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Abstract

In this paper we present a navigation system for a
mobile robot that is capable of operating in dynamic
environments. Mapbuilding is based on landmark de-
tection, with landmarks being established through a
process of self-organisation of the robot’s sensory data.
The resultant map can then be used to determine, and
subsequently follow, arbitrary paths through the envi-
ronment. The results of several experiments carried
out with a Nomad 200 mobile robot in a dynamic en-
vironment are presented.

1 Introduction

In the field of mobile robotics there have been vari-
ous approaches to mapping of the environment. Some
systems use a geometric representation [1, 2], whilst
others take the topological approach, whereby the en-
vironment is modeled as a graph containing nodes rep-
resenting distinct locations, and pathways between lo-
cations are denoted by arcs [3, 5, 6]. However, most
methods assume static environments, which can be a
problem for “real world” applications where some al-
lowance must be made for change within the robot’s
environment.

In addition, limitations are often imposed by the
exploration strategy used in the mapbuilding process.
In using wall following, for example, the type of en-
vironment that can be adequately covered is highly
restricted.

In this paper we describe a system that constructs
a topological map of the environment, using an ap-
proach to landmark detection based on a process of
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self-organisation of the robot’s sensory data. This rep-
resentation emerges as the robot is guided along by the
user; thus generating a more generally useful map of
the environment since it is the user, not the robot, who
decides what areas of the environment should be cov-
ered by the map. The results of several experiments,
carried out with a real robot, are also presented.

2 The Navigation Mechanism

The system consists of two main processes: Map-
building and Map interpretation. During the map-
building phase, the user guides the robot around the
environment and the system constructs the topologi-
cal map. In map interpretation, the robot plans and
executes a path from its current location to a user
specified goal.

The robot used for our experiments was a Nomad
200 mobile robot (see figure 1). In the results de-
scribed here, only the sonar sensors and compass were
used.

e 16 sonar sen-
sors

e 16 IR sensors

e 20 tactile sen-
sors

e Ccompass

e CCD camera

Figure 1: The Nomad 200 mobile robot.



2.1 Mapbuilding

The representation used to describe the environ-
ment takes the form of a vector map. Here, distinct lo-
cations, or landmarks, are connected by vectors denot-
ing the distance and direction between them. Figure 2
shows the form of the vector map (for discussion on us-
ing a topological mapping of this type in preference to
a metric representation see [7]). Landmarks within the
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Figure 2: The vector map. Three points ‘A’, ‘B’ and ‘C’
represent particular landmarks within the environment,
the arcs connecting the nodes record the compass direc-
tion, o, and distance, d, between these landmarks.

environment are selected by the system itself through
a process of self-organisation of the robot’s sensory
data. For the experiments described in this paper,
a Reduced Coulomb Energy (RCE) [9] network was
used for this purpose. With this method, mapping
is achieved by performing an unsupervised clustering
of the robot’s perceptual data as it moves through the
environment. The resultant classifications can be seen
as ‘perceptual landmarks’ within the environment.

The approach of self-organisation to landmark de-
tection was chosen for two reasons. Firstly, user de-
fined landmarks tend to be rather simplistic. This is
due to the inherent difficulty for the human designer
in interpreting the world using the robot’s relatively
impoverished sensors. Thus, the type of environment
that can be mapped using this method is restricted.
Secondly, since a generalisation over perceptions is af-
forded in using such clustering techniques, this mech-
anism gives a robust, noise tolerant, method of land-
mark detection.

The RCE network. The RCE-Classifier is a method
of classification based on self-organisation. Each class
is represented by a representation vector (R-vector).
Training the RCE-Classifier involves determining the
R-vectors.

When a pattern is presented to the classifier, the
input is compared to each of the already existing
R-vectors, using some form of similarity measure
(e.g. dot product) in order to determine the R-vector
of highest similarity with the currently perceived pat-

tern. If the similarity between the input pattern
and the ‘winning’ R-vector is within a pre-determined
threshold then the input pattern belongs to the class
of this winning R-vector. If the similarity is outside
the threshold then the input pattern becomes a new
R-vector. Thus the boundaries of classes are deter-
mined by the nearest neighbour law. Figure 3 shows
an example for a two-dimensional input vector.
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Figure 3: RCE-Classifier, two-dimensional example. Each
‘dot’ in the diagram represents an R-vector. The cir-
cles surrounding each R-vector denote the ‘threshold area’
within which an input pattern must fall in order to be-
long to the corresponding R-vector’s class. In the case of
patterns falling within more than one threshold area, the
nearest neighbour law applies.

In our experiments the input vector to the RCE
network consisted of the sixteen readings of the robot’s
sonar sensors. This input vector was normalised and
the dot product of the input and R-vector was used
as the measure of similarity. The threshold for adding
new R-vectors was fixed at 0.9.

In these experiments the robot’s onboard compass
is used to align the turret (which contains the sonar
sensors) constantly to compass north. This ensures
that sensory perceptions are dependent on the robot’s
location alone, not on the robot’s steering orientation.

Building the vector map. The vector map is built by
the robot as it is led around the environment by the
user. Movement of the robot is restricted to forward
or turn, and the robot travels at a constant speed of
4 inches/sec.

As the robot moves forward it continuously takes
in all 16 sonar readings and processes them using
the RCE-classifier, to generate the ‘perceptual land-
marks’. Each time the perception changes the robot
takes note of the distance travelled since the start of
the last perception. To aid in re-detection, only land-
marks that persist for a travelling distance of over
4 inches are added to the vector map.

Each place node of the vector map consists of a
perception number (as assigned by the RCE-classifier)



and a list of the places connected to that node. For
each connected place, details of compass direction, dis-
tance, and size of perceptual area are stored. Each
link is recorded bi-directionally. Figure 4 shows an
example of three connected place nodes and the cor-

responding vector map.

Place 1 Place 2 Place 3
|Perception#5| |, | | | P#11 | | |P#14 |
T ——————— I I I T T T T T=""
\ \ \ \
19.6" 14.2" 8.4"
41.8" 20.4"
Place 1 Place 2 Place 3
Perception #: 5 Perception #: 11 Perception #: 14
Number of links: 2 Number of links: 2 Number of links: 2
Link O: Link 0: Link O:
Place: 0 Place: 1 Place: 2
Direction: 31 Direction: 29 Direction: 26
Distance: 338 Distance: 418 Distance: 204
Size: 224 Size: 196 Size: 142
Link 1: Link 1: Link 1:
Place: 2 Place: 3 Place: 4
Direction: 211 Direction: 209 Direction: 207
Distance: 418 Distance: 204 Distance: 150
Size: 142 Size: 84 Size: 144

Figure 4: Three connected place nodes and the corre-
sponding vector map. Start and end points for each per-
ception are denoted by vertical lines along the path. Here
only three ‘landmarks’ (labelled 5, 11 and 14) are persis-
tent enough to warrant place node generation, these land-
marks have been given the corresponding place labels, 1, 2
and 3 in the vector map. Distance and size are measured
in tenths of inches.

2.2 Map interpretation

The object of the map interpretation phase is to
plan a route from the current location to an arbitrary,
externally specified goal location using the vector map.
The basis of the planning mechanism is the ‘best-first
search’ algorithm, which is used in this instance to de-
termine the shortest known path between the current
location and the goal location.

In previous experiments (see [7]), the robot was
sometimes unable to find a place at the location given
by the map. This phenomenon can be particularly
prominent at locations near to junctions or cluttered
areas where even small deviations in the robot’s po-
sition and/or orientation can substantially alter the
robot’s perception. This effect can be alleviated some-
what by allowing the robot to gain more ‘experience’
of the environment, thus giving opportunity for ac-
quiring alternative perceptions (and thus alternative
paths) for locations where perception is problematic.
This can be achieved by guiding the robot around the
environment in such a way that multiple visits are
made to each physical location, thereby generating
multiple path entries in the map. In this way, if the

robot is unable to locate a particluar node, the robot
might plan another route along a similar trajectory
via an alternative node.

However, rather than re-plan an alternative route
immediately on failure to find a place node, a better
approach would be to make a more concentrated effort
to locate the lost node. To this end, the basic mecha-
nism was extended to perform a simple search strategy
whenever the robot was unable to locate a node. The
search strategy begins by returning the robot to the
previous node. Two attempts are then made to find
the lost node by searching along trajectories 10° to
either side of the initial trajectory.

2.3 Perceptual aliasing

One of the problems commonly encountered in sys-
tems that use perception as part of their mechanism is
that of perceptual aliasing, i.e. distinct locations within
the environment appearing identical to the robot’s
sensors. In these experiments, perceptual aliasing is
resolved by a process of exploration. Whenever the
robot encounters a place whose perception matches
one or more places recorded in the map, the links for
each candidate place are explored. A match with a
recorded place is assumed if all the links are correct,
otherwise a new place node is created. An exception
to this behaviour is made when the current perception
is ‘expected’ i.e. when moving from one place already
recorded on the map to another along a pre-recorded
link.

3 Dynamic environments

With the system as described so far, changes to the
environment that occur subsequent to the mapbuild-
ing phase (i.e. during map interpretation) are not in-
corporated into the map. To this end, the concept of
‘cost’ in link traversal was introduced. Whenever a
new link is added to the map it is initialised with a
‘confidence value’, 4, of 0.5. If subsequently a link is
traversed successfully the confidence value is increased
to @+ (1 — a)dyd, where a is the learning rate (set to
0.5 in these experiments) and d,;4 is the old confidence
value. If the robot fails to traverse a link the confi-
dence value is reduced to (1 — a)d,q. These calcula-
tions ensure that the confidence value ranges between
0 and 1. A cost can then be calculated for each link
according to d(1/4), where d is the distance variable
for the link and § is the confidence value. The shortest
path is then calculated according to the total link cost



rather than total distance. All updates to confidence
value are made made uni-directionally!.

This idea is similar to the one used in [4]. However,
in our scheme, the calculation of cost is dependent on
the distance recorded on the link concerned. In [4],
this dependence can be ignored since the distance be-
tween each node is constant (each place node is de-
scribed simply by its co-ordinates as obtained from the
robot’s onboard odometry mechanism, the perceptual
properties of a place are not encoded). This distinc-
tion is important since the decision as to the value of
the distance constant must be made by a human de-
signer, and as such is fairly arbitrary (and may need
to be altered for different environments). In using the
robot’s perception to decide on node generation, it
is the environment itself that dictates the landmarks
and distances involved. Furthermore, in systems that
rely on accurate odometry, correctional methods are
required to counter the effects of drift. Such mech-
anisms restrict the size of environment that can be
mapped. In [4], for example, the robot must periodi-
cally return to a ‘home’ location for re-calibration of
its odometry, correctional methods such as this are
not necessary in the system presented here.

4 Experimental results

In this section we present the results of experiments
carried out in a simple environment within the com-
puter science building at Manchester University. Fig-
ure 5 shows the environment used in the experiments,
along with the map generated by the system on com-
pletion of the mapbuilding stage.

Trial 1:

The setup for the first experiment is detailed in fig-
ure 6. The robot was placed at position A (node 27)
within the environment with the task of finding place
B (node 16). The path along the lowest cost route
(initially equivalent to the shortest length route) was
now blocked. The route subsequently taken by the
robot is also shown.

Initially the robot attempts to follow the lowest
cost route. However, due to a change in perception
around the area of the new barrier, the robot is un-
able to locate one of the nodes along the path (node

Tn the mapbuilding stage, an assumption is made that all
links can be traversed in either direction. This is a time saving
device that will, in general, be true. If subsequently links are
found to be uni-directional (e.g. with doors that open one way
only), then the cost of traversal in the ‘wrong’ direction would
be adjusted accordingly.

Node
23

Node
22

Figure 5: The environment in which the experiments took
place. The corresponding map generated by the system
is also shown (each circle indicates a place node on the
map). The rectangular objects are tables within the envi-
ronment. The robot was driven around the environment
in such a way that each place was visited at least twice.
Node numbers that are pertinent to the experiments are
marked accordingly.
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Figure 6: The diagram on the left shows the environ-
mental setup for the first experiment. Notice the blocked
corridor at centre left of the figure. The robot was placed
at location A and the task was to travel to location B. The
lowest cost route before the corridor was blocked is shown
as a dotted line. The middle diagram shows the route
that the robot subsequently followed. The diagram on the
right shows the path the robot took on being returned to
position A.

22). The robot therefore backs up to the previous
location (node 24) in order to re-plan. In addition to
reducing the confidence level of this link, the node that
the robot was unable to locate is temporarily flagged
as a ‘failed’ node. This means that whilst the robot
remains at node 24 no further attempt will be made
to plan routes via this node. There is, however, an al-
ternative route, along the same direction, via another
node connected to node 24 (i.e. node 23). Since this is
now the lowest cost route from the current node, the
robot then attempts to follow this alternative path.

On following this path the robot is again unable to



locate the connecting node, and again reverses back
to node 24. The confidence level for this link is sub-
sequently reduced. The robot is now in the position
whereby the two connecting nodes along the lowest
cost path are now flagged as failed (the robot has ef-
fectively not moved from node 24 since it was unable
to locate either node). Consequently, the robot gen-
erates and follows a path via the start node, as shown
in figure 6.

The robot was then placed back at position A and
instructed to perform the same task. This time, rather
than planning a route along the blocked corridor, the
robot followed a new path immediately (see figure 6).
At this point this new path represents the lowest cost
route between position A and position B.

Trial 2:

For this experiment, the map generated from trial 1
was utilised. The robot was again placed at position
A, and instructed to find position B. In this environ-
ment two additional corridors were blocked. The path
taken by the robot is shown in figure 7.
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Figure 7: The diagram on the left shows the environmen-
tal setup for the second experiment. Notice that three
corridors are now blocked. The robot was placed at loca-
tion A and the task was to travel to location B. The lowest
cost route is shown as a dotted line. The diagram on the
right shows the route that the robot subsequently followed.

The first corridor that the robot encounters in this
trial has two alternatives for traversal. However, un-
like the situation in trial 1, the robot does not return
to the same node on failure. Consequently oscillation
occurs between the alternative paths until their cost
is prohibitive, thus forcing the robot to plan an alter-
native route that leads out of the corridor. A similar
situation arises in the second corridor.

On completion of its task the robot was placed back
at position A and location B was again selected as the
goal. The diagram on the left in figure 8 shows the
route generated by the robot from this position.

Initially this result may seem counter-intuitive; at

Figure 8: The diagram on the left shows the path initially
attempted by the robot on being returned to location A.
The middle diagram shows the path that the robot subse-
quently followed. On the right is the path generated and
followed by the robot on the third attempt.

the beginning of this trial this path was rejected, and
the robot was subsequently able to follow an alterna-
tive route to the goal. In general, if the robot has to
re-plan several times in order to reach a goal (as is the
case here), then the possibility arises that the total
cost of traversal via the ‘correct’ route may be higher
than that of paths rejected along the way. If this is
the case, then it is only through experience that the
robot is able to learn the correct path from start point
to goal.

The route subsequently taken by the robot is also
shown in figure 8. This path was generated again when
a second attempt was made by the robot to reach the
goal. Only on the third attempt was the cost high
enough along this route to force the system to generate
the ‘correct’ path from start to goal location, ignoring
the ‘dead end’ corridors along the way.

Trial 3:

For this experiment the map generated during the ini-
tial mapbuilding stage was used. Figure 9 details the
initial setup. The robot was placed at position A
(node 16), with place B (node 24) being selected as
the goal. The initial path selected by the robot is also
shown.

On attempting to traverse this path, an oscillation
occurs between alternative routes until cost forces the
robot to generate an alternative route via the start-
ing point. On completion of its task the robot is
placed back at position A, where it subsequently gen-
erated and followed a path along the physically short-
est route.

It is interesting to note that, at least from the
robot’s perspective, we have in effect blocked two cor-
ridors with the barrier in figure 9. On attempting
to traverse to place B the robot was unable to locate
nodes at the junction near the barrier. This was due to
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Figure 9: The diagram on the left shows the path gener-
ated by the robot on being placed at location A with the
task of locating B. The middle diagram shows the path
that the robot subsequently followed. On the right is the
path generated and followed by the robot on the second
attempt.

a change in perception in the area around this barrier.
Since the nodes at the junction are now ‘lost’ to the
robot, we have effectively also blocked the corridor be-
low the barrier in figure 9. This situation is, perhaps,
an inevitable consequence of using perception in the
mapbuilding process, and provides an example of how
different the robot’s perception of the world is to our
own. A potential solution to this problem is discussed
in section 5.

5 Summary and Conclusions

In this paper we have presented a navigation sys-
tem for a mobile robot based on landmark detection.
Landmarks are selected by the system itself through
a process of self-organisation of the robot’s percep-
tual data. An initial phase of mapbuilding, guided by
the user, is followed by a ‘map interpretation’ phase,
whereby the robot plans and executes paths between
locations within the environment. During the map in-
terpretation phase the system is able to detect and
incorporate changes to the environment into its map.

At present the system will fail if all known paths to
a goal are blocked. In addition, unnecessary detours
may be forced due to physically ‘open’ routes becom-
ing perceptually blocked (see discussion, trial 3). Both
these situations could be solved by allowing the user
to perform additional mapping with the robot. Al-
ternatively, the robot could use a simple exploration
strategy to further map the environment whenever it
wasn’t involved in path finding. Thus, the need for
additional human intervention may be reduced, whilst
retaining the advantage gained in performing an initial
user guided mapbuilding stage.

At present not all the information contained in the

map is utilised. It may be possible for the system
to deduce ‘short cuts’ within the environment by cal-
culating a straight line path between the current lo-
cation and a goal (or sub-goal) location. Such a be-
haviour could form the basis of a ‘map-based’ explo-
ration mechanism.

The environment used in these experiments is of
a simple, box world, type. Although the principle
of navigation based on perceptual landmarks in ‘real
world’ situations has been shown to be viable [8], fur-
ther experimentation is required with the current sys-
tem in such situations.
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