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Abstract

An important issue that arises in the automation of many security, surveillance, and reconnais-

sance tasks is that of observing (or monitoring) the movements of targets navigating in a bounded

area of interest. A key research issue in these problems is that of sensor placement | determining

where sensors should be located to maintain the targets in view. In complex applications involving

limited-range sensors, the use of multiple sensors dynamically moving over time is required. In this

article, we investigate the use of a cooperative team of autonomous sensor-based robots for the

observation of multiple moving targets (a problem that we term CMOMMT). We focus primarily

on developing the distributed control strategies that allow the robot team to attempt to maximize

the collective time during which each target is being observed by at least one robot team member

in the area of interest. Our initial e�orts on this problem address the aspects of distributed control

in robot teams with equivalent movement capabilities working in an uncluttered, bounded area.

This article �rst formalizes the problem and discusses related work. We then present a distributed

approximate approach to solving this problem (called A-CMOMMT) that combines low-level multi-

robot control with higher-level control. The low-level control is described in terms of force �elds

emanating from the targets and the robots. The higher level control is presented in our ALLIANCE

formalism [16, 17], which provides mechanisms for fault tolerant cooperative control, and allows

robot team members to adjust their low-level actions based upon the actions of their teammates.

We then present the results of the ongoing implementation of our approach, both in simulation and

on physical robots. To our knowledge, this is the �rst article addressing this research problem that

has been implemented on physical robot teams.

Keywords: multi-robot cooperation, multi-target tracking, ALLIANCE, behavior-based.

1 Introduction

An important issue that arises in the automation of many security, surveillance, and reconnaissance

tasks is that of observing the movements of targets navigating in a bounded area of interest. A key

research issue in these problems is that of sensor placement | determining where sensors should

be located to maintain the targets in view. In the simplest version of this problem, the number

of sensors and sensor placement can be �xed in advance to ensure adequate sensory coverage of

the area of interest. However, in more complex applications, a number of factors may prevent

�xed sensory placement in advance. For example, there may be little prior information on the

location of the area to be monitored, the area may be su�ciently large that economics prohibit

the placement of a large number of sensors, the available sensor range may be limited, or the area

may not be physically accessible in advance of the mission. In the general case, the combined

coverage capabilities of the available �xed-location (static) sensors will be insu�cient to cover the

entire terrain of interest. Thus, the above constraints force the use of multiple sensors dynamically

moving over time.

In this article, we investigate the use of a cooperative team of autonomous sensor-based robots

for applications in this domain. We focus primarily on developing the distributed control strategies

that allow the team to attempt to maximize the collective time during which each target is being

observed by at least one robot team member in the area of interest.
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Of course, many variations of this dynamic, distributed sensory coverage problem are possible.

For example, the relative numbers and speeds of the robots and the targets to be tracked can vary,

the availability of inter-robot communication can vary, the robots can di�er in their sensing and

movement capabilities, the terrain may be either enclosed or have entrances that allow targets to

enter and exit the area of interest, the terrain may be either indoor (and thus largely planar or

2D) or outdoor (and thus 3D), and so forth. Many other subproblems must also be addressed,

including the physical tracking of targets (e.g. using vision, sonar, IR, or laser range), prediction

of target movements, multi-sensor fusion, and so forth. Thus, while our ultimate goal is to develop

distributed algorithms that address all of these problem variations, we �rst focus on the aspects of

distributed control in homogeneous robot teams with equivalent sensing and movement capabilities

working in an uncluttered, bounded area.

We also note that although the cooperative multi-robot target observation application is interest-

ing in its own right, this application domain can also serve as a testbed for developing generalized

approaches for the control of cooperative teams. The cooperative monitoring (or observation) prob-

lem is attractive for this purpose for at least two reasons. First, it requires a strongly cooperative

solution [7] to achieve the goal, meaning intuitively that the robots must act in concert to achieve

the goal, and that the task is not trivially serializable. This makes the cooperative control problem

much more challenging than a weakly cooperative approach. And, second, it allows us to explore

the extension of our ALLIANCE cooperative control architecture [17, 18] that we previously devel-

oped for the domain of loosely-coupled, independent tasks, to the domain of strongly cooperative

applications.

In this article, we describe a mechanism for achieving distributed cooperative control in the

de�ned application domain. Section 2 de�nes the multi-target observation problem of interest in this

article, and is followed by a discussion of related work in section 3. Section 4 describes our approach,

discussing each of the subcomponents of the system. Section 5 describes the implementation of our

approach on both a simulated and a physical robot team. Finally, we o�er concluding remarks in

section 6, as well as directions of continuing and future research.

2 Problem Description: CMOMMT

The problem of interest in this article | the Cooperative Multi-Robot Observation of Multiple

Moving Targets (or CMOMMT for short) | is de�ned as follows. Given:

S : a two-dimensional, bounded, enclosed spatial region, with entrances/exits

R : a team of m robots with 3600 �eld of view observation sensors, that

are noisy and of limited range

In(oj(t);S) : a binary variable de�ned to be true when target oj(t) is located within

region S at time t

O(t) : a set of n targets, oj(t), j = 1; 2; :::; n, such that In(oj(t);S) is true

De�ne an m� n matrix A(t), where

aij(t) =

(
1 if robot ri is observing target oj(t) in S at time t

0 otherwise

We further de�ne the logical OR operator over a vector H of k elements as:

k_
i=1

hi =

(
1 if there exists an i such that hi = 1

0 otherwise

2



We say that a robot is observing a target when the target is within that robot's sensing range

(which is de�ned explicitly in section 4.1.1). Then, the goal is to develop an algorithm, which we

will call A-CMOMMT, that maximizes the following:

TX
t=0

nX
j=1

m_
i=1

aij(t)

over time steps �t under the assumptions listed below. In other words, the goal of the robots is to

maximize the collective time during which each target in S is being observed by at least one robot

during the mission from t = 0 to t = T . Note that we do not assume that the membership of O(t)

is known in advance (i.e., the movements of the targets are unknown in advance).

In addressing this problem, we assume the following: De�ne sensor coverage(ri) as the area

visible to robot ri's observation sensors, for ri 2 R. (Note that the sensor coverage of a sensor is

dependent upon both its range (de�ned as sensing range in section 4.1.1) and its �eld of view (i.e.

the angle subtended by the sensor).) Then we assume that, in general,

[
ri2R

sensor coverage(ri)� S:

That is, the maximum area covered by the observation sensors of the robot team is much less than

the total area to be monitored. This implies that �xed robot sensing locations or sensing paths will

not be adequate in general, and that, instead, the robots must move dynamically as targets appear

in order to maintain observational contact with them and to maximize the coverage of the area S.

We further assume the following:

� The robots have a broadcast communication mechanism that allows them to send (receive)

messages to (from) each other within a limited range. This communication mechanism will be

used only for one-way communication. Further, this communication mechanism is assumed

to have a bandwidth of order O(mn) for m robots and n targets1.

� For all ri 2 R and for all oj(t) 2 O(t), max v(ri) > max v(oj(t)), where max v(a) returns

the maximum possible velocity of entity a, for a 2 R [ O(t).

� Targets in O can enter and exit region S through distinct entrances/exits on the boundary

of S.

� The robot team members share a known global coordinate system.

In some situations, the observation sensor on each robot is of limited range and is directional

(e.g., a camera), and can only be used to observe targets within that sensor's �eld of view. However,

in this article, we report the results of the case of an omni-directional 2D sensory system (such as

a ring of cameras or sonars), in which the robot sensory system is of limited range, but is available

for the entire 360o around the robot, as depicted in �gure 1.

1Using the 1.6 Mbps Proxim radio ethernet system we have in our laboratory, and assuming messages of length

10 bytes per robot per target are transmitted every 2 seconds, we �nd that nm must be less than 4 � 104 bps to

avoid saturation of the communication bandwidth. Thus, the upper limit of the total allowable number of robots and

targets is about 400.
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= robot

= object to be monitored

= field of view of robot
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Figure 1: The problem depicted in terms of omni-directional 2D robot sensors.

3 Related Work

Research related to the multiple target observation problem can be found in a number of domains,

including art gallery and related problems, multi-target tracking, and multi-robot surveillance tasks.

While a complete review of these �elds is not within the scope of this article, we will brie
y outline

the most relevant previous work in these areas.

The work most closely related to the CMOMMT problem falls into the category of the art gallery

and related problems [15], which deal with issues related to polygon visibility. The basic art gallery

problem is to determine the minimum number of guards required to ensure the visibility of an

interior polygonal area. Variations on the problem include �xed point guards or mobile guards

that can patrol a line segment within the polygon. Most research in this area typically utilizes

centralized approaches to the placement of sensors, uses ideal sensors (noise-free and in�nite range),

and assumes the availability of su�cient numbers of sensors to cover the entire area of interest.

Several authors have looked at the static placement of sensors for target tracking in known polygonal

environments. For example, Briggs [6] uses art gallery theorems in the development of algorithms for

planning the set of placements from which a sensor can monitor a region within a task environment.

Her approach uses weak visibility as a model for detectability, in which all points in the area to be

monitored are visible from at least one point in the sensor placement region. These works di�er

from the CMOMMT problem, in that our robots must dynamically shift their positions over time

to ensure that as many targets as possible remain under surveillance, and their sensors are noisy

and of limited range.

Sugihara et al. [21] address the searchlight scheduling problem, which involves searching for a

mobile \robber" (which we call target) in a simple polygon by a number of �xed searchlights,

regardless of the movement of the target. Their objective is to determine whether a search schedule

exists, given a polygon and the locations of the searchlights. In this context, a search schedule

is a mapping from an interval of time to a direction in which the searchlight should aim. They

develop certain necessary and su�cient conditions for the existence of a search schedule in certain

situations. This work, however, assumes that there is only one target, that the target cannot enter

or exit the polygon after the start of the problem, and that the searchers maintain �xed positions.

It also does not give a prescriptive algorithm for determining the appropriate search schedule for
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any given simple polygon, although algorithms for special cases are provided.

Suzuki and Yamashita [22] address the polygon search problem, which deals with searching for

a mobile target in a simple polygon by a single mobile searcher. They examine two cases: one in

which the searcher's visibility is restricted to k rays emanating from its position, and one in which

the searcher can see in all directions simultaneously. Their work assumes that the searcher has

an in�nite sensory range, that the target cannot enter or exit the polygon after the start of the

problem, and that only one searcher is available. It also does not give a prescriptive algorithm for

determining the appropriate search schedule for the single searcher for any given simple polygon,

although algorithms for special cases are provided.

LaValle et al. [13] introduces the visibility-based motion planning problem of locating an un-

predictable target in a workspace with one or more robots, regardless of the movements of the

target. They de�ne a visibility region for each robot, with the goal of guaranteeing that the target

will eventually lie in at least one visibility region. In LaValle et al. [12], they address the related

question of maintaining the visibility of a moving target in a cluttered workspace by a single robot.

They are also able to optimize the path along additional criteria, such as the total distance traveled.

The problems they address in these articles are closely related to the problem of interest here. The

primary di�erence is that their work does not deal with multiple robots maintaining visibility of

multiple targets, nor a domain in which targets may enter and exit the area of interest.

Another large area of related research has addressed the problem of multi-target tracking (e.g.

Bar-Shalom [1, 2], Blackman [5], Fox et al. [10]). This problem is concerned with computing

the trajectories of multiple targets by associating observations of current target locations with

previously detected target locations. In the general case, the sensory input can come from multiple

sensory platforms. Other work related to predicting target movements includes stochastic game

theory, such as the hunter and rabbit game [3, 4], which is the problem of determining where to

shoot to minimize the survival probability of the rabbit. Our task in this article di�ers from these

works in that our goal is not to calculate the trajectories of the targets, but rather to �nd dynamic

sensor placements that maximize the collective time that each target is being observed by at least

one of the mobile sensors.

In the area of multi-robot surveillance, Everett et al. [9] have developed a coordinated multiple

security robot control system for warehouse surveillance and inventory assessment. The system

is semi-autonomous, and utilizes autonomous navigation with human supervisory control when

needed. They propose a hybrid navigational scheme which encourages the use of known \virtual

paths" when possible. Wesson et al. [23] describe a distributed arti�cial intelligence approach

to situation assessment in an automated distributed sensor network, focusing on the issues of

knowledge fusion. Durfee et al. [8] describe a distributed sensor approach to target tracking using

�xed sensory locations. As before, this related research in multi-robot surveillance does not deal

with the issue of interest in this article | the dynamic placement of mobile sensors in areas in

which targets may enter and exit.

4 Approach

Figure 2 shows the overall design of the control system within each robot team member. This

design is based upon our ALLIANCE architecture [17, 18], which facilitates the fault tolerant

cooperative control of multiple robot teams. We now provide a brief overview of ALLIANCE, and

then describe how we use this approach to develop the overall control system for robots performing

the CMOMMT application. The following subsections describe the subsystems in more detail.

The ALLIANCE software architecture is a behavior-based, fully distributed architecture that

utilizes adaptive action selection to achieve fault tolerant cooperative control. Robots under this

architecture possess a variety of high-level functions (modeled as behavior sets) that they can per-
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Control Schematic for CMOMMT, in ALLIANCE Formalism

Observe oi Observe oj

Avoid Obstacles 

Activation
signal

Sensors

Actuators

Inter-Robot
Communication

cross-inhibition

Combine

Avoid
Teammates

Observe Known,
Nearby Targets

Motiv. Beh.

Seek out 
Targets

Motiv. Beh.

Motiv. Beh. Motiv. Beh. Motiv. Beh.

Figure 2: Control within an individual robot for the CMOMMT mission, in our ALLIANCE for-

malism.

form during a mission, and must at all times select an appropriate action based on the requirements

of the mission, the activities of other robots, the current environmental conditions, and their own

internal states. Since cooperative robotic teams often work in dynamic and unpredictable envi-

ronments, this software architecture allows the team members to respond robustly and reliably

to the learning of new skills and to unexpected environmental changes and modi�cations in the

robot team that may occur due to mechanical failure or the addition or removal of robots from

the team by human intervention. This is achieved through the interaction of mathematically mod-

eled motivations of behavior, such as impatience and acquiescence, within each individual robot.

These motivations allow a robot to take over a task from any other team member if that team

member does not demonstrate its ability | through its e�ect on the world | to accomplish its

task. Similarly, it allows a robot to give up its own current task if its sensory feedback indicates

that adequate progress is not being made to accomplish that task. The primary mechanism for

achieving adaptive action selection in this architecture is the motivational behavior. The output of

a motivational behavior is typically the activation level or importance weighting of its correspond-

ing behavior set, represented as a non-negative number. When the current level of activation of a

behavior set crosses a threshold, that behavior set becomes active, and all other behavior sets are

inhibited from activation. This results in the robot performing no more than one high-level function

at a time. Thus, ALLIANCE is superior to a simple subsumption approach for those applications

that require higher-level reasoning to determine which behavior to activate.

In the CMOMMT problem shown in �gure 2, each robot has two high-level behavior sets: Observe

Known, Nearby Targets and Seek Out Targets. The Observe Known, Nearby Targets behavior set

in turn controls a number of additional behavior sets (called Observe ok) for the observation of

individual targets. In �gure 2, the motivational behaviors are indicated by the small rectangle

attached at the top of the behavior sets. The following subsections describe these behaviors in

more detail.
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4.1 Observe Known, Nearby Targets

The Observe Known, Nearby Targets behavior set is responsible for controlling robot ri's movements

in relationship to other nearby targets and nearby robots. This part of the control scheme is modeled

by a collection of lower-level behavior sets and motivational behaviors (as shown in �gure 2),

each of which is spawned automatically when a robot has become aware of a target nearby. The

motivational behaviors in this subsystem are responsible for determining the weight, or importance,

of robot ri's continued observation of target oi. If any target oj leaves robot ri's predictive tracking

range (de�ned in the next subsection), the corresponding behavior set is terminated by its respective

motivational behavior. The generated weights are then factored into the output of the Observe

Known, Nearby Targets behavior set (described below) to calculate the desired direction of motion

of robot ri. This combination of information is modeled in �gure 2 as the combine module.

The following subsections describe how the local control information based upon robot and target

locations is derived, how the motivational behaviors derive the weights corresponding to each target,

and how the lower-level and higher-level information is combined.

4.1.1 Target and Robot Detection

Ideally, the robots would be able to passively observe nearby robots and targets to ascertain their

current positions and velocities. Research �elds such as machine vision have dealt extensively with

this topic, and have developed algorithms for this type of passive position calculation. However,

since the physical tracking and 2D positioning of visual targets is not the focus of this research, we

instead assume that the robots use a global positioning system (such as the satellite-based GPS

for outdoors, or the laser-based MTI indoor positioning system [11] that is in use at our CESAR

laboratory) to determine their own position, and communicate this information to other robot

team members. In our approach, robots do not store position information for robots that are not

relatively close (made explicit below).

In addition to robot position information, team members need to determine the positions and

velocities of the targets within their own �eld of view. Since previous work [14, 19] has shown that

communication and awareness of robot team member actions can signi�cantly improve the quality

of a distributed solution for certain task domains, we supplement a robot's knowledge of target

movements gained from direct sensing (e.g. from its cameras or sonar) with position and derived

velocity information on target sightings that is communicated by other robot team members within

a given communication range. Thus, targets can be one of two types: directly sensed or \virtually"

sensed through predictive tracking. However, a team member does not store position information

for targets that are not within its own vicinity. Note that this approach requires the available

communication bandwidth to be O(mn), for m robots and n targets (see earlier footnote for the

impact of this bandwidth requirement on the size of the problem).

To clarify this idea, �gure 3 depicts three ranges that are de�ned with respect to each robot

ri. The innermost range is the sensing range of ri, within which the robot can use a sensor-based

tracking algorithm to maintain targets within its �eld of view. The middle range is the predictive

tracking range of the robot ri, which de�nes the range in which targets localized by other robots

rk 6= ri can a�ect ri's movements. The outermost range is the communication range of the robot,

which de�nes the extent of the robot's communicated messages. (To ground this idea, in our

experimentation, the sensing range is on the order of three meters, the predictive tracking range is

about twice the sensing range, and the communication range is about �ve times the sensing range.)

When a robot receives a communicated message regarding the location and velocity of a sighted

target that is within its predictive tracking range, it begins a predictive tracking of that target's

location, assuming that the target will continue linearly from its current state. This predictive

tracking will then give the robot information on the likely location of targets that are not directly
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communication range

predictive tracking range

sensing range

ri

Figure 3: De�nition of the sensing range, predictive tracking range, and communication range of a

robot. Although the exact range values may change, we assume that the relative ordering of range

distances remains the same.

sensed by the robot, so that the robot can be in
uenced not only by targets that are directly

sensed, but also by targets that may soon enter the robot's sensing range. (Refer to section 4.1.3

for methods of di�erentially weighting targets based upon whether they are directly sensed, or are

estimated to be present through predictive tracking.)

We assume that if the targets are dense enough that their position estimations do not supply

enough information to disambiguate distinct targets, then existing tracking approaches (e.g. Bar-

Shalom [2]) should be used to uniquely identify each target based upon likely trajectories.

4.1.2 Local Force Vector Calculation

In performing their mission, the robots should be close enough to the targets to be able to take

advantage of their (i.e. the robots') more sophisticated tracking devices (such as cameras) while

remaining dispersed from each other to cover more terrain. The local control of a robot team

member is thus based upon a summation of force vectors which are attractive for nearby targets

and repulsive for nearby robots. Figure 4 de�nes the magnitude of the attractive forces of a target

within the predictive tracking range of a given robot. Note that to minimize the likelihood of

collisions, the robot is repelled from a target if it is too close to that target (distance < do1). The

distance between do2 and do3 de�nes the preferred tracking range of a robot from a target2. In

practice, this range will be set experimentally according to the type of tracking sensor used and

its range for optimal tracking. In the work reported here, we have not studied how to optimize

the settings of these thresholds. The robot sensing range, de�ned in �gure 3, will lie somewhere

between do3 and the predictive tracking range. The attraction to the target falls o� linearly as the

distance to the target increases from do3. The attraction goes to 0 beyond the predicted tracking

range, indicating that this target is too far to have an e�ect on the robot's movements.

Figure 5 de�nes the magnitude of the repulsive forces between robots. If the robots are too close

together (distance < dr1), they repel strongly. If the robots are far enough apart (distance > dr2),

they have no e�ect upon each other in terms of the force vector calculations. The magnitude scales

2This force between a robot and a target is slightly di�erent from that reported in our earlier work in [20]. We

now de�ne a range of preferred distance values rather than one unique preferred distance, resulting in a better

performance.
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Figure 5: Function de�ning the magnitude of the force vector of nearby robots.

linearly between these values.

4.1.3 High-Level Control via ALLIANCE

Using only local force vectors for this problem neglects higher-level information that could be used

to improve performance. Thus, we now enhance the control approach by adding higher-level control

via motivational behaviors to di�erentially weight the contributions of each target's force �eld on

the total computed �eld. This higher-level knowledge is expressed in the form of two types of

probabilities: the probability that a given target actually exists, and the probability that no other

robot is already observing a given target. Combining these two probabilities helps intelligently

reduce the overlap of robot sensory areas toward the goal of minimizing the likelihood of a target

escaping detection. Figure 6 illustrates the relationships between these probabilities and the sensing

and predictive tracking ranges, as well as the general settings of the probabilities in various regions

around a robot rl.

The probability that a target ok exists according to robot rl (termed Pr(existskl)) is modeled as

a decay function based upon when the target was most recently seen, and by whom. In general, a

robot will trust its own recent measurements within its sensing range more than it will trust (1) the

predictions of target locations within its predictive tracking range but outside its sensing range,(2)

the target location measurements made by other robots, or (3) its own older measurements. The

probability will also be dependent upon the characteristics of the sensors used to detect the target; in

general, this probability will decrease inversely with distance from the sensor, under the assumption

that sensor uncertainty increases with distance from the sensor. Beyond the predictive tracking

range of the robot, the probability becomes zero.

The probability that no robot other than rl is already observing a nearby target ok (termed

Pr(NTkl)) is based upon target ok's position and the location of nearby robots. If robot rl knows

that another robot rj is nearby, and is likely within sensing range3 of target ok, then Pr(NTkl)

3Note that we make no assumption that the sensing ranges of all robots are the same, nor that robots are aware

of their teammate's sensing ranges.
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Figure 6: Two probabilities are used to add high-level control to improve performance over local control

alone.

should usually be low. In the simplest case, since we de�ne (in section 2) a robot rl to be observing

a target ok when it is within rl's sensing range, we could assign Pr(NTkl) to be zero whenever

another robot is within sensing range of ok. However, we do not want a robot rl to completely

ignore any nearby target, since rl will be unaware of targets on the far side of robot rj that may

also in
uence rj 's motion. Thus, we set Pr(NTkl) to some non-zero value.

The proper setting of Pr(NTkl) is also dependent upon the estimated density of targets in the

vicinity. If targets are sparsely located in the area, then the robot team risks losing track of a

higher percentage of targets if any targets are ignored. On the other hand, if targets are densely

distributed, then the risks are lower. We have not yet conducted an extensive exploration of the

proper computation of these probabilities based upon these issues. This will be the basis of future

work.

The output of the motivational behavior corresponding to a given target is the product of the

probability that the target exists and the probability that no other robot is currently observing that

target. These probabilities have the e�ect of causing a robot to prefer the observation of certain

targets over others.

4.1.4 Combination of Local and Higher-Level Information

The local force vectors are combined with the higher-level information, resulting in the commanded

direction of robot movement. The direction of movement for robot rl is given by:

nX
k=1

(FV Okl � Pr(existskl)� Pr(NTkl)) +

mX
i=1;i6=l

FV Ril

where FV Okl is the force vector attributed to target ok by robot rl and FV Ril is the force vector

attributed to robot ri by robot rl. The summation of the weighted force vectors yields an x; y

coordinate indicating the desired location of the robot at that point in time. The robot's speed

and steering commands are then computed to move the robot in the direction of that desired

location. Both of these computed commands are functions of the angle between the robot's current

orientation and the direction of the desired (x; y) position. The larger the angle, the higher the

commanded rate of steering and the lower the commanded speed. For small angles, the speed is

a function of the distance to the desired (x; y) location, with longer distances translating to faster

speeds, up to a maximum robot speed. A new command is generated each time the force vector
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summation is recomputed. While this approach does not guarantee smooth robot paths, in practice,

we have found that the force vector summations yield a desired (x; y) location that moves relatively

smoothly over time, thus resulting in a smooth robot motion in practice.

We note here that, as shown in �gure 2, the velocity and steering command can be overwritten

by the Avoid Obstacles behavior, which will move the robot away from any obstacle that is too

close. This is achieved by treating any such obstacle as an absolute force �eld that moves the robot

away from the obstacle.

It is also important to note that the issue of noisy sensors plays a role in ensuring that the robot

behavior corresponding to the vector summations is appropriate. The stochastic nature of a robot's

sensory measurements prevents undesirable singularities from occurring. For example, if a robot

were located equidistant between two targets that move away from the robot at the same rate,

sensory noise will prevent the force vectors from cancelling the attraction to zero. Instead, slight

deviations in sensing will cause the robot to begin to be attracted more towards one of the targets,

leading the robot to follow that single target, rather than losing both targets.

4.2 Seek Out Targets

Of course, for any cooperative observation technique to be of use, the robots must �rst �nd targets

to observe. All techniques are trivially equivalent if no targets are ever in view. Thus, the robots

must have some means of searching for targets if none are currently detected.

In the algorithm as described so far, when a robot does not detect any target nearby, the weighted

sum of the force vectors will cause each robot to move away from its robot neighbors and then idle in

one location. While this may be acceptable in some applications, in general, we would like to have

the robots actively and intelligently seek out potential targets in the area. Suzuki and Yamashita

[22] address this problem through the development of search schedules for \1-searchers". An

\1-searcher" is a mobile searcher that has a 360o in�nite �eld of view. A search schedule for an

1-searcher is a path through a simple polygonal area that allows the searcher (or robot) to detect

a mobile \intruder" (or target), regardless of the movements of the target. While clearly related

to the CMOMMT problem, this earlier work makes a number of assumptions that do not hold in

the CMOMMT problem: in�nite range of searcher visibility, only a single searcher, only a single

target, and an enclosed polygonal area which does not allow any targets to enter or exit the area.

In our future work, we intend to develop an automated process that allows the robots to generate

the appropriate search schedule for a given area, perhaps based upon this earlier work of Suzuki

and Yamashita. Our current approach, however, simpli�es the task by supplying the robot team

members with a human-derived search path through the area S. In practice, the derivation of an

adequate 1-search schedule by hand through the polygonal areas that de�ne the interiors of most

buildings appears to be fairly straightforward under the assumptions of Suzuki and Yamashita

[22]. More challenging is dealing with multiple targets, multiple robots, and entrances/exits in the

polygonal area. We leave this task to future work.

Thus, when no targets are detected by a given robot, that robot moves along the search path

looking for targets. Since new targets are more likely to appear near entrances, ideally, the robot

would spend a higher percentage of its time near entrances. To prevent the robot's path from being

predictable to a knowledgeable target, the robot could randomly select a direction to traverse at

each intersection in the search path. If two robots encounter each other moving in the opposite

direction along the search path, they reverse directions. Future work will improve this approach

to deal with the possibility of oscillations. As soon as targets are detected along the search route,

the highest level motivational behaviors switch the robot from seek mode to observe mode, and the

weighted force vector algorithm becomes active. At this point, the searching technique no longer

in
uences the robot behavior.
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5 Experiments

Our approach to the cooperative multi-robot observation problem has been implemented both in

simulation and on a team of four Nomadic Technologies robots. These robots are wheeled vehicles

with tactile, infrared, ultrasonic, 2D laser range, and indoor global positioning systems. In addition,

the robots are equipped with a voice synthesizer and radio ethernet for inter-robot communication.

Nomadic's multi-robot simulator allows us to test and debug our algorithms (written in C) in

simulation prior to executing them on the actual robots. The simulator uses sensory error models

that incorporate noise into the sensor readings to increase the realism of the experiments. The code

generated during the simulation can then be ported directly to the robots for experimentation in

the \real world" with relatively minor changes.

In the initial phase of research in this problem, which concentrates on the cooperative control

issues of distributed tracking, we utilize an indoor global positioning system as a substitute for

vision- or range-sensor-based tracking. Under this approach, each target to be tracked is equipped

with an indoor global position sensor, and broadcasts its current x; y position via radio to the

robots within communication range. Each robot team member is also equipped with a positioning

sensor, and can use the targets' broadcast information to determine the relative location of nearby

targets.

Figures 7 and 8 illustrate two examples of portions of our approach that have been implemented

on the simulated robots | namely, the local force-�eld control. In these �gures, the black points

represent targets, and the gray points represent robots.

Figure 7 shows a case where two targets are being tracked by two robots. The �rst frame begins

with the two targets heading towards each other, and each of the robots \following" one of the

targets. In the second frame, the targets have passed each other, and the robots meet in the middle.

At this point the repulsive force between the two robots takes precedence and pushes them away

from each other, causing them to swap targets. In the �nal two frames, the robots continue to

follow the new targets.

Figure 8 shows a case where the targets stay relatively distributed throughout the simulation.

The robots tend to hover around the center of the mass of targets; they keep their distance from

one another throughout the simulation, due to the repulsive forces.

The local control subsystems have also been ported to, and successfully demonstrated on, our

team of 4 mobile robots. Figure 9 shows an example of the robot implementation. In these

experiments, we typically designated certain robots to be targets, and other robots as observers.

Since we are not dealing with the issues of visual tracking of targets in our current work, using

some robots as targets allowed us to take advantage of the global positioning system on the robots

to perform \virtual" tracking. Thus, the robots acting as targets were programmed to broadcast

their current location to the robot team; this information could then be used by the observers to

calculate their desired movements. We programmed the robots acting as targets to move in one of

two ways: movements based on human joystick commands, or simple wandering through the area

of interest. In �gure 9, the robot targets are indicated by the triangular 
ags.

The �rst frame in �gure 9 shows the arrangement of the observers and targets at the very

beginning of the experiment, where both targets lie within the sensing range of each observing

robot. The second frame shows how the two observers move away from each other once the

experiment is begun, due to the repulsive forces between the observers. In the third frame, a

human joysticks one of the robot targets away from the other target and the observers. As the

target is moved, the two observers also move in the same direction, due to the attractive forces of

the target that is moving away. However, if the target exits the area of interest, S, as illustrated in

the fourth frame, then the observers are no longer in
uenced by the moved target, and again draw
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Figure 7: Two targets tracked by two robots performing a swap. The black points represent targets

while the gray points represent robots.

nearer to the stationary target, due to its attractive forces. Note that throughout the example, the

observers keep away from each other, due to the repulsive forces.

To quantitatively evaluate the usefulness of the proposed approach, we have begun comparison

of our weighted force vector algorithm (which we will call A-CMOMMT) with a random wander

approach, in which each robot wanders in arbitrary directions until an obstacle is encountered, at

which time it alters its course to avoid the obstacle. For each algorithm, we computed the average

distance between each target oi(t) and the closest robot during the course of the experiment. The

environment used in these experiments was a circular room of radius 4000 units, with no additional

obstacles other than the walls of the room. The robots were of diameter approximately 200 units.

The values of do1, do2, do3, and the predictive tracking range were set to 400, 800, 2600, and 3000

respectively. The robots and the targets were given initial random starting locations in the center

of the room, within approximately 300 units of each other. The value of Pr(existskl) was set to

1 within robot rl's sensing range, and to 0.75 within rl's predictive tracking range (but outside

the sensing range). The value of Pr(NTkl) was set to 1 when ok was within the sensing range of

another robot ri, i 6= l. Data was collected for multiple runs, each of which ran for 2 minutes, with

discrete distance measurements computed every 2 seconds.

To date, we have collected data for two situations: (a) 1 robot and 1 target, and (b) 3 robots and

3 targets. Figure 10 shows the results of 10 runs of the A-CMOMMT algorithm and random wander

for 1 robot and 1 target, and the results of 20 runs of the A-CMOMMT algorithm and random

wander for 3 robots and 3 targets. (These numbers of runs were su�cient to provide statistically
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Figure 8: When targets stay relatively distributed, the robots hover around the centroid. (The

black points represent targets while the gray points represent robots.)
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Figure 9: Results of robot team performing task using summation of force vectors. The robots

with the triangular 
ags are acting as targets, while the robots without the 
ags are performing

the distributed observation.

signi�cant results.) These �gures show the mean values for runs, as well as one standard deviation.

As expected, this data shows a clear advantage of the A-CMOMMT algorithm over the random

wander algorithm. In continuing work, we are collecting and analyzing data for a wider range of

robot and target numbers, and are implementing the entire control schematic for A-CMOMMT on

both simulated and physical robot teams.

6 Conclusions and Future Work

Many real-world applications in security, surveillance, and reconnaissance tasks require multiple

targets to be observed using mobile sensors. We have de�ned a problem, called CMOMMT, that

requires a team of robots to cooperate to maintain observation of multiple targets moving through

an area of interest. We have presented a distributed solution, called A-CMOMMT, that is based

upon high-level control provided through our ALLIANCE formalism, combined with lower-level

attractive and repulsive force �elds, and a target seeking system. This approach enables the exe-

cution of tasks in strongly cooperative application domains. Empirical investigations of portions of

our cooperative control approach have been presented on both the simulated robots and the phys-

ical robot team, and quantitative data collected indicates the usefulness of our approach. To our

knowledge, no previous work related to the CMOMMT problem has been implemented on actual

robots.

Continuing and future work includes completing the implementation on both the simulated and

physical robot teams and the development of an automatic generation of search schedules for times

when the observers do not perceive any targets. We also are continuing the collection and analysis

of data showing the quantitative usefulness of the A-CMOMMT algorithm. Additional related
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Figure 10: Comparison of A-CMOMMT and random wander for two cases.

research includes extending the work to apply to more complex environments, to robots that di�er

in their sensing and movement capabilities, and to address the subproblems of the physical tracking

of targets (e.g. using vision, sonar, IR, or laserrange) and the prediction of target movements.
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