timid. A cross connection will create an aggressive behaviour, the robot will follow and
chase the light source.

At the beginning of the 50s Dr. W. Grey Walter of the Burden Neurological
Institute in Bristol, England built a robot resembling the bug of Wiener but with touch
sensor in addition. This robot named the Tortoise is attracted to moderate light repelled
by intensive light and avoids obstacle on its path  [Mas 90].

These systems demonstrate how even with the simplest architecture one can
imagine that a somewhat "intelligent" behaviour can emerge (from the observer point of
view).

2.5.2 The Creatures of Brooks

Brooks and his team in the Mobot Lab at MIT have constructed and developed
several mobile robots based on the direct coupling of perception and action. Their work
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is a bottom up development that implies the implementation of basic low level
behaviours from which emerge more sophisticated and intelligent behaviours.

In order to construct physically grounded systems Brooks has developed the
subsumption architecture. The subsumption program is built on computational substrate
that is organised into a series of layers, each connecting perception to action. In his
robots the substrate is a network of finite state machines augmented with timing
elements (AFSM). [Broo 86] [Broo 90].

Each AFSM has a set of registers and a set of timers, or alarm clocks, connected
to a finite state machine that control a combination network by the registers. Messages
from other machine are written into the registers, replacing any existing information,
through input wires that attached to them. The arrival of a message or the expiration  of
a timer can trigger a change of state. The states can either wait, dispatch to one or two
other states, or compute a combination function from the registers' values. The results
are directed either back to one of the registers or  to an output of the AFSM.  Sensors
deposit their values in certain registers and certain outputs direct commands to
actuators.

New machine can be connected to an existing network in a number of ways.
New inputs can be connected to existing registers. New machine can inhibit existing
output or suppress existing input, by being attached as side-taps to existing wires.
Inhibition and suppression are the mechanism by which conflict between actuator
commands  is resolved.

The behaviour language groups multiple processes (each of which usually turns
to be implemented as a single AFSM) into behaviours, which are more manageable
units, being selectively activated or de-activated. Messages passing, suppression and
inhibition can exist within a behaviour as well as between behaviours. Behaviours act
as abstract barriers, one cannot reach inside another.

2.5.2.1 Allen

Allen is equipped with sonar range sensors and odometery onboard and Lisp
machine to simulate the subsumption architecture off board. The control consists of
three layers. The first layer is an obstacle avoidance mechanism based directly and only
on the sonar return. The control command is the vector sum of the negative inverse
square of the sonar returns. As a result, each obstacle induces a repulsive force and the
robot tends to turn away from obstacles. An additional reflex halts the robot when an
obstacle on front moves in its direction.

The second layer, the wander around, is a random direction generator that
produces a new direction about every 10 seconds. This direction is coupled with the
obstacle avoidance in vector addition to generate the control command.

The third layer makes the robot look with his sonar to distant places and tries to
go toward them. It monitors the relative position by the odometery and generate a
direction that suppresses the second layer desire and added to the first layer in vector
addition.

The robot seems to exercise two intelligent behaviours, when only the first and
second layers are activated it wander around while avoiding obstacles. When the third
layer is activated as well, the robot goes toward a target searching its way among
obstacles and avoids collisions. [Broo 86] [Broo 90]

2.5.3 JPL/CAL TECH Reactive Mobile Robots

David Miller from JPL (Jet Propulsion Laboratory at California Institute of
Technology) has developed 2 totally reactive robots for indoor and outdoor use. His
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work was motivated by the failure to develop such autonomous robots based on the
classical approach [Mill 89] [Mill 91].

2.5.3.1 Indoor Total reactivity

This robot was built on a remote controlled toy car. It uses only 2 bytes of
memory to model the world and is programmed to patrol an area, locate pickable
objects and dump them in central location. The sensory consists of contact and
proximity sensors and light detectors which are wired to the robot's effectors. The
proximity and contact sensors induce repulsive force so when a sensor fired an
appropriate behaviour is executed (i.e., turn right if the left proximity sensor is fired).
The light detectors induce attraction.

Such a system tends to be locked in extensive loops, to avoid these loops three
methods where applied. An asymmetry of opposite behaviours causes the robot to crab
aside while exercising two opposite behaviours successively. A counter notes
behaviours' transition, if the number of direction changes exceeds the limit a random
steering is executed. To get out of blind alleys the robot will backup a certain distance
while its way is blocked. If afterwards it won't be able to go forward more than it has
backed next it will backup a longer distance. This, combined with the random steering
would be sufficient.

When the robot had acquired an object it would continue until it could see a
homing beacon. It would then steer toward the beacon but in lower priority than the
avoidance behaviours. When the robot reached the beacon it would dump the object and
continue exploring.

This robot has no vision and the only world model it maintains is the states of its
behaviours, the switch of direction counter and the backup counter. The robot
accomplished a quite complicated task of moving through the world while doing its job.
The shortcoming of the system is the inefficiency of the path it follows.

2.5.3.2 Outdoor Reactive

In addition to the indoor robot the outdoor robot is equipped with a very narrow
depth field camera. A set of images at  different focus settings is taken. The areas of the
image that are in focus are analysed and compared to an idealised plane. Significant
deviations are considered as obstacles that should be avoided by the robot. The
behaviours are the same as for the indoor robot and the only difference is the distance
of sensing.

2.5.4 Why Pure Reactivity is not the Solution

Pure reactivity provides the basic behaviours and reflexes that enable the
immediate low level of existence. The robot can move without bumping into walls and
obstacles. It can even go toward or follows certain pre defined stimulus and performs
some simple task on its way like collecting empty beer's cans. However its abilities are
quite rigid, whenever we want the robot to demonstrate a certain behaviour in given
circumstances, a long and accurate tuning is needed. For example the robot Herbert
[Broo 91] was programmed and conditioned to turn left after passing through a door in
order to return to the place where he dumped the soda cans. Changing the dumping site
will require new programming.

Moreover the reactive robots are quite sensitive to local conditions. The robot
behaviour in the presence of several stimuli of the same kind depends on the local
conditions unless behaviours that deal with such cases were provided. For example a
robot that follows corridors when confronted with a Y junction will follows one of the
possible corridors. Which one will be chosen depends, if there is no preliminary fixed
preference to one side, on the exact position and attitude of the robot, conditions that
can be changed from one passage to another. Hence a consistent behaviour of the robot
cannot be guarantied.
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If we want to assure the safe home returning of a robot like Herbert we should
provide sets of rules and behaviours that covers all the possibilities in its working
space. In a complex environment that will require enormous programming effort as well
as huge memory. That limitation leads to the development of robots that use world
models and presentation to control their reactive basic behaviours.

2.5.5 "Toto" - Behaviours based Navigation

Toto is a robot that belongs to the ensemble of Brooks creatures, its description
is given in [Broo 90] [Mat 90a]. It is a result of the limits of the pure reactive
"navigation". This 3 wheeler is capable of following a continuous trajectory in
discontinuous velocity. It is equipped with a ring of 12 sonar range sensors in equal
angular partition and a flux gate.

The robot was programmed in the behaviour language within the layered
paradigm of the subsumption architecture. The system consists of 3 main layers: (i)
collision-free move, (ii) landmarks detection, and (iii) map learning and path planning.

An object boundary tracing emerges from the combination of 4 simple
navigation rules [Mat 89]:

Stroll: uses stop go and backup commands based on the distance from the
danger zone and allows the robot to move safely forward.

Avoid:  changes the robot direction to turn away from any obstacle within the
safe area. Combined with stroll it furnishes the robot the collision free
wander around behaviour.

Align:  keeps the robot in the edging zone by keeping it from turning away
from the followed object. The combination with stroll and avoid
produces a convex boundary following behaviour.

Correct: by monitoring the side sonars it allows the robot to follow concave
boundaries.

Danger zone, minimum safe distance and edging distance are three thresholds
distances.

2.5.5.1 Landmarks

Being frequent and static Mataric chose walls and corridors to be the landmarks
for Toto world representation. The low level navigation behaviour produces a path at
more or less constant distance from the  objects' boundaries. When the side sonar
readings are short and the average compass bearing is constant for a certain time
without too large deviation from that average, the landmark detection mechanism
concludes the existence of a wall on that side. The presence of walls in both sides
indicates a corridor. The actual definitions of landmarks in the system are: (i) left wall,
(ii) right wall and (iii) corridor to each attached its compass bearing.

2.5.5.2 Spatial Learning

A distributed graph based on the subsumption architecture is used to represent
the world, i.e. the landmarks and their relations. Each node of the graph is a behaviour
consisting of a collection of AFSMs [Mat 90b] and is equivalent to any other robot's
behaviour. Each node is an independent agent that corresponds to certain inputs,
landmarks, and  generates messages that pass to neighbouring nodes or in certain cases
as directives to the motors.

The graph interconnection is pre-compiled and implemented in hardware which
result in static topology. The chosen topology is a linear list and the robot is initially
given an empty nodes graph which it fills during its exploring of the environment. By
connecting all the behaviours (nodes)  to a switchboard that routes appropriately jumper
connections the problem of loops and junctions that implies connection between non
neighbours is solved and full flexibility of dynamic connection is achieved. To keep the
complexity linear with the number of nodes, the number of connection from each  node
is limited to 4, a number that was proved experimentally sufficient.
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Each node of the graph contains the type of the landmark, the compass bearing,
rough position estimation and rough length (in time) estimation. Whenever a landmark
is detected its type and compass bearing are broadcast to the entire graph. Initially the
graph nodes are empty and the landmark information is stored automatically in the first
node that corresponds now to the robot current position and becomes activated.

When a node receives a broadcast landmark it compares the type, compass
bearing and estimate position to its own, taking into account spatial duality. A matching
causes activation of the node and deactivation of the precedent. When none of the nodes
match the landmark it is stored in as new in the node adjacent to the active node, or
when it is not empty to an empty node which is defined adjacent by a jumper.
Whenever a node is active it spreads expectations to its neighbour(s) in the direction of
move. A match is considered true only if expected, when not expected it is either false
or indicates a loop.

Based on the graph a path to a given destination can be planned and executed.
The goal node continuously sends a call to its neighbours which in turn propagate this
call to their neighbours. The call is eventually reach the currently active node. The
robot by following the direction from which the call is arrived will reach the goal node
on the shortest topological path. To find the shortest physical path the length estimation
is used, when a node receives more than one call it will choose the direction with the
attached shortest accumulate length.

2.5.5.3 Discussion

 M. Mataric and the robot Toto have demonstrated that map can be built based
on simple landmarks perceived by poor sensory and coarse position estimation. It was
also shown that a map can be built in a distributed manner. The system lacks the option
of introducing a priori knowledge as well as the ability to communicate useful
information to other systems. The information is totally "personal" and has meaning
only to the robot itself. Planning is limited to paths the robot has already followed and
any "creativity" if at all, is based on random wander around behaviour used to explore
the world.

2.5.6 AuRA - The Supermarket

AuRa - Autonomous Robot Architecture is an ambitious experiment to integrate
all that exists in the domain of autonomous mobile robotics.  Ron Arkin [Ark 90] has
developed a system that consists of reactive behaviours (which he calls schema), classic
control,  high level planning, explicit knowledge representation, distributed knowledge
representation, long term memory for a priory knowledge and short term memory for
local perception knowledge representation.

Like in a supermarket, a large variety of basic behaviours is available, from
which the planning subsystem chooses the adequate behaviour. The choice of the
behaviour is based mainly on the plan, but is effected by the current perception as well.
The approach used in AuRA for developing navigational techniques is as follows. First
the motor behaviours required for a specific navigational task and domain are
developed and tested. Next the adequate perception strategies and treatment are
developed in order to supply the information required in mission. Finally, the planning
and knowledge representation are updated to include the new possibilities.

2.5.6.1 AuRA System description

AuRA consists of five subsystems that were designed to provide navigation
capabilities over a wide range of problem domains.

The perception is the gateway for all the sensory data into the system, shunted
to the motor schema manager where the perception schema processes the information to
be used by the reactive motor behaviours and to the cartographer for the construction of
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local world models. Specific information pre-processing and flow control occur in the
perception subsystem.

The cartographer is responsible for the acquisition and maintenance of both the
a priori knowledge which is stored in the long-term memory and the local temporary
perception which is stored in the short-term memory.

Figure 2.7 The AuRA architecture
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The planning subsystem consists of hierarchical planner that generate the plan
and a distributed reactive plan execution system. The hierarchical planner generates a
plan which comprises linear legs and intermediate goals based on the global world
model which is contained in the long-term memory. Each segment is translated into a
sequence of motor action and perception schema. The planning subsystem includes the
motor schema, which is the collection of all the possible behaviours of the robot, as
well.

The motor subsystem translates the velocity vector to physical motor
commands.

The homeostatic control monitors the internal robot conditions. It provides the
relative information to the planner and protects the inner system from damage.

2.5.6.2 Discussion

The system is an attempt to integrate the contradicting approaches, classical
hierarchical planning and reactive execution. It suffers from two severe disadvantages.
The global world representation is human made which cannot be produced by the
system itself hence is rigid and non dynamic. The behaviours and perception schema
are domain dependent, new behaviours should be developed to match any unexpected
change in the world.

The ensemble of behaviours is limited by the perception schema abilities that
require an exact identification of landmarks to enable behaviour's execution. The plans
are rigid and the selection of action is pre-dictated hence reactivity and flexibility are
limited to local problem solving. This approach has two remarkable advantages:
(1) The planning is done within high level presentation and results in choosing the
proper schema and the conditions for their execution.
(2) The execution is independent of the planning, no exact planning (in metric sense) is
needed.

2.6 Project MARS (Mobile Autonomous Robot System)

This work was done within the frame of the MARS project in the I3A (Institut
d'Informatique et d'Intelligence Artificielle) at Neuchâtel University. Project MARS is
an effort to develop  behaviour based autonomous intelligent system embedded in
mobile robot. We define autonomy as the capability of a system to use at any time the
actual circumstances to serve its purpose (survival for biological systems, any
functionality or role for artificial systems). The definition of  autonomy requires a
compromise between:  (1) behaving in a situated way, that is in the context of the
particular, concrete circumstances, otherwise it would not be able to deal with the
dynamics of the world and (2) behaving in order to ensure its survival or its role
otherwise it would just be driven by the environment and, therefore, would not be
autonomous.

A three level architecture was proposed and developed to realise that
compromise, figure 2.8 describes it. The three levels communicate via a common
blackboard on which information is written and collected by the robot, the behaviours
and the cognitive level. This system was implemented on SUN work stations network
and the Nomad 200 mobile robot.

Level 0, the physical level, consists of the Nomad 200 mobile robot system. A
description of this system is given in chapter 6. The robot writes the sensors' output on
the blackboard and reads from it the next command to be executed.

In level 1 we find a collection of behaviours that were developed in I3A and
IMT (Institut de Microtechnique). Each behaviour is a stand alone asynchronous close
loop process that accesses the blackboard directly and in the case of the vision based
behaviours also the vision system. Each behaviour can be stimulated by the sensors'
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input. The behaviours communicate to the cognitive level their state of stimulation via
the blackboard. When stimulated each behaviour generates a command that is written
on the blackboard.

The cognitive level is based on a sensory-motor graph. It judges its situation
based on the ensemble of the present stimuli and activates the appropriate behaviour-
robot connection that will lead the robot toward achievement of its goal.

 

actuators

behaviours

cognitive  units level 2

level 1

level 0

status
activation

sensors

Figure 2.8 The three levels' architecture

2.6.1 Sensors and Vision System

2.6.1.1 Sonar and Infra Red

Sonar for long range measuring and IR distance detectors for short range are the
Nomad 200 built in sensors for information about its environment. The sensors are
arranged symmetrically around the robot body, 16 of each type. Based on these sensors
two behaviours were created: wander around and follow the passage.

2.6.1.2 Vision Devices

Two vision devices were developed by the IMT: a Vision by structured light
device using laser and a Landmark vision system. Based on these vision systems
several behaviours were created. Those are described in §2.6.2 below.

2.6.1.2.1 Laser range  by structured light

The device uses the principle of structured light to derive the geometry of a
profile in front of the robot. A laser device projects a light plan oriented ahead of the
robot. The developed system uses the profile of laser light to measure the environment
1 m ahead of the robot. The output is a laser range profile given by a list of 3D
segments belonging to the ground.

2.6.1.2.2 Landmark vision system

This active vision system uses a light source coupled to a camera to enhance the
detection of reflecting landmarks distributed in the environment. The bright landmarks
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are detected, labelled and tracked in a dedicated Transputer system that produces the
time sequence of labelled landmarks at an approximate rate of 15 Hz.

2.6.2 The Behaviours

2.6.2.1 Wander Around.

The wander around behaviour was developed in the IMT. The robot moves
straight ahead and changes the direction only when an obstacle is detected in front of it.
The new direction is such that the new move is away from the obstacle. Here, an
obstacle is a configuration of radial range field detected by the infrared sensors.

2.6.2.2 Follow a Passage.

The behaviour we are using consists in going in the direction of the general
orientation of the free space computed from local sonar and IR readings. The readings
are integrated in a local map of the configuration space and a skeleton is extracted
based on Voronoi graphs (detailed description is given in chapters 4 and 6). Four
independent behaviours based on the four principal directions of the space where
developed, namely: follow the link to the north, to the south to the east and to the west.
Whenever skeleton lines can be extracted, the behaviours coincide with their direction
are stimulated.

2.6.2.3 Vision Based Behaviours

Go Toward

This behaviour was developed at IMT. It moves the robot towards a landmark.
When several landmarks are visible, the move is towards the landmark just ahead of the
robot. The behaviour is no longer stimulated when the landmark is near to the robot. In
this behaviour, landmarks are visible spots, detected, labelled and tracked by the
landmark vision system.

Go Along

Developed at the IMT. It moves the robot along extended obstacles like walls,
keeping a constant distance to them. This behaviour comes in several flavours
depending on the sensing device used for its implementation and the preferred wall
following direction. Regarding the implementation, a first one is based on the radial
range profile from infrared, the other comes from an interpretation of the laser range
profile.

Go Along Left, Go Along Right

These behaviours are specialised forms of Go Along. Whereas any direction of
following is possible with Go Along, these two new forms have forced following
directions.

Push Box

This behaviour was developed at IMT. It is stimulated by an object near to the
robot. It moves the robot towards this object and upon collision, continues its move by
pushing the object straight ahead. The robot's moves are controlled to keep the object
on the straight line. Here, object detection for moving toward it and for controlling the
pushing is based on radial range field detected by the infrared sensors.

Homing

Developed in IMT. On activation, it moves the robot to a fixed location and
orientation with respect to two landmarks. It is stimulated on detection of two
appropriate landmarks detected by the landmark vision device.
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2.6.3 The Cognitive Level

This level was developed by Miguel Rodrigez of the I3A [Rod 94 a & b]. Its
heart is the sensorimotor graph. This graph represents the relations between sensory
states and action. Figure 2.9 shows a working space and its corresponding sensorimotor
graph for a robot that possesses the four behaviours of following passage. A sensory
state is defined as a set of stimuli and in the case of MARS it is equal to the set of
stimulated behaviours. Hence a sensory state defines unambiguously the set of
behaviours that can be selected. The sequence of behaviour selections and the resulting
sensory state constitute the unique source of knowledge for creating the graph and
controlling the system. A node in the graph is defined by the current sensory state and
its history (the sequence of behaviour-sensory state that led to the current state). This
approach, proposed by Gat and Rodrigez [Gat-Rod 92] enables the creation of an
unambiguous graph based only on the stimuli's states. Three modules of control were
defined and developed: the Learner, the Localiser and the Planner.

 

Figure 2.9 A working space and its sensorimotor graph

2.6.3.1 The Learner

The learner finds causal regularities (recurrent sequences in the history) and
organises the information into a topological graph, exploiting sensorimotor
neighbourhoods as exposed in [Gat-Rod 92]. So, the nodes are the perceptive states
composed of sub sequences of sensorimotor states and the edges the behaviours that
conduct the robot from one state to another. It selects the behaviours in order to explore
the unknown trails.

2.6.3.2 The Localiser

The localiser finds in which node of the topological graph the system currently
is. When lost, it selects the behaviours in order to experience a known sensorimotor sub
sequence (path) corresponding to a node of the topological graph.

2.6.3.3 The Planner

A goal  is defined for the robot  as a desired sensory state or a desired node in
the graph. The goal node is activate and spreads the activation to it neighbours which
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spread the activation to their neighbours and so on in process known as activation
propagation. In each stage the activation is reduced so the farther the node is from the
goal the less it is activated. The controller selects at each state the behaviour that
conducts to the most active neighbour.

2.6.4 Discussion

This approach like the one presented by M. Mataric gives a solution to the
problem of mapping and planning based on behaviours and stimuli. It creates a world
model by finding and mapping regularities and their connections in terms of
behaviours. It suffers from the same drawback, it can't use a priori data and based only
on learning and experimenting.

2.7 What Next

The current navigation systems suffer from several inherent drawbacks that
prevent good exploitation of the advantages residing in the two contradicting
approaches. The exact planning and metric navigation assure complete control of the
robot trajectory. A priory knowledge is easy to introduce, and mapping abilities enable
model's updating by the system itself. On the other hand the reactive behavioural based
approach provides the ability to deal with the unexpected and the surprises of the real
world. It although eliminates or reduces to minimum the dependence of the system on a
world model.

While the classic navigation requires a complete, totally accurate and detailed
model, the reactive approach, when using a planning, can use a vague and incomplete
model leaving the exact local "planning" and execution to the active behaviour itself.
The description of a trajectory is a sequence of behaviour. It is shorter and leaves more
freedom to the behaviour to react to the actual conditions. The combination of the two
approaches will benefit of the advantages of both worlds. The problem of the actual
system is the lack of ability to pass from a physical description of a world (like map) to
model consisting of behaviours and reaction. To overcome this problem there are
systems that can create a model only by following and memorising the actual robot
behaviours [Mat 89 90] [Rod 93].

Another solution is to create directly a stimuli based model of the world [Ark
90] [Lev-Law 90], where the stimuli origins are mapped manually in geometric or
topological model. The next chapters are dedicated to a theory and navigation system's
description that combines the two approaches and provides, based on a single meta
behaviour a complete description of the world as well as the means for reactive
following of a planned trajectory.
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3. Behaviours Mapping

3.1 Introduction

For any system we can define a space that includes all the system's states. We
call this space the state space. Each point of the space represents a different state of the
system. The configuration space is an example of such a space that covers all the
geometric position of an n -degrees-of-freedom system in an Euclidean space [Lat 91].
Another example is the phase space in which each point represents the kinematics state
of the system. Maturana and Varela [Mat-Var 80] [Bourg-Mat 91] use a topological
space to describe the possibilities of a living system. A subspace of the states' space is
used to describe the "permitted" domain of the system, the free space in the case of the
configuration space or the viability subspace in the case of Maturana-Varela-Bourgine.
We name this subspace the subspace of existence  or the Viability  subspace for a
system.

One can regard the system behaviour as the results of a function (or functions)
that the system uses to change its state and the state of the world. By analysing the
behaviour of the latter in  the existence subspace one can obtain an interesting result.
The existence subspace can be divided into zones in which the function(s) is continuous
and to zones in which the function is not continuous. Those zones of non continuity can
be regarded as zones of decision where the system or its operator should select one of
the possibilities, if there are any, or activate another function. When these zones are
retracted to points and the continuous zones in between are retracted to lines connecting
these points, a graph representation of the existence subspace is obtained. The
advantage of such a representation lies in the control of the system, in continuous zone
it is not necessary to consider or calculate any option, only following that zone by the
right behaviour and a local optimisation are required. In the next paragraph the mapping
of single behaviour is discussed. This theory of behaviour mapping can be generalised
to a multi behaviour system. In this case we define the term behaviours' equivalence.
Behaviours are defined equivalent if at a given state their effects are topologicaly equal,
that  is if they change the system situation to an equal topological state.

3.2 Single Behaviour Mapping

Let consider a system that exercises only one behaviour that conforms with the
existence constraints. Hence from any place in the existence subspace the behaviour
will conduct the system to a place inside that subspace. We define as trivial the case
when that behaviour is continuous all over the subspace of existence. A more
interesting case is when there are points or zones of non continuity and bifurcation of
the behaviour in the existence subspace. We can use these zones and points of non
continuity as landmarks and describe the existence subspace of a system as graph in
which these zones are the nodes. Whenever the behaviour connects one zone to another
their representations in the graph are connected. A formal definition is given below.

Let :
W be the topological space that represents the world.
V be a connected subspace of W  that represents the subspace of 

existence for the system.
f :V → V  an application defined over V   that represents the system 

behaviour.
f   is continuous at v∈V   iff:
(1) f v( ) = u,u ∈V
(2) for any neighbourhood of u, Nu, we can find a neighbourhood of v, Nv,

such as  uN ⊇ f vN( )
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Let d  be an open set of non continuous points such as
(1) v  ∈d  if f  (v ) is not continuous
(2) d  is a connected set
The closure of d  cl(d) is composed of continuous points such as that at any

neighbourhood of v ∈ cl(d) there is at least one point of d.

Let D = 1d ... nd{ } be the collection of the non continuous sets of V  under f.

Let  nf v( ) = f ° f ° f °...° f v( )  describes a sequence of n  iteration of the
behaviour f.

The set dj  is said to be directly connected to di  by f n  iff

 1. there exists x ∈cl id( ) such as nf ∈cl jd( ).
 2. 1f x( )... n−1f x( )  are continuous under f

We define a path from di  to dj  as l x x ∈ id , nf ∈ jd( ) = f x( )... nf{ }
Let ijp = l 1x( )∪...∪l kx( ) where l 1x( )...l kx( ) are all the paths from di  to dj.

We call p  a passage from di  to dj.
Any d from which there are two or more passages is a bifurcation zone.

V  now can be described as a directed graph. The non continuous sets {d} are
the nodes of the graph which are connected according to the passages defined above.

Now we can plan the future of the system based on the graph. The nodes play
quite a significant role, they are the decision points for the system. On a passage the
behaviour will lead the system to the same neighbourhood independent of perturbations
or deviations on the way. In the non continuous zones the situation is quite different,
any deviation or little perturbation can lead the system to a totally different situation.
We call these zones decision zones because a decision can be taken here, a decision that
will have quite an influence on the future of the system. A mobile robot navigation
system that was developed based on this theory and benefits the advantage of
navigation and planning using only one behaviour is presented in the next chapter.

3.2.1 An example of uni-behaviour

We bring here as an example go-toward behaviour. The behaviour was developed by a
team of the Institute for Microtechnology of the University of Neuchâtel (IMT). A
vision system tracks a reflecting target and the robot moves toward that target. When
the target is too close the robot stops. The angle of vision is 90 deg.

θ1= 2θ

Τ1Τ2

Figure 3.1 The graph of go-toward behaviour with two targets
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When there is only one target the non continuity zones are:
1. when the distance from the robot to the target is less than the minimum

and the robot stops
2. When the angle between the centre line of the camera and the target is

out of the ± 45 deg. range the robot looses the target and stops
For a distance bigger than the minimum and within the ± 45 deg. the behaviour is
continuous.

When a second target is introduced into the scene the situation changes. The
robot is programmed to follow the target which is closer to the centre line. The line
defined by θ1  = θ2, where θ1 and θ2 are the angles to the first and the second target
respectively, becomes a bifurcation zone. The graph describing the subspace of
existence for  the robot under the go-toward behaviour is given in figure 3.1

3.3 Multi Behaviours Mappings

The analysis of the subspace V can be generalised to a multi behaviours'
mapping. Here we deal not only with bifurcation of a single behaviour. To define
bifurcation points for several behaviours first we have to define the term b-equivalence
that stands for behaviours' equivalence. We use here the term b-equivalence when
different behaviours give the same results when exercised at the same situation. (Note
that this use of equivalence is different from the normal use of the term equivalence in
mathematics). Two behaviours are considered to be b-equivalent at a certain part of the
existence subspace if when exercise at any point of this part they bring the system to the
same topological state. Hence any behaviour of the system that follows gives the same
results. The points of bifurcation are the points where the behaviours' results separate.
These points are used to create a graph description in which the nodes represent the
bifurcation points and the branches are defined according to their connection by the
behaviours.

3.3.1 B-Equivalence (Behaviours' Equivalence)

This section represents formally the multi behaviours mapping as discussed
above.

Let :
W   be the topological space that represents the world.
V  be a non empty connected subspace of W that represents the 

subspace of existence for the system.
f ,g:V → V  be two mappings representing behaviours defined in V.

V'   be the collection of the point of V  where both f  and g  are 
defined.

F  be the collection of all the applications that describe the system's
behaviours

f  and g  are b-equivalent at x ∈V' iff:
1. f x( ) and g x( )  are continuous

2. There exist n  and m  such as for any i ≤ m  and any j ≤ n  and for any
h ∈F
2.1. jg x( )  and if x( ) are continuous

 2.2. h° jg x( ) = h° if x( ).
Let 

efgd{ }  be the open sets in V'   in which f  and g  are not b-equivalent

Let 
cfgd{ }  be the open sets in V  in which f and/or g are not continuous

We can now define the bifurcation zones as:

fgd{ } =
efgd{ } ∪

cfgd{ }
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in which either at least one of the behaviours is not continuous or where the
behaviours are not b-equivalent.

The set dj  is said to be directly connected to di  by f  and g  iff

 1. there exists n, m  and x ∈cl id( )  such as nf x( ) ∈cl jd( ) and

. mg x( ) ∈cl jd( )
2. g  and f  are continuous and b-equivalent along the path

We can now describe the existence space of the multi behaviours system by a
graph. The nodes of the graph represent the bifurcation zones.  The branches are
according to the direct connectivity defined above.

An example for such a system is a corridors' navigator mobile robot that
possesses the three following behaviours:

1 follow-the-centre of the corridor
2. follow-the-right-wall
3. follow-the-left-wall.

As long as the robot is in a corridor the three behaviours are b-equivalent. When the
robot arrives to a corridors' intersection the follow-the-centre behaviour becomes non
continuous, the robot can follow anyone of the corridors that exit the intersection. The
other two behaviours are not equivalent. The follow-the-left-wall will follow the most
left corridor while the follow-the-right-wall will follow the most right corridor. Any
selection of a behaviour will give different results, as a consequence the corridors'
intersection becomes a decision zone (see the example in 3.3.2 below).

3.3.2 Example: Corridors' Navigation

We take for example a simple system, a mobile robot equipped with two sonar
cells. The robot moves in constant speed and its control parameter is the speed of
rotation dq/dt. The schematic description of the robot is given in fig. 3.2 below

v

θ

right sonar
section

left sonar
section

Figure 3.2. Robot's schematic description

Let consider the corridor navigator from §2.2.1.
We can describe the three behaviours as the following functions:
1. f1  dq/dt = ro - rR(t)  will result in follow-the-wall on the right
2. f2  dq/dt = rL(t) - ro  will result in follow-the-wall on the left
3. f3  dq/dt = rL(t) - rR(t)  will result in follow-the-centre

Where rL(t) and rR(t) are the left and the right sonar readings at time t and ro is a
control parameter that specifies the desire distance from the wall.

In figure 3.3 we see part of a working space. In the passages p1, p2 and p3 the
three behaviours are equivalent. In the decision zone d f1 and f2 are not equivalent but
for not too big ro they are continuous. f3 is not continuous because when arriving from
p1 it can continue either to p2 or to p3 depending on the exact orientation of the robot.
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1

p
2

p
3 d

Figure 3.3 corridors and their decomposition to passages and decision zone

In figure 3.4 we see the graph representation of the working space. The junction
is created by the non-b-equivalence of behaviour 1 and 2 and the bifurcation of
behaviour 3.

p

pp

1

23
1,2,31,2,3

1,2,3

1,32,3

Figure 3.4 The graph representation of the working space

3.4 Meta Behaviour Mapping

In this section we generalise the notion of a behaviour by defining the Meta
Behaviour, which is the result of looking at the system's actions as being one behaviour
even if it results from the composition of several behaviours. In the following paragraph
we lay the mathematical foundation for such a definition.

Let F:V → V F : V → V be an ensemble of behaviours {f }.
Let D ={d } be the finite ensemble of the sets d  in V  such as:

x ∈d  iff

(1) there exists at least one f ∈F  that is not continuous at x.
or
(2) there exist at least f i  and fj , i ≠ j which are not b-equivalent at x.
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Let P = { p } be the ensemble of passages defined by one or more of the
behaviours {f }.

Let GF (V) be a graph in which the nodes represent the closed sets {d} and
the branches represent the passages {p} that connect them. Such a graph
is a unique representation of V  under F.

We call F  a meta-behaviour, a behaviour that consists of all the behaviours
{ f}. F  is not continuous in D  but continuous elsewhere in V.

3.4.1. Meta-Behaviour and Control

We can look now at a system that possesses an ensemble of behaviours B that it
executes in a working space U. Let assume that U  is decomposable to decision zones D
and passages P  under the behaviours B. Looking at the behaviour of the system within
the frame of the graph description of the working space an interesting phenomenon
emerges. The system demonstrates a behaviour of following the passages from one
decision point to another. This behaviour which we denote meta-behaviour is
independent of the behaviour actually executed by the system as long as it follows the
passages.

A definition of a trajectory can be given as a sequence of passages to be
followed. Following a given path is reduced to selecting at each decision point the
behaviour that will follow the next passage. Each of the equivalent behaviours will be
adequate.

To navigate, the system should be able to recognise the decision points and to
select the appropriate behaviour while in the decision zone. The selection of the
behaviour can be made based on local parameters or using a plan. In the latter case the
plan is not the classic plan as a program but more like a general frame that gives the
system the criteria by which it makes the selection.

3.4.2 Project MARS in the Eyes of Meta-Behaviour

When we inspect the cognitive (control) level of project mars (see §2.6) we see
that each node is defined by the appearance of a new set of stimuli. A new set of stimuli
means a new set of behaviours which in the terms of meta-behaviour is a decision point.
The nodes of the sensorimotor graph are connected by behaviours, each connection is
defined by one or several behaviours. Hence the sensorimotor graph can be created and
analysed by means of the meta-behaviours.

3.5. Discussion

The theory enables to bridge the gap between the classic planning approach and
the reactive execution. A reactive behaviours based system can be controlled and can
realise a planned trajectory. It furnishes a description of the world based on and in
terms of reactive behaviour.

The description of a trajectory is very simple. It uses only the notions of
passages and decision points without even specifying the exact behaviour(s) that should
be selected to realised the trajectory. The immediate execution control will choose the
right behaviour to follow the desire passage. Hence it leaves a lot of freedom and
flexibility to  the executing system. We give here an answer to the problem posed by
Agre and Chapman [Agre-Chap 90] e.g. a way to create a plan as an advise.

When on a passage the system is free of the decision making problem and can
use the liberated resources to fulfil other tasks like planning or learning. It is only in
decision points that the system will use its capacity to make a decision.

To create the graph and find the point of decision where the meta behaviour
bifurcates we can analyse the space as it is presented in the next chapter or the system
can identify them on the spot. The latter can be done by giving the system the ability to
define these points directly from its input, for example using a neural network. Another
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option is to test the results of all the behaviour that can be activated at any point as it is
done in the navigation system of Miguel Rodriguez [Rod 94].
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4. Reactive Navigation Based on A Simple World Modelling and
One Behaviour

4.1 Introduction

In this chapter we introduce a navigation system for a mobile robot. This system
is based on the theory that has been developed chapter 3. This navigation system uses
only one behaviour that we will show to be sufficient to answer the three basic
questions of navigation.

The navigation system is divided into two subsystems (see figure 4.1 below):
1. The Global  subsystem creates a graph from a map of the working space

and generates plans
2. The Local  subsystem based on sensors input takes care of self

localisation and reactive execution of the plans

We base the global navigation subsystem on the a Voronoi diagram
representation of the working space. Each closed connected occupied set is a Voronoi
cell. A medial axis transform of the free space generates a skeleton which lines are the
borders of the Voronoi cells. We call the skeleton lines' intersections Junctions  and the
skeleton lines segments that link them we call Links.  A graph based on the J-L
(Junctions & Links) model gives a symbolic description of the working space.

The local subsystem perceives the world in terms of a local J-L model. It
exercises one behaviour which is following the centre of the free space ahead. This
behaviour results in a Follow-a-Link  behaviour.

The Follow-a-Link behaviour bifurcates and discontinues exactly where the
skeleton lines bifurcate and discontinue. Hence the graph based on the decision points
of the Follow-a-Link and the graph generated by the J-L model are identical.

The answer to the first question "Where am I" is given by a robot that can
identify locally the J-L model and correspond it to the graph.

"Where are other places" is answered by their corresponding representation in
the graph.

The third question "How do I get there" is answered in two stages: (1) using the
graph for planning and (2) following the appropriates links in the working space.

In §4.2 the Voronoi diagram and the graph representation of the working space
are defined. §4.3 gives a brief description of the planning as a graph search. A planning
approach is developed and discussed in chapter 5. The execution subsystem is
described in §4.4.

4.2 Definition of the Generalised Voronoi Graph

In this part we present and discuss the formal definition of our world modelling.
The mapping which is discussed in this section maps the free space of a multi-
dimensional space into a graph. Connectivity and relative order are invariant substances
under the mapping. It is a two steps mapping, the first step is a medial axis transform
which maps the free space into a multi-dimensional skeleton, the second step maps the
skeleton into a graph keeping a certain order of the branches at each node.

Even though navigation in particular is taking place in 2D or at the most 3D
Euclidean space, we impose no such limitations on the dimensions and the metric in our
mathematical treatment. The basic approach is adequate to deal not only with
navigation problems but  also with problems whose solution  can be represented as a
free space in a configuration or phase space.
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Figure 4.1 Schema of The Navigation System

4.2.1 The Skeleton

The medial axis transform is well known and frequently used in computer vision
[Ball-Bro] [Pav 77] and in robot navigation system mostly under the name Voronoi
graph [Bar-Lat 89] [Sch-Shar 88] [Brait 84]. The definition used hereafter is a
somewhat different from the one used by Pavlidis [Pav 77] or others [Bar-Lat 89][Sch-
Shar 88] imposing no restriction on dimensions or metrics.
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The medial axis transform creates a skeleton representation. Starting from n
dimensional space we reduce the free space's degree step by step. At each step we
create n dimensions spheres that contain only free space points and touch the borders of
the free space at two different points. By connecting the centres of all the spheres that
met these conditions we create a sub space of one degree less. Continuing until arriving
to a one dimension subspace creates the skeleton.

 In n dimensional space the extraction of the skeleton can be defined by the
following iterative process:

1. Let M  be an n dimensional metric space and MF  the collection of all
the free points within M.

2. Let MB i   be the set of  MF i  boundary points, at each step i (i = n ... 2)
3. Let Si   be a set of i  dimensional sphere in M.
4. A sphere s  belongs to Si   if and only if :
4.1. No point inside s  belongs to MBi .
4.2. At least 2 points on s  surface belong to MBi .
5. The centres of all the spheres which belong to Si   define a sub-space of

degree i- -1 in M  which we denote as  MF i -1.

6. Let MB i  -1  be the set of MF i -1 boundary points.
7. The 1 degree sub-space which is reached at the end of an iterative

process of steps 2 - 6 is the skeleton of the free space MF i.

occupied

Figure  4.2 2D map and its skeleton. The junctions have been already identified and
marked.

4.2.2 Junctions Links and Graph Representation

In the skeleton we define a junction as a point of intersection of two skeleton's
lines and a link as a line segment of the skeleton. A formal definition is given below:

1. Let X s  be the set of  all the points belonging to the skeleton.
2. A point x  is a junction J  if and only if x  belongs to X s  and in any

neighbourhood of x  there are at least 3 points which belong to X s  .
3.  A link L  is a line segment of the skeleton that:-

3.1 All its points belong to X s.
3.2 At least one end point is a Junction.

4. A Link with only 1 Junction is defined as a dead-end link
5. A Link with junctions at both ends connects them.
6. Being a point of non continuity a deed end is treated as a junction for

mapping and planning.
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Under the behaviour of following the skeleton line the junctions becomes
bifurcation points where the behaviour is not continuous and the links are passages to
different junctions.

It should be noted that any link can bee looked at as a junction where an
execution of the inverse behaviour, meaning following the skeleton line in the opposite
direction, will give different results. Since it changes basically nothing in the graph
representation of M    we overlooked for mapping purposes and introduce the notion of
inverse  behaviour.

On the basis of the junctions and links we can define a graph in which the
junction and the dead-end points are represented by nodes. The connections between
the nodes are according to the links and represented by branches (see figure 4.3). The
transformation from the multi-dimensional skeleton to the graph is unique but not a
one-to-one mapping. Only one graph exists for each multi-dimensional skeleton but the
opposite is not necessarily true. It is obvious that the graph keeps the connectivity of the
skeleton and therefore the connectivity of the original free-space.

Figure 4.3 The graph representation of fig 4.2

We order the links which are connected to a junction in a certain cyclic order
which can be reconstructed independently. For example: an order which is based on the
skeleton projection on the plan generated by e1 e2. In case of ambiguity we will be
helped by the projection on e2 e3 plan and so on (e1...en the unit vectors which create
the space M).

4.3 Path Planning

The path planning answers the first part of the third question a navigation
system should answer. In this section we discuss the generally the path planning within
the frame of the J-L model. A new method for planning within the Voronoi diagram
graph representation is presented and described in details in the next chapter.

4.3.1 Path planning as a graph search

The path planning is processed within the graph frame. Planning a path becomes
a “simple” task of searching a graph to find the path that connects the starting node to
the target node. A variety of techniques for graph searching are described in AI
literature ranging from simple Depth First Search to some sophisticated back jumping
that also includes learning of constraints.

Most of the methods are described in any AI text book (for example see [Wins
84]). More sophisticated methods are described in the literature (see for example
[Lig90] [Dech 90]). Any method can be used and the choice depends on the
information we relate to the branches and nodes, the kind of required optimisation and
the kind of heuristics used to control the search. In the next chapter we present a
planning system that finds a near optimal path within the frame of the Voronoi diagram.



51

4.3.2 Two words representation of a path

The path is represented in the terms of chapter 3. Each link is a passage and
each junction is a decision point. On a link the follow a link behaviour is continuous
and will follow the link to its end. In a junction the behaviour is no longer continuous, it
can follow any of the link. Hence a unique description of a path should give the criteria
to  choose the right link to follow.

Starting at known node and branch it is possible to represent any path through
the graph using only two symbols, J & L. In the graph frame J represents a node and L
a branch, in the real world J represents a skeleton junction and L a skeleton link. A
sentence describing a path will be looked like the following sentence "JLLLJLJ..."
meaning: from the starting junction you take the 3rd link to the next junction than take
the first link to the next and so on. For example the sentence  “LJLLJLLJLJLLJ”
represents the path (a b e g i) in fig 4.2.

If we communicate such a sentence to any system that can identify junction and
links in the same way, and is able to reconstruct the same links' ordering at any
junction, this system is able to follow the path described by the sentence in the relevant
space, requiring no other means to control its movement.

4.4 Path Following

To perform a reactive path-following the robot should be equipped with
adequate perception and behaviours. A perception that enables reactive path following
based on the above world representation is described in sub-section 4.4.1. In sub-
section 4.4.2 we described the basic behaviour in which the robot should react to the
information that it perceives. The process of reactive path-following is described in sub-
section 4.4.3.

4.4.1 Perception

A general, abstract and immediate robot perception can be developed, based on
the above world modelling. The robot transforms its immediate local view of the world
directly to Junctions and Links. The robot operates and controls its move within this
abstract world. It only has to know the location of junctions and location and direction
of links relative to itself, in its own co-ordinates' frame.

This perception can compete successfully in any structured or quasi structured
area of the world, and most parts of our world match this requirement. Any area that
can be divided into passable and non-passable, free and occupied, or any other
phenomena division that the robot sensors can detect and identify is adequate for the
implementation of this perception.

a b

Figure 4.4 Perception of the immediate surrounding.

Equipped with this ability the robot perceives its environment directly in the
most important phenomena to the control of its movement and navigates autonomously
in the world. As we will show later this perception and representation of the world is,
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alone, sufficient for navigation and movement control. We have developed an
algorithm that perceives the sonar and IR reading of fig 4.4a in terms of junctions and
links, fig 4.4b.

4.4.2 Basic behaviour

The robot has only one behaviour which is defined bellow:
Follow-a-Link:- while perceiving a link the robot follows it by moving
along the link line in the real world
When perceiving being in a junction the robot chooses the next link to
follow according to the sentence that describes the path by counting the
links in the agreed order.

Figure 4.5 The path as a perceived sequence of images

4.4.3 Execution of path following

Starting from a known junction and link the robot should follow the link to the
next junction. Perceiving the link the robot reacts in the Follow-a-Link behaviour till
the next junction. Using its ability to identify links and junctions, the system identifies
the junction and all the links that leave that junction in the ordering agreement and
chooses the next link it should follow.

The process of link following, junction identification links identification, and
link choosing will continue until the system will arrive to its target. A path for the robot
is a sequence of perception images to which it reacts. The sentence mentioned above is
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a symbolic description of this images sequence. Following the images in the order they
are given the robot follows the required path in the world. Figure 4.5 describes the
sequence of perception matching the required path. The local views are shown for each
labelled point

4.5. Discussion

The navigation approach presented in this chapter shows the feasibility of
reactive navigation based on the behaviours mapping even with very basic and low
performances sensory. It combines two different approaches to navigation, the metric
and reactive, and exploit their advantages. The planning is performed in a symbolic
geometric based framework an approach well explored and quite successful. The
execution is purely reactive, giving robustness and enable dealing with changes and
uncertainty.

The junctions and links model can be applied almost to any kind of environment
when the robot is equip with adequate sensory. For example navigation of a car on
roads will require only a sensory that can detect roads. Another example is a
topographic navigation that can be based on physical crest lines as the phenomena to
extract the skeleton.

The graph representation enables us to incorporate many kinds of domain
specific knowledge that can be related to the branches and the nodes in order to
facilitate path planning in one hand and links and junctions identification in the other
hand.

To deal with the real world problems (such as noise and inaccuracy) the reactive
navigation approach required some more complex and sophisticated treatment which
includes help from dead-reckoning and filtering (see chapter 6 for description). But not
like the localisation system presented by Crowly [Crow 88a] it does not require exact
geometric definition of the world. The positioning based primarily on the topology of
the world and only aided by the geometry.
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5. Near Optimal Path Planning for Voronoi Diagram

5.1 Introduction

The path planning system is based on the Voronoi diagram that was described in
chapter 4. It has the advantage of operating directly on the graph form and results in a
near (geometric) optimal path.

Geometric optimisation within the graph framework is limited to the cases
where the movement is restricted to the medial lines. The Barraquand-Latombe system
is a good example. For the shortest path in general this is not the  case. An optimal path
search for a robot can be guided by the Voronoi diagram while the actual move is
performed along the medial line but not necessarily on the line. In our case the follow-
a-link behaviour optimises locally the move by going directly toward the furthest point
of the path that it sees at each moment.

The near optimal path finder is based on the generalised representation of the
passable areas in a specific form of Voronoi graph, attaching some additional
information to the nodes and the branches of the graph. A multistage recursive search of
the graph is performed, eliminating at each stage most of the non shortest paths. A
heuristic based on upper and lower bounds of path length is introduced to enable and
facilitate a search based on A* without requiring an exact optimisation computation.

5.2 Additional information attached to the nodes and branches

Additional information is attached to the graph. This information will be used to
determine the bounds of links and paths length. The way this information is used is
described in the following section, here we only define this information.

To each node in the graph we attached the following information which is
related to the junction the node represents:

1. Junction diameter - the diameter of the spheres whose centres creates
the junction point in the skeleton.

2. Junction co-ordinates.

To each branch in the graph we attached the following information which is
related to the link the branch represents:

1. Geometric description of the link.
2. Nominal length - the length of the skeleton line segment the link

represents.

5.3 Upper and Lower Bounds of Link Length

The movement in the space is not restricted to a movement on the links. The
optimal path that connects 2 adjacent junctions can pass anywhere along the link
meaning anywhere in the segment of the free space represented by the link. The
computation of the optimal path is relatively complex and requires exact geometric
methods. In this section we present a method to bound the length of the optimal path
along a link.

5.3.1 Link Length Upper Bound

 The link upper bound (LUB) for the minimal travel distance between 2
junctions is the length of the skeleton segment which connects these 2 junctions. By
definition, the movement on this line is possible therefore the length of the shortest
passable path that connects these junctions will be equal to or less than the link length.
Consequently, the link nominal length produces an upper bound for the shortest
possible path between 2 adjoined junctions.
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5.3.2 Link Length Lower Bound

We calculate the LLB  (Link Length Lower Bound) by approximation using
partitioning of the link to several sections. The order of the approximation is the
number of sections used for the calculation of the LLB  Before we introduce the method
to compute the LLB  we require the following definitions:

1. Section -
1.1 let L  be the link that connects the 2 junctions Ji  and Jj .
1.2 let P  denote the n-1 degree subspace perpendiculars to the 

skeleton line represented by L  and containing the point p  
belonging to L.

1.3 let XL  be the collection of all the points of free space segment 
which is represents by L.

1.4 let XS =P∩XL .
1.5 the set XS  is a section of L  at the point p.

2. Order - the number of section used to compute the LLB.
3. dist (i,j  ) - distance between sections:

3.1. let XSi   and XSj   be 2 sections of L.

3.2. dist i( , j) = min dist ix( , jx ) ix ∈ iX , jx ∈ jX[ ].

a b

c

d e

f

o

S1
S2S3

  first iteration			o
		second iteration		a+b
		third iteration			c+d+e+f

free space
occupied
skeleton line
dist(i,j)

Figure 5.1 Calculation of Link Lower Bound for the link that pass through the sections
S1 S2 S3.

For the computation of the LLB  we introduce a method that produces an order
depending value. Up to a certain limit, which varies from link to link, the higher the
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order the closer the LLB  is to the value of the shortest link length. One should notice
that the LLB  is a virtual path that not respects the physical limitation.

Any path passing through a link and connecting the 2 junctions at the link ends,
including the shortest path, must include at least one point of any section.
Consequently, the length of path segment between 2 sections can’t be shorter than the
distance between these sections.

A lower bound of order n is computed as follow:
1. we choose n  section along the link
2. for each adjoined pair of section (including the 2 junctions at the link

ends which we denote S0  and Sn+1 ) we find the shortest distance dist
(i, i  +1).

3. dist i,i + 1( )
i=1

n
∑  is a lower bound of order n for the link minimal length.

An order 0 LLB  will be the straight line between the 2 junctions which had been
already defined by Euclid as the shortest distance between 2 points. The simplest, and
normally sufficient, approach is to distribute uniformly the sections along the link. A
little bit more complex method is to search for the link's points which are the most
remote from the straight line, and locate the section  in these points. This method
requires more computation effort but produces better results. Figure 5.1 illustrates the
calculation of the LLB. When using a simple strategy of using at each iteration the mid
point of the line segment, the third iteration gives a real LLB  for the link.

5.4 Upper and Lower Bounds for Path Length

5.4.1 Path Length Upper Bound PUB

A nominal length of a path passing through several junctions is defined as the
sum of all the nominal length of the links connecting the junctions that  the path
consists of. Since this path is possible, by definition of the skeleton creation, if it is not
the shortest path possible, the shortest path would be shorter and therefore we can use
this value as a path upper bound PUB  for the minimal path length.

5.4.2 Path Length Lower Bound PLB

At each junction any path should pass at a distance smaller than the junction
radius, so the maximum distance any of the links of which the path consists can ‘gain’
depends on radius of the 2 junctions it connects and the angles between the link and
its ancestor and successor. A lower bound for path length is defined as follows (see
figure 5.2):
AJ   and BJ  are straight segments of L1 and L2  respectively which are connected to the
junction J   and α  is the angle between them.
Rj   is the radius of junction J.
Any path from A  to B should pass at least in one point at a distance Rj  from J, we
denote this point C.
CD  and CE  are perpendicular to AJ  and BJ  therefore:

AD =AJ  -Rj  *Cos α1

BD =BJ -Rj * Cos α2
ADC  and BEC  are triangles with right angle in which the hypotenuse is equal or
greater than any of the other sides:
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AC ≥ AJ − jR * Cosα1

BD ≥ BJ − jR * Cosα2
Combining these equations we obtain:

 AJ + BJ − jR ∗ Cosα1 + Cosα2( ) ≤ AC + BC

AJ + BJ − 2 jR * Cos
α1 + α2

2




 * Cos

α1 − α2
2





 ≤ AC + BC

AJ + BJ − 2 jR * Cos
α
2





 * Cos

α1 − α2
2





 ≤ AC + BC

Since Cos
α1 − α2

2




 ≤ 1the following is  also true:

AJ + BJ − 2 jR * Cos
α
2





 ≤ AC + BC

and we can calculate a lower bound for path length as:

   PLB = LLB − jR
j

∑∑ * Cos jα
2

LLB link lower bound
Rj junction radius
and j   is going over all the junction of the path.

L1 L2

α

α1 α2

J

A
B

C

D

RJ

E

Figure 5.2 Geometric definition

5.5 Search Algorithm

The path finder is based on A* graph search subjected to the following heuristic
and rules:

1. the remaining distance from a junction to the target is estimated as the
length of the straight line connecting them.

2. the junction value is bounded between the following 2 sums:
2.1 the PUB + remaining distance
2.2 the PLB. + remaining distance
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3. at each stage all the junctions for which the lower bound of their value
is smaller than the minimum of the current junctions upper value are
developed.

4. if more than one path lead to the same junction, any path for which the
PLB  is bigger than the minimal PUB of the paths leading to that
junction is eliminated.

The search is performed in iteration, at each iteration we apply the search only
to the paths that have ‘survived’ the preceding search. At each iteration the order of the
LLB  is augmented by 1.

The process terminates when either only one path has survived the preceding
search, or if all the paths have reached their maximal PLB.

5.6 Discussion

5.6.1 Comparison to other methods

a

c

b

d

e

f

g

skeleton robot 
   trajectoryPLB

Figure 5.3 Comparing to Barraquand-Latombe

The results of the near optimal path finder in simple case are illustrated  in
figure 5.3 When comparing to the planning system presented by Barraquand and
Latombe we see that when the shortest skeleton line does not correspond to the shortest
optimal path the latter system will choose the shortest skeleton (a c e in figure 5.3). Our
planning system will suggest the two possibilities but will recommend the other path (a
b d e) because its PLB  is shorter.
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5.6.2 Stand-alone

The method presented  is complete in the sense that it will always find a path (if
it exists) and the optimal path will be one of the recommended paths. As a stand alone
method it can be used by applying some educated guess (for example the path with
minimal PLB), to choose a path among those recommended by the system. In that case
the deflection from the optimal solution is bounded and the performances of the system
can be easily evaluated.

In a constructed and crowded environment, as it is the case in many navigation
problems, where the passable area occupies little of the space and mostly the width of
the passes is very little compare to their length, the system is very efficient and more
than likely will produce only one or two solutions.

Mostly it is not of such an importance to find the shortest path, An intelligent
system can decide in each case, knowing the maximum length it can gain since the
differences among the possible solutions are bounded, whether to require some more
sophisticated methods or to ‘gamble’.

5.6.3 Combination with exact methods

 This method can be regarded as a filter that screens out the most, if not all, non
shortest paths and bounds the length difference among the rest. It leaves to the user, or a
sophisticated system, the choice between turning to some exact method with the
advantage of applying to a smaller number of possible paths, and choosing a path
among those recommended by the system (see stand-alone).

Even in the case of applying an exact or more accurate geometric method, the
advantage of using this method as a pre-filter is obvious. Reducing the number of
possible paths that should be checked, reduces significantly the amount of time and
effort required since these exact methods are known to be complex and time
consuming.

5.6.4 Any-time algorithm

Either as stand-alone or in combination with more accurate or exact methods
this method can be used as an any-time algorithm. The probability that the path
recommended by the method is the optimal is augmented with the time invested in
computation. In a combined algorithm the augmentation will be very fast at the
beginning of the search, while using our fast method, and then will decrease using exact
but time consuming method.
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6. The Navigation System
The navigation system is a realisation of the theoretical approaches presented in

chapters 4 and 5. The realisation of the theories introduced some techniques and
precision as shown in figure 6.1. The map of figure 4.1 (theoretical) realised in
probabilistic occupation grid. The sensors are now real sensors (sonar, infra-red,
compass, odometry and bumpers). The planner is realised as the near optimal path
finder from chapter 5 and a local mapping and skeletoniser were added to the system.
The navigation system is composed of two subsystems:

(1) the global presentation and planning
(2) the local presentation and execution

Both subsystems share much the techniques they use. §6.1 describes these
techniques.

The global subsystem uses the probabilistic occupancy grid and a graph based
on the Voronoi diagram for presentation. The planning is a realisation of the near
optimal path finder techniques that is described in chapter 5.  §6.2 describes this
subsystem.

The local subsystem is based on the extraction of the local graph. It extracts the
local graph of the skeleton from a probabilistic occupancy grid that holds the latest
information gathered by the sonar and infra red distance detectors. §6.3 describes the
local subsystem.

The navigation system was developed on Sun Sparc Station and on Macintosh
IIFX. The Nomad 200 mobile robot and a simulation of the Nomad 200 were used to
embody and testing the navigation theory. A description of the experimental system and
some experimental results is given in §6.4.

6.1 Techniques used by the Navigation System

There are several techniques and modules that are almost identical for the global
and local subsystems. These techniques are described hereafter. The differences in
nuances are referred to in the description of each subsystem.

6.1.1 Probabilistic Occupancy Grid

The occupancy grid is a direct geometrical representation of the working space
(see 2.2.2 and 2.2.3). In our system we use a probabilistic occupancy grid based on the
approach of Moravec and Elf [Mor-Elf 85] [Elf 85,89] that is described in details in §
2.2.3.

The probabilistic occupancy grid permits updating the map using sensors'
information and dealing with sensory and localisation uncertainty (see the description
of mapping process below).When no a priory information is available, the system
creates the global map via the mapping process described below starting from a blank
grid (all the cells have the value 0.5).

The cell size controls and defines the grid quality and performances. It defines
the resolution of the grid and the number of cells required to cover a given area and
hence affects the speed of treating, depends on the information contained in the grid.
When choosing the cell size we should consider the accuracy of the available
information and the system needs. It is useless to define cell size 1 cm to navigate a
robot of 1 meter radius as well as to introduce information obtained from sonar where
the accuracy is in the range of 10 cm or even less. The cell size should be small enough
compared to the robot size to enable efficient navigation and not too small in order not
to overcharge the system. The number of cells that cover a given area is depend on the
inverse of the square of the cell size while the treatment of the grid is at least linear with
the number of cells [Lat 91] [Meys 91].
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Figure 6.1 Schema of the navigation system
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In our system, based on the experience we have, we have found that the a good
cell size is about 20 - 30 cm (between a quarter and a half of the robot diameter).

For a real sensor we have to calculate or more often to measure the probability
profile. In our case we measured the performances of the sonar and derive the
approximate characterisation which is composed of p[s ( x) = O C C  | x < r ], the
probability that a cell at a distance x  smaller than the sonar reading r  , would be
occupied when the sensor reading says empty, and p [s (x) = OCC  | r ] the probability
that the cell is occupied at the reading distance r . The two correspond to what we call
ghosts, reading of something which does not exist, and reflections. We have found the
probability to depend mainly on distance, and derived a distribution function for the
occupancy based on r . For practical reasons we linearised and defined it by the constant
a as we can see in figure 6.2.

p[s (x) = OCC  | x <r ] and p[ s (x) = OCC  | r ] are listed in tables that were
derived manually from experiments with the sonar and the IR distance detector and then
were tested and modified during robot operation till the performances became
sufficient.

p[s(x)=OCC | r] (x)

1

0.5

0
xrr(1-2a) r(1+a)

p[s(x)=OCC | r]

p[s(x)=OCC | x<r]

Figure 6.2 occupancy probability profile for real sensor

6.1.2 Extraction of the Skeleton

The skeleton is extracted from a deterministic occupancy grid that is derived
from the probabilistic occupancy grid. The extraction of the skeleton is made in a 2
steps' process. The first step is based on the grid potential approach that was developed
by Barraquand and Latombe [Bar-Lat 89] [Lat 91 pp 319 - 334]. The outcome of this
step is a grid in which each cell is given the value of its distance from the boundary of
the free space, and lists of the free cells, each one contains all the equi-distance cells.

In the second step the lists of the equi-distance cells are screened to eliminate all
the cells that do not belong to the skeleton. The screening is based on the mathematical
morphology approach of Jean Sera [Ser 82] [Ser 88]. Starting from the lowest  potential
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list each list is screened and each cell's neighbourhood is checked to comply with one
of the typical forms of a skeleton cell. The non  skeleton cells are eliminated from the
lists and marked as non skeleton cells on the grid. The screening process is repeated
until all the cells in the list belong to the skeleton. During the screening process the
junctions are found and listed. The result of this process is a list of the skeleton cells
and a list of the junctions.

6.1.2.1 The Deterministic Occupancy Grid

A deterministic occupation grid is derived from the probabilistic occupation
grid. Each cell with an occupation probability value greater than 0.5 + ε  (typical 0.6) is
considered occupied and denoted the value 1, each cell with an occupation probability
less than 0.5 - ε (typical 0.4) is considered empty and denoted the value 0, all the other
cells are considered to have an occupation unknown and denoted the value 0.5. Lists of
the empty, occupied and unknown cells are generated during this process. A
smoothening process is performed next, each unknown cell with more than a given
number of empty neighbours (typically 4, half of the neighbourhood) is considered
empty. The condensing process is the next step, each cell within a given radius
(typically the robot radius) around each occupied cell is considered occupied and if was
not occupied before it is added to the occupied cell list as well as denoted the value 1 in
the grid. The result of the latter step is the 2D configuration space for a circular robot.
The deterministic grid and the list of the occupied cells are used in the next step to
create the potential grid.

6.1.2.2 The Potential Grid

In the potential grid each cell is denoted a value that corresponds to its distance
from the nearest border of the free space. The results are similar to a potential field
which is imposed on the occupancy grid. This approach was introduced by Barraquand
and Latombe [Bar-Lat 89] [Lat 91] to derive a potential field for robot motion planning
which is guided by the Voronoi diagram. In our case we use the potential grid as a
reference help to Voronoi diagram extraction system which is based on the morphology
of the cells and described below. The potential grid is created identically to the method
described by Latombe. At the first step, each occupied cell in the occupied cells list is
checked for its immediate neighbours, to each neighbour which is not occupied or has
already a potential value we assign the value 2 and the cell is added to the list of
potential value 2. The step is terminated when all the occupied cells have been checked.
The list of potential value 2 is transferred to the next step. At the second steps all the
cells in the potential value 2 are checked for their neighbours, each neighbour that has
no value is assigned the value 3 and added to the potential value 3 list. When the step is
terminated the list is transferred to the next step. The process continues until all the
cells of the grid have a potential value. In order to economise the memory the potential
grid is kept in the same array as the deterministic grid above.

C (7) C (0) C (1)

C (6)   C C (2)

C (5) C (4) C (3)

Figure 6.3 neighbourhood of C
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Rosenfeld and Kak [Ros-Kak] obtain the same results by calculating the
distance of a cell from the borders using a 2 passage algorithm from top and left to
bottom and right in the first passage, and from bottom and right to top and left in the
second passage. In the first passage the minimal distance from the upper and left
borders is calculated for each cell by adding 1 to the value of each of its upper and left
neighbours. In the second step the value of a cell is defined as the minimum of the first
passage value and a value calculated as in the first stage but using the lower and right
neighbourhood instead.

 The description of the algorithm is given by the formula below
When:
S  is the region which belongs to the image (free space in our case)
N 1 = { C (6), C (7), C (0), C (1)} and N 2 = { C (2), C (3), C (4), C (5)} are the left
upper and the right lower neighbourhood respectively (see figure 6.3).
f and f' are the first and second passage distance functions.

f C( ) =
0 C ∉S

min f C i( )( ) i = 0,1,6,7[ ] + 1 C ∈S




f ' C( ) = min f C( ), f ' C i( )( ) i = 2,3,4,5[ ] + 1

6.1.2.3 Thinning

The extraction of the skeleton is based on the morphology of the neighbourhood
of each cell. This approach is inspired by the method presented by Jean Sera in Image
Analysis and Mathematical Morphology [Ser 82]  [Ser 88].

There are several methods to extract the skeleton which are based on the cell
and its neighbourhood morphology and hereafter 3 of them are presented briefly.

The Rosenfeld and Kak (RK) thinning algorithm uses 4 different equations to
check the borders' cells at each direction (i.e. upper border, bottom border, left border
and right border) and apply the corresponding equation to each side of the free space
(image) to find whether its deletion will modify the connectedness of the space [Ros-
Kak]. Any cell (pixel) which has no effect on the connectedness of the image is called
simple. At each passage the (RK) algorithm deletes the border cells at each side of the
image provide they are simple and not end cells. The equations below check whether
the cell C has neighbours arranged in a form that the elimination of C would disconnect
two of its neighbours. In the set of equation below the second part is the same for all
and verifies that the form of a star or partial star centred in C does not exist. If for
example C(1) belongs to the image and C(0) and C(2) on both sides do not the
elimination of C would disconnect C(2). The first part depends on the border. It verifies
that the cells on both sides of C parallel to the border are connected only by C. Looking
at U(C) one can see that if C(2) and C(6) belong to the image when C(4) does not the
elimination of C will disconnect them. In this case the first part of U(C) will give it the
value 1 and make it non simple.

U C( ):

C 2( )C 4( )C 6( ) + C
k =0

3

∑ 2k( )C 2k + 1( )C 2k + 2( ) = 0

B C( ):

C 2( )C 0( )C 6( ) + C
k =0

3

∑ 2k( )C 2k + 1( )C 2k + 2( ) = 0
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R C( ):

C 0( )C 6( )C 4( ) + C
k =0

3

∑ 2k( )C 2k + 1( )C 2k + 2( ) = 0

L C( ):

C 4( )C 2( )C 0( ) + C
k =0

3

∑ 2k( )C 2k + 1( )C 2k + 2( ) = 0

Where the overbars denote the complementation and C and its neighbourhood are as
defined in figure 6.3. Note that C stands as well for the value of the cell which is 1 for
image (free space) cell and 0 for background (occupied) cell. U, B, R and L are the
conditions that should be checked for the upper lower right and left side border cell C
according to the border it belongs. If the above conditions are respected the cell C is
simple and can be deleted.

The Wang Zhang algorithm (WZ) [Wan-Zha 89] checks if a cell belongs to a
border and whether it is an end cell. If not, it runs 3 checks:

(1)  A (C) the number of background to object (equivalent to occupied to
free) transitions in a clockwise walk around the cell. If there are more
transitions than one that means that the C connects two cells that will be
disconnected by its deletion.

(2) G (C) special forms of neighbourhood around the cell which are
deletable even though there are more than one transition from
background to object. This is true because C(6) will continue to be
connected to C(0) even when we delete C as is the case of k=3. The
same is true for C(0) and C(2) when k =5.

G C( ) = 1 if
C k − 1( ) + C k( ) + C k + 1( ) + C k + 4( ) = 0

∀C k + 3( ) = 1∀C k + 5( ) = 1k = 3,5
0 otherwise







(3) B(C) the number of neighbours that belong to the image. If B=1 the
cell is an end cell. If B=7 or 8 then the cell is interior or in a notch and
its deletion can change the skeleton of the image.

The WZ algorithm can be summarised as follow:

for k=1 : 7
delete p if
1. 1 < B < 7   ; B the number of occupied neighbours.
and
2. A(C) = 1  or  G(C) = 1
and
3.1 mod (k,2) = 1 and (C(k+2) + C(k+4)) C(k) C(k+6) = 0
or
3.2 mod (k,2) = 0 and (C(k) + C(k+6)) C(k+2) C(k+4) = 0

Condition 3.1 prevents the deletion of a cell for which more than two corners' cells.
Condition 3.2 prevents the deletion of a cell for which more than half of a cross belongs
to the image.

It is sufficient to apply the WZ algorithm to the border cells (pixels) at each
iteration.

6.1.2.4 A Simplified Controlled Thinning Algorithm

At first we have tried to develop a system which was based on the idea of
looking for the local minimum as it has been proposed by Barraquand and Latombe and



71

by Rosenfeld and Kak, the results were quite poor. The connectivity of the free space
which is, for navigation, the most important characteristic of the world was not
conserved, something which was admitted later by Latombe [Lat 91, pp. 323-325] as he
changes from the local minimum approach [Bar-Lat 89] to a method which is based on
the meeting points of 2 expansion waves with different origins.

The final formulas are very close to the WZ method. The idea is to eliminate a
cell whenever the elimination would not change the connectivity of the free space. Each
cell neighbourhood is checked, if all the neighbours which belong or can belong to the
skeleton are connected among themselves, and the cell is not an end point, the cell can
be eliminated. There are two checks that we use. The first is the number of transition
from free to occupied around the cell and the second is the number of non skeleton and
occupied cells.

 We've found that when this is executed from the borders  inward, the cells that
eliminated by the function G in the WZ algorithm and not by A  will be deleted in the
next passage. That makes the other checks used by WZ including g  not necessary.

The level of the skeleton details is controlled by the function B (C) which
determines the number of neighbours that belong to the skeleton. Each cell which is
free and has not yet being eliminated is considered as a skeleton cell. The thinning
process is perform in parallel with the calculation of the potential field as described
above.

W-Z algorithm      Bmin 0   Bmax 6           Bmin 1   Bmax 7

Figure 6.4 Comparison to W-Z algorithm

The algorithm is defined by the following formulas:
(1) A(C) the number of occupied to free transitions in an anti-clockwise

walk around the cell
(2) B(C)  the number of neighbours which do not belong to the skeleton.
A cell C  is eliminated iff:
1. A(C) =< 1. and
2. bmin  < B(C) < bmax  ; (0 < bmin  = <bmax  < 8)

bmin  and bmax  control the level of the skeleton details, at the first iterations
(close to the borders) we use a little bmax  in order to have a detailed skeleton and a
bigger bmax  to filter noise and to smooth the borders (see figures 6.4 and 6.5.).

The algorithm generates a junction list during the thinning process. Each cell for
which A(C) > 1 is listed automatically as a junction.

The thinning method which has been developed has two advantages over the
WZ method: (1) It  uses only two not complicated formulas which can be calculated at
the same checking step for each cell, and (2) The level of details is controllable, hence
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noise and unuseful details which disturb a lot in navigation can be dealt with in the
lower immediate level of the thinning process.

The complexity of the algorithm is linear with the number of the grid cell.

  
 a. Bmin 0 Bmax 6               b. Bmin 1 Bmax  7

Figure 6.5     results of the thinning algorithm.

6.2 The Global Subsystem

The global navigation subsystem uses a global occupancy grid to generate a
graph description of the world. The occupancy grid can be a deterministic grid given as
a priori knowledge or a probabilistic grid that is created by a mapping process described
in §6.1. The skeleton of the free space is extracted using the thinning process that is
described above. From the skeleton the system generates a graph within which it
performs the planning. In this chapter we described the generation of the graph and the
planning.

6.2.1 Global Maps

The global map covers all the working space, holding all the necessary
information for path planning and execution. The system maintains two levels of the
global map: (1) occupancy grid (see chapter 2) and (2) Junctions and Links graph. Each
of the levels can be constructed from the other hence they can be considered equivalent
from the information point of view.
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a. Probabilistic occupancy grid b. Skeleton after grid treatment

Figure 6.6 Results of global mapping process made by the robot

6.2.2 The Global Graph

The global graph is a symbolic description of the working space which is based
on the Voronoi diagram of the free space. The graph consists of junction as nodes and
links as branches  (see chapter 3 and 4 for mathematical definition). Geometric
information that the navigation system uses for planning (see chapter 5) and dealing
with errors and noise, is attached to each junction and link. The graph is contained in
the junction table for which the entries are the junctions' names. A links table that
contains all the links connected to the junction is attached to each junction.

6.2.2.1  Junctions table

 The junctions' table contains all the junctions in the working space. Each
junction is a separate entry to the table accessible by the name that it has been given
during the graph creation or updating.

Each entry contains the following information:
1. Junction name - a number between 1 to 99 (99 is a arbitrary limit which

has been found more than sufficient to our purpose and facilitates the
treating of the information).

2. Adjacent junctions - the list of the junctions' names which are connected
to the above junction by a link. To each of which is attached the name
of the connecting link.

3. Junction position - the global co-ordinates of the junction
4. Junction radius
5. Junction type - the number of links that create the junction
6 Junction links - a table of the links that are connected to the junction

For example let consider the junction "1" that is connected to the junctions "2", "3" and
"4". The links that connect these junctions are links 1, 2 and 3 of junction 1
accordingly. The junction "1" is at x = 150 and y = 200 and has a radius of 5.
The junction entry will look like the following:
"1 adjacent: '((2) (3) (4))  position: '(150 200)  radius: 5  type: 4" links: table .
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For simplicity and practical reasons a knee (a point in which the link changes
direction for 90 degrees or more) in a link or a dead end are considered as junctions of
type 2 and 1 respectively. The dead ends are named after the junction to which they are
connected multiplied by 100. For example two dead ends connected to junction 3 will
be named 301 and 302.

6.2.2.2 Links' tables

The links' table contains the links that create the junction to which it is attached.
To facilitate the planning each link appears two times, once as the link leading from
junction Ji to junction Jj in the links' table of Ji and once as the link leading from Jj to Ji
in the links' table of Jj.

Each entry contains the following information:
1. The link - the link number at the junction.
2. The link end - the name of the junction at the end of the link
3. Link direction - the general global direction of the link
4. Link length.
5. Geometric description - a list of the cells which create the link, each cell

is described by its x and y co-ordinates and its radius.

6.2.3 Generating the Graph

The grid that holds the skeleton is used to generate the graph. Each grid cell that
belongs to skeleton is defined by a value correspond to its distance from the borders of
the free space. A junction has a value which is the original cell value plus 100, hence it
becomes detectable at the grid level. All the other cells have the value 0. A junction is
chosen arbitrarily and each line which is connected to it is explored cell after cell.
Whenever a new junction occurs, it is developed line by line. This recursive process
terminates when all the cells which belong to the skeleton were visited and all the lines
and junctions where noted in the tables.

The following algorithm describes the process. The main chooses the junction
to start from and calls the develop-junction which searches the links connected to the
junction. When develop-junction finds a link it names the link and calls explore-line
that follows the link. develop-junction returns to the procedure that called it when it
finishes the full circle search. explore-line follows the link to its end that can be a
junction or a dead end. When it is a dead end it returns to the develop-junction that
called it. When the end is a junction explore-line calls develop-junction and when the
latter returns it returns to the develop-junction that called it.

main
choose arbitrarily junction (j)
develop-junction (j)

end

develop-junction (j)
l = 0
do i 8
  when neighbour(j i) > 0

explore-line (j l)
l = l + 1

  end
end do

end
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explore-line (j l)
if line was explored
  ln = read link name
  write inverse-link(ln) as link j.l
else
  link-list = current-cell
  do while next-cell not a junction

add cell to link-list
search next cell

  end-do
  calculate link direction
  write link in links table as j.l
  write link name in current-cell
  develop-junction (next-cell)
end if

end

Figure 6.7 the graph of the lab and the planning results

6.2.4 Path Planning

The path planning is based on the approach that was presented in chapter 5. A
target can be any of the junction in the global graph. For any other target the nearest
junction will be the target for planning. From the nearest junction to the target itself
another method of navigation should be used.
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When given a target while on a junction the planning module plans a path from
this junction to the target. If on a link a preliminary step of finding the nearest junction
is executed.

The algorithm described in §5.5 is used to find a near optimal path that connects
the current junction to the target.

6.2.4.1 Search Algorithm

The following algorithms describe the process of path search. These algorithms
are based on the Near Optimal Path Finder that is described in chapter 5.

path :PLB :PUB :junctions :end
PUB and PLB as they are defined in chapter 5,
Junctions is the list of the junctions the path pass through,

each of its elements is a list that consists of the junction name 
and the link that leads to the next junction.

End is the last junction of the path

find-path (start target)
 paths = develop (start)

PUB-min = find-min-PUB (paths)
  while paths

path = pop (paths)
if

* whenever a path reach the target it is added to the list
* of possible paths

(path-end (path) = target)
add possible-paths path

else if
* when the path PLB is smaller than the minimum PUB 
* known at the moment the developing of the path is
* continued

(path-PLB (path) <=  PUB-min)
add paths develop (path-end (path))

else if
* when the PLB is bigger than the minimum PUB the
* path is not developed and added as is to the paths list it
* will be developed if and when its PLB will be smaller
* than the minimum PUB

(path-PLB (path) > PUB-min) and (not possible-paths)
add paths path

end if
end

The procedure develop finds the junctions which are connected to the junction it
receives, and create the new paths that it adds to the paths list. It also updates the PUB-
min which is the minimum PUB of all the paths in the list paths.

The result of find-path is a list of all the paths  that can be the shortest paths
from the junction 'start' to the junction 'target'. From this list we take the path of the
lowest average of PUB and PLB but one can think of other criteria to choose the most
promising path.
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6.3 Local Subsystem - Path Following

The local subsystem creates a local map from the sonar and infrared distance
sensors using the mapping process. From this map it generates the local skeleton and
graph which it uses to localised itself and to generate a move command to the robot in
order to follow the correct skeleton line (link).

6.3.1 Local Map

The robot uses a local map to identify links and junctions. The local map is a
probabilistic occupancy grid of the immediate environment that the robot derives from
its sensors. The execution part, the "follow a path module", extracts the local skeleton
and activates one of the two possible behaviours, either "follow a link" or "turn in
junction". The size of the grid as well as the size of the grid's cells is determined
dynamically in a real time process which is based on the sensory input.

6.3.2 Mapping the Sensors' Reading

The robot's sensors' input is mapped directly on a local probabilistic  occupancy
grid. Each reading/processing cycle the robot creates a local grid map, for which the
robot itself is at the centre. The size of the grid and the size of the grid's cells is
determined from the sensors' readings (see bellow the description of the dynamic size
determination). In order to compensate noises and reading's errors, the robot uses
several sensors' readings to create the local map. Only relevant readings are mapped.
The relevance is set by two relevancy tests:

1. Temporal relevance:- only the last nr-max readings are mapped, where nr-max
is a controllable parameter of the system.

2. Spatial relevance:- only the reading which have been taken at a distance dr <=
dr-max are mapped, where dr -max is defined by the dynamic size
determination system based on a controllable parameter.

The first test helps the robot to deal with dynamic changes in the world, only the latest
information is used. The second test eliminates a lot of sonar malreadings that are due
to distance and reflection angles.

The local map can incorporate an a priory knowledge that was derived from the
global map, given a certain probability. This would be an equivalence of expectation at
occupancy grid level. However at our case we use no a priory information. At each
cycle we start from a blank grid. The initial value for all the grid's cells is 0.5, which
means an unknown occupancy probability.

6.3.3 Dynamic Grid's Cell Size

While the robot moves in the working space the width of the passages is
changed. To cover all the width of a passage which is necessary for the extraction of the
skeleton a dynamic cell size is applied. The number of the grid cells is fix. After several
experiments taking in consideration the time of processing such image and the robot
speed the 25 x 25 grid was found to be a good compromise. The actual width of the
passage is calculated from the last sonar reading. The distance between each pair of
opposite sonar reading is the base for the calculation. The system takes the minimum
distance as the actual width and calculates the cell size for which the free space width
will cover half of the grid width.

For example if the minimum distance is 100" than the cells' size will be (integer
( 100 / 12 ) = 6". The cells' size is limited to a maximum of 15" (about half of the robot
diameter) to prevent missing a link, and a minimum of 5" to prevent the creation of
false skeleton lines (all the measurements are in inches). When the cells' size passes the
maximum the grid size increases to keep the cells' size at the maximum. When the cells'
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size passes the minimum the grid size reduces to keep the cells' size at the minimum,
the latter increases the cycle speed in narrow passages.

6.3.4 Local J-L model

Every cycle the navigation system extracts the local skeleton from the local map
using the thinning method described above (6.3.4.). The thinning parameter is 6 in
order to eliminate the effects of sensors' noise. The result of the thinning process is a
list of junctions and skeleton cells. A control parameter, the search-radius, defines the
maximum distance for a junction to be considered.

From the considerable junctions it chooses the nearest to the robot. If no
junction is available the system chooses the nearest skeleton cell as starting point. From
the starting point it creates a local one node graph that represents the local J-L model.
The node of the graph is the starting point and the branches are the links exiting the
starting point. The links end either at the last skeleton point or at a junction on the other
end of the link.

6.3.5 Following a Path

The following a path algorithm is described bellow. The execution module gets
from the planning module the path list that includes the sequence of the junctions and
links to be followed. It follows the list junction after junction. When there is a junction
in the local J-L model it is checked and compared with the expected junction using the
junction table.

If the check succeeds the system continues to the next junction on the list by
choosing the right link to follow from the junction. If the check fails the search
continues by following the link in the closest direction to the general direction defined
in the links table. The search is limited to the expected length of the link plus a certain
margin which is a control parameter of the navigation system. If the search failed the
system use a recovery option. It turns back to the last identified junction and starts
again.

follow-a-path (path-list)
do-list (next-junction path-list)

goto-next-junction (next-junction)
end

end

goto-next-junction (next-junction)
while (not junction-verified) and (travel < link-length)

set (junction, travel) follow-a-link (next-junction)
verify-junction (junction)

end
when (not junction-verified)

goto-next-junction (preceding-junction)
end

follow-a-link (next-junction)
read-sensors
map-sensors
set (junction, links) make-local-graph
set link-end identify-link (next-junction)
accumulate (travel move-to (link-end))
return (junction, travel)

end
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6.4 Experimental System and Results

6.4.1 Experimental Test-bed

The robot and computers on which the navigation system was implemented and
tested changed three times during the five years of project MARS.

At the first stage that lasted about a year, the system consisted of a mobile robot
Hero2000 of Zenith corporation and Macintosh IIFX that communicates with the robot
and controls it. The basic behaviour of following the centre of a passage and the sonar
mapping abilities were developed and tested at this stage. The Hero2000 provided poor
control, communication and sensory characteristics and was therefore discarded and
will not be described here.

 In the second stage of the project a new participant, the Nomad 200 mobile
robot came to play the main role. This robot that provides modern control,
communication and sensory is described in the next section. Using the simulation
environment that came with the robot the planning and the execution modules were
developed, implemented and integrated to create the complete navigation system.

After about a year the project entered its third final stage using Sun Sparcs
stations as host and control units. The navigation system was adapted to the UNIX/Sun
environment to test and to demonstrate real world navigation abilities.

§6.4.3 describes and discusses some results of the second and third stages.

RF antene Emergency button

Sonar

Infra red

tacile belt

Turret

Base

Figure 6.8.  Nomad 200
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6.4.2 The Nomad 200 Mobile Robot.

Nomad 200 (figure 6.8 above) is a 1 meter tall mobile robot. Its  cylinder-
shaped body is divided into two parts: a base and a turret. The base keeps its global
attitude fixed and capable of translation move only. It is moved by a three wheels
motion system that allows two degrees of freedom translation by rotating each wheel
around its vertical axis. The turret is capable of a complete 360 degrees rotation
independent of the wheels direction. Its sensors are arranged symmetrically around the
body, each measuring a given sector of the surrounding environment. They are of three
different types: 16 sonars near the top of the turret, 16 infrared range sensors at the
bottom of the turret, 20 tactile sensors around the base and a digital compass mounted
on top of the turret. Proprioceptive sensors include odometry.

An onboard PC compatible (Intel 486) controls the robot motors and sensory
system. It communicates with the host computer via a serial RF modem.

On the host computer we find a fully simulated development environment that
simulates the robot's activities, communication and environment. It enables direct
shifting from the simulation to the real robot.

6.4.3 Experimental Results

Our laboratory at the institute was the environment in which we experimented
the robot behaviours and the navigation system. Only little adaptation of the
environment was needed. We had to put wooden board in front of the tables because the
IR sensors' height prevents the detection of the table in close range.

Figure 6.9 simulation results go and return of path DEBCF of fig. 6.7
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The basic behaviours and the navigation system where first tested in the
simulation environment that enable as well the introduction of sensors' and odometry
errors. The results (see figures 6.9 6.10) were quite good. The robot followed more or
less the same trajectory every time it repeated the same path, but as we can see it never
repeated the exact trajectory due the different sensors' readings (see figure 6.9)

Figure 6.10 simulation results - following the path

figure 6.11 real robot results following the path DEBCF
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In figure 6.11 we see that when changing to the real world the robot follows
almost the same trajectory of the simulation. A significant difference is the late
recognition of junctions due to longer time cycle of reading and communication.

 local skeleton        local occupancy grid     local skeleton local occupancy

grid

Figure 6.12 Real robot - extraction of the skeleton from local sensor reading

6.5 Discussion

Above we have described a system that combines the behaviours as low level
control and the classic planning. This is a real autonomous navigation system. Not like
Toto of M. Mataric it can use a priory knowledge given as a regular normal map as well
as mapping its environment. Not like in other systems (like AuRa see §2.4) the a priori
knowledge should not be translated to symbols that the system can understand. It
extracts the necessary information by itself and can match it to its treatment of its
perception. It also relates the perceptions to actions reasoning about the results of an
action to expect the new perception. We have created an equivocal representation in
which the same graph represents the sensorial space and the action space.

We have shown that a navigation based on only one behaviour is possible and
effective. The same approach and behaviours that combine the direction with the basic
follow-a-link behaviour were used quite successfully by Miguel Rodriguez [Rod 94] in
an autonomous robotics system. In this system the environment is mapped directly to a
graph representing the sensorial perception in terms of the stimulated behaviours.

A by-product of the work is the developing of an improved thinning algorithm
which is more efficient than the Wang Zhang algorithm and gives control of the
skeleton level of details.

It is possible to develop other methods to extract  the local J-L model directly
from the sonar and infra red sensors. Some possibilities are neural network, pattern
recognition by matching or the perceptron membrane.
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7. Conclusions

7.1 Contributions

This work contributes at three levels to the field of robotics and autonomous
intelligent systems.

At the theoretical abstract level I've presented a new look into behaviour based
systems.

The second is the application level. I've developed a navigation system and
world representation that bridge the gap between the classical planning approach and
the behaviour based systems.

At the technical level I've developed two new technical solutions for already
existing and well-treated problems. The first is a near optimal path finder that works
entirely within the graph representation of the Voronoi diagram. The second is a
simpler set of formulas to extract the skeleton from an occupancy grid.

7.1.1  Behaviours' Mapping

The theory of behaviours' mapping is a bridge that enables combining
behaviours with classical planning and world modelling. The points of bifurcation, non
continuity and non equivalence of the behaviours create landmarks which I called
decision points. Those points enable building a world model that has the advantage of
being entirely based entirely on the system's behaviours.  The mapping of the
behaviours onto a graph enables planning and reasoning. The graph compatibility with
the actual behaviours results in a simple communication of the plan in terms of
behaviours. A plan based on this model can be regarded as well as an answer to the
problem posed by Agre and Chapman e.g. plan as advise. Instead of giving a command
"execute now behaviour..." it says "at the next decision point execute one of the
equivalence behaviours...".

The decision points give reveal another advantage of the system. Between them
the system will act as what I described as a linear stable system, meaning that small
perturbation creates small deviation and the system will arrive to the next decision point
as long as the topology remains unchanged.

The meta behaviour that I've defined as the combination of all the behaviours
the system possesses gives a compact and useful model of the world. I do hope that it
complies with the citation of Einstein at head of this work.

7.1.2 The Navigation System

At the application level I presented a navigation system that demonstrates the
feasibility and applicability of the behaviour mapping theory. It also demonstrates that
navigation based only on one behaviour is possible and effective. It combines the
behaviour execution with the geometric presentation and planning.

This navigation system answers the three basic questions of navigation in
geometric terms as well as in behaviours' terms. A junction in the skeleton is a
bifurcation point in behaviour terms. In contrary to other systems (like AuRA) the
translation from the geometric model to the behaviour's based model and vice versa is
immediate. Hence it enables to combine the classical planning within the geometric
model with the stability and autonomy of behaviours' based systems.

The communication between man and machine becomes easier and accurate
thanks to the geometry topology duality.

The behaviour follow-a-link gives the best result in structured and clustered
areas. In open spaces other behaviours should be applied.
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7.1.3 Path Planning

For the path planning I've developed a new approach that combines the heuristic
A* graph search with a geometric information. It has the advantages of the simplicity
and robustness of graph search while taking into account the geometry of the working
space. It supports working with the uncertainty of path length and can be used as well
as any time planning algorithm.

When comparing to the approach of Barraquand and Latombe it does not suffer
from the local minima problem and once the graph is created there is no need to re-
calculate any time the target is changed.

7.1.4 Skeleton Extraction

For the skeleton extraction I've reduced the set of conditions to be checked,
hence the amount of calculations needed to verify whether a grid cell belongs to the
skeleton or not. It has two advantages over the Wang-Zhang algorithm:

(1) The amount of calculation is reduced almost to an half.
(2) The details' level can be controlled.

As we have shown the second is quite important in navigation.

7.2 Future Work

My work leaves room for future work dealing with subjects and problems that I
did not touch or did not completely develop.

There are three main fields that should be considered for a  future work:
(1) Behaviour analysis and construction.
(2) Systems' analysis.
(3) Systems' construction.

At the behaviours' level:
- Using mathematical models of behaviours one can apply the theory of

catastrophes or the theory of chaos to identify bifurcation points. It will
enable direct behaviours' mapping into the model presented in this
work.

- Construction and analysis of neural network based behaviours

Systems' analysis:
- Analysing and mapping of existing systems using the meta-behaviour

approach
- Decomposition of system behaviour into its sub components

Systems' construction:
- Construction of multi-behaviours' systems
- Giving autonomous systems the ability to identify directly from their

input the points of decision.
- Improving the self and external control of existing or new systems

7.3 General Conclusions and Some Private Reflections

7.3.1 Situation in the Autonomous Systems' Domain

In the introduction and the state of the art review I describe the two different
basic approaches to the problem of creating an autonomous agent, the classic AI (§2.2
§2.3) and the reactive behaviour based systems (§2.5).

 I do believe , as most of the AI community, that the classic pure logical way
can't cope with the real world. This approach is as naive as the absolute determinism of
Laplace saying that knowing the laws controlling the world and the exact conditions
enable the prediction of the future of any system. We know now that this is not enough.



87

The Quantum Mechanics taught us the probabilistic nature of the physical world. The
theory of the Chaos and the theory of Catastrophes  show the non predictability and the
great dependence on initial conditions of the non-linear systems. Hence lack of
information and fuzzy input make the pure logic of the classic AI a nice mathematical
model that can cope with chess but not with the real physical world.

  On the other hand the reactive or situated actions systems that cope quite
nicely with the real world reached their limits and can't go much farther. They lack the
ability to plan and predict,  therefore they can survive but doubtfully demonstrate an
intelligent existence. To enable planning world models were needed so world models
were introduced. M. Mataric introduced a behaviours' based model the system acquires
by experience (§2.5.5). The model consists of the collection of paths the robot
followed. This model enables repeating the same path to arrive to an already known
goal but nothing more. R. Arkin presents the other extreme introducing a geometric
model where the sites are connected by carefully specially developed behaviours
(§2.5.6). The system can't create or modify the model by itself and uses a priori model
made by its creator. Project MARS (§2.6) makes quite a step ahead. The model is based
on the behaviours themselves and enables planning at the symbolic level and creating a
new path based on the knowledge stored in the model. Adding a new behaviour is
simple and doesn't change the nature of the model. The information is based on the
robot experience and there is no way to treat and acquire a knowledge that comes in
other forms.

The theory of behaviour space mapping that I presented in this work proposes a
model that based not directly on the behaviours themselves but on the behaviours'
bifurcation and behaviours' equivalence. These phenomena which are symbolic and
common to all the behaviours enable creating a symbolic world model using only and
in terms of behaviours. The model of the world used in project MARS is one of its
derivations as well as the system of navigation described in §4. It enables acquiring
knowledge and creating a world model either from experience or from geometric or
physical maps and world models.

To conclude I do believe that I created a new bridge that connects the real world
in which an intelligent system should be able to work to the abstract modelling in which
an intelligent agent should be able to plan.

7.3.2 Quo Vadis Autonomous Systems

We can follow the line of behaviours' based and neural network systems and
push it to the limit using better and faster sensors and computers and maybe one day in
the future we will produce a replica of a human being made of metal and silicon instead
of carbon compounds. We can follow the classic logic AI to the limits using brut
computation force to create a machine that will be the world chess champion (we are
not so far from that goal). Will we really create intelligence by doing so? I doubt. In the
first way we will create the physics of a creature but we will not understand how it
functions on the symbolic and intelligence levels. In the second way the brut
computation force covers lack of intelligence. The machine will play chess (which is
theoretically a solved game) better than any man or woman but will be worth nothing
for anything else.

I do believe that to create an intelligent autonomous system that will serve us
and will help us to understand the essential nature of intelligence we should combine
the basic behaviours with models in terms that we as creators and the system can
understand and communicate. I do hope that my work contributes a little in this
direction.
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