
Map Learning with Uninterpreted Sensors and E�ectors�

David Pierce and Benjamin Kuipers

Department of Computer Sciences

University of Texas at Austin, Austin, TX 78712 USA

dmpierce@cs.utexas.edu, kuipers@cs.utexas.edu

To appear, Arti�cial Intelligence Journal, 1997.

Abstract

This paper presents a set of methods by which a learning agent can learn a sequence of

increasingly abstract and powerful interfaces to control a robot whose sensorimotor apparatus

and environment are initially unknown. The result of the learning is a rich hierarchical model

of the robot's world (its sensorimotor apparatus and environment). The learning methods rely

on generic properties of the robot's world such as almost-everywhere smooth e�ects of motor

control signals on sensory features. At the lowest level of the hierarchy, the learning agent

analyzes the e�ects of its motor control signals in order to de�ne a new set of control signals,

one for each of the robot's degrees of freedom. It uses a generate-and-test approach to de�ne

sensory features that capture important aspects of the environment. It uses linear regression to

learn models that characterize context-dependent e�ects of the control signals on the learned

features. It uses these models to de�ne high-level control laws for �nding and following paths

de�ned using constraints on the learned features. The agent abstracts these control laws, which

interact with the continuous environment, to a �nite set of actions that implement discrete state

transitions. At this point, the agent has abstracted the robot's continuous world to a �nite-state

world and can use existing methods to learn its structure. The learning agent's methods are

evaluated on several simulated robots with di�erent sensorimotor systems and environments.

Keywords: spatial semantic hierarchy, map learning, cognitive maps, feature learning, abstract

interfaces, action models, changes of representation.

�This work has taken place in the Qualitative Reasoning Group at the Arti�cial Intelligence Laboratory, The
University of Texas at Austin. Research of the Qualitative Reasoning Group is supported in part by NSF grants

IRI-9216584 and IRI-9504138, by NASA grants NCC 2-760 and NAG 2-994, and by the Texas Advanced Research

Program under grant no. 003658-242.

1

Sensory input Control

Figure 1: The learning problem addressed in this paper is illustrated by this interface between a learning

agent and a teleoperated robot in an unknown environment. The learning agent's problem is to learn a model

of the robot and its environment with no initial knowledge of the meanings of the sensors or the e�ects of

the control signals (except that nothing changes when the control signals are all zero).

1 Introduction

Suppose a creature emerges into an unknown environment, with no knowledge of what its sensors

are sensing or what its e�ectors are e�ecting. How can such a creature learn enough about its

sensors and e�ectors to learn about the nature of its environment? What primitive capabilities are

su�cient to support such a learning process?

This problem is idealized to clarify the goals and results of our research. A real robot embodies

knowledge designed and programmed in by engineers who select sensors and e�ectors appropriate

to the environment, and implement control laws appropriate to the goals of the robot. A real

biological organism embodies knowledge, acquired through evolution, that matches the sensorimotor

capabilities of the organism to the demands of the environment. We idealize both of these to the

problem faced by an individual learning agent with very little domain-speci�c knowledge, but

with the ability to apply a number of sophisticated, domain-independent learning methods. In

addition to its scienti�c value, this idealized learning agent would be of considerable practical value

in allowing a newly-designed robot to learn the properties of its own sensorimotor system. We

report here on one learning agent that solves a speci�c instance of this problem, along with several

variations that begin to explore the range of possible solutions to the general problem.

Henceforth, we make a distinction between the learning agent and the robot. The robot is

a machine (physical or simulated) that the learning agent must learn how to use. The robot's

sensorimotor apparatus is comprised of a set of sensors and e�ectors. The sensorimotor apparatus

is uninterpreted , meaning that the agent that is learning how to use the robot has no a priori

knowledge of the meaning of the sensors, of the structure of the sensory system, or of the e�ects

of the motor's control signals. From the learning agent's perspective, the sensorimotor apparatus

is represented as a raw sense vector s and a raw motor control vector u. The former is a vector of

real numbers giving the current values of all of the sensors. The latter is a vector of real numbers,

called control signals, produced by the learning agent and sent to the robot's motor apparatus.

The learning agent's situation is illustrated in Figure 1.

This paper solves the learning problem by presenting a set of methods that the learning agent

can use to learn (1) a model of the robot's set of sensors, (2) a model of the robot's motor apparatus,

2

and (3) a set of behaviors that allow the learning agent to abstract the robot's continuous world

to a discrete world of places and paths. These methods have been demonstrated on a simulated

mobile robot with a ring of distance sensors.

These learning methods comprise a body of knowledge that is given to the learning agent

a priori . They incorporate a knowledge of basic mathematics, multivariate analysis, and control

theory. The learning methods are domain independent in that they are not based on a particular set

of sensors or e�ectors and do not make assumptions about the structure or even the dimensionality

of the robot's environment.

In the rest of this paper, we describe a number of learning methods and show how they are used

by a learning agent as it develops an understanding of a robot's world by de�ning a sequence of

increasingly powerful abstract interfaces to the robot. The learning agent's problem and solution

are given below:

Problem

Given: a robot with an uninterpreted, almost-everywhere approximately linear sensorimotor

apparatus in a continuous , static environment.

Learn: descriptions of the structure of the robot's sensorimotor apparatus and environment

and an abstract interface to the robot suitable for prediction and navigation.

Solution

Representation: a hierarchical model. At the bottom of the hierarchy are egocentric models

of the robot's sensorimotor apparatus. At the top of the hierarchy is a discrete abstraction

of the robot's environment de�ned by a set of discrete views and actions.

Method: a sequence of statistical and generate-and-test methods for learning the objects of

the hierarchical model.

An almost-everywhere approximately linear sensorimotor apparatus satis�es the following: The

derivatives with respect to time of the sensor values can be approximated by linear functions of

the motor control vector. A continuous world (which includes both the robot and its environment)

is one whose state can be represented by a vector x of continuous, real-valued state variables. A

discrete world, on the other hand, is represented by a �nite set of states. The primary example in

this paper1 is a mobile robot in a continuous world with three state variables: two for its position

(e.g., longitude and latitude) and one for its orientation (i.e., the direction in which it is facing).

A static world is one whose state does not change except as the result of a nonzero motor control

vector. A static world exhibits no inertia. When the motor controls go to zero, the robot comes

to an immediate stop. In a static world, there are no active agents (e.g., pedestrians) besides the

robot itself.

The learning agent's goal is to understand its world, that is, to learn a model of it suitable

for prediction and navigation. Prediction refers to the ability to predict the e�ects of the motor

control signals. Navigation refers to the ability to move e�ciently from one place to another. These

1Experiments with other robots are described in connection with particular learning methods.

3

de�nitions do not apply perfectly to the learning agent's world: places do not exist a priori | they

must be discovered or invented by the learning agent itself. The raw sense vector and the raw

motor control vectors are at the wrong level of abstraction for describing the global structure of a

world. People do not understand their world in terms of sequences of visual images | they use

abstractions from visual scenes to places and objects. In order to understand its continuous world,

the learning agent must also use abstractions. Instead of trying to make predictions based on the

raw sense vector, it needs to learn high-level features and behaviors. Understanding the world thus

requires a hierarchy of features, behaviors, and accompanying descriptions. The hierarchy that the

learning agent uses is called the spatial semantic hierarchy [18, 19, 20, 16].

1.1 The spatial semantic hierarchy

The spatial semantic hierarchy (SSH) is a hierarchical structure for a substantial body of com-

monsense knowledge, showing how a cognitive map can be built on sensorimotor interaction with

the world. The cognitive map is the body of knowledge an agent has about the large-scale spatial

structure of its environment. (\Large-scale" here means signi�cantly larger than the sensory hori-

zon of the agent, meaning that the map must be constructed by integrating observations over time

as the agent travels through its environment.) Since we already have an SSH-based solution for

the cognitive mapping problem for a simulated robot with a ring of distance sensors, we focus on

learning the sensory features and control strategies necessary to support that solution. The result

we obtained was successful, but at the same time revealed some subtle but important changes

required to the SSH approach to cognitive mapping.2

The spatial semantic hierarchy is comprised of �ve levels: sensorimotor, control, causal, topo-

logical, and metrical. At the sensorimotor level, the abstract interface to the robot is de�ned by the

raw sense vector, a set of primitive actions (one for each degree of freedom of the robot, Section 3),

and a set of learned features. At the control level, action models are learned in order to predict the

context-dependent e�ects of motor control vectors on features. Local state variables are learned

and behaviors for homing and path-following are de�ned (Section 5). The abstract interface to the

robot is de�ned by the set of local state variables, homing behaviors, and path-following behaviors.

At the causal level, sense vectors are abstracted to a �nite set of views and behaviors are abstracted

to a �nite set of actions (Section 7). The abstract interface gives the current view and the set of

currently applicable actions.

The contribution of this paper is a set of methods for learning these �rst three levels. This

paper's work is complementary to the work done by Kuipers and Byun [18, 19] in which all levels

of the descriptive ontology were engineered by hand, and the focus of the learning agent was on

learning the structure of the environment. The agent selected appropriate control laws from a

�xed set to form the control level, which was abstracted to the topological and metrical levels.

At the topological level, perceptual ambiguities (in which multiple states map to the same view)

are resolved and a global representation of the world's structure as a �nite-state graph is learned.

At the metrical level, the topological map is supplemented with distances, directions, and other

metrical information.

2The most important change is the use of local state variables (Section 4).

4

By showing how to learn the �rst three levels of the spatial semantic hierarchy, this paper lays

the groundwork for building a learning agent that can learn the entire spatial semantic hierarchy

using only domain-independent knowledge.

1.2 Overview

Sections 2 through 7 describe a sequence of methods for learning a model of a robot's sensorimotor

apparatus and a set of behaviors that allow the learning agent to abstract the robot's continuous

world to a discrete world of places and paths. Figure 30 summarizes the entire set of representations,

learning methods, and resulting behaviors, after they have been described in detail in the rest of

the paper.

Section 2 describes a method for learning a model of the structure of the robot's sensory ap-

paratus. Section 3 describes a method for learning a model of the structure of the robot's motor

apparatus. Section 4 describes a method for learning a set of variables suitable for representing the

local state of the robot. Section 5 describes a method for learning a set of robust, repeatable be-

haviors for navigation through the robot's state space. Section 6 describes a number of experiments

(in addition to those described in the previous sections) that demonstrate the generality and some

limitations of these learning methods. Finally, Section 7 shows how to de�ne an abstract interface

that abstracts from the continuous sensorimotor apparatus to a discrete sensorimotor apparatus.

These learning methods provide a particular solution to the learning problem described in

Section 1. This particular solution is an instance of the more general solution outlined below:

1. Apply a generate-and-test algorithm to produce a set of scalar features.

2. Try to learn how to control the generated scalar features. Those that can be controlled are

identi�ed as local state variables .

3. De�ne homing behaviors | behaviors that move a local state variable to a target value.

4. De�ne path-following behaviors | behaviors that move the robot while keeping a local state

variable at its target value.

The set of learning methods that are presented in this paper does not represent the �nal word on

the problem of learning to use an uninterpreted sensorimotor apparatus. Instead it is one path to

the goal. Clearly, there are other ways to instantiate the above sequence of steps. Future work will

involve both improving the current set of methods and identifying alternate paths to the solution.

The learning methods and experimental results are interleaved throughout the paper: each

section describes a learning method, the representations or objects produced by the method, the

source of information used by the method, and one or more demonstrations of the method applied

to a simulated robot.

1.3 Contributions

The results of this research are the following:

5

1. the demonstration of a learning agent that can solve a nontrivial instance of the learning

problem;

2. the identi�cation of a plausible though not unique set of primitive capabilities that a robot

must have to support such a learning agent;

3. the identi�cation of a set of learning methods and intermediate representations that enable the

learning agent to go from no domain-speci�c knowledge to useful cognitive maps of complex

environments.

These learning methods are interesting in their own right. First, each one identi�es a source of

information available through experimentation with an uninterpreted sensorimotor apparatus and,

second, each provides a method for exploiting that information to give the learning agent a new way

of understanding the robot's sensory input or a new way of interacting with the robot's environment.

The result of this work is an existence proof, demonstrating one path from the beginning to the

end of an idealized but important learning problem. We hope that this result can support further

work to establish minimal sets of primitives, necessary conditions for success, and the limits of this

heterogeneous bootstrapping method for learning.

As intended, the learned set of features and control laws are speci�c to the robot and the type

of environment used for these experiments. The learning method itself also has some degree of

dependence on the type of robot and environments used. We used three methods to move towards

generality in these results. First, as we needed to add primitive inference capabilities, we required

that they be independent of the choice of robot or environment, and that they be plausible to

implement using low-level symbolic or neural-net mechanisms.3 Second, we attempted to minimize,

and then make explicit, the assumptions our inference methods make about the nature of the robot

or the environment. For example, several feature generators require almost-everywhere temporal

and spatial continuity of the sensory inputs. 4 Third, we tested the generality of several key steps

in our learning method empirically by applying them to di�erent robot sensorimotor systems and

di�erent environments. These results are shown throughout the paper. Naturally, the generality

we are able to establish by these means remains limited.

In spite of the limitations of an existence proof, we believe that the approach we have demon-

strated is important. First, it shows how a heterogeneous set of learning methods can be used to

construct a deep hierarchy of sensory features and control laws. Only a very few previous learn-

ing methods such as AM [22] (see also [39]) have constructed similarly deep concept hierarchies.

Second, the knowledge contained in this hierarchy shows how a foundational domain of symbolic

commonsense knowledge can be grounded in continuous sensorimotor interaction with a continuous

world.

3We did not always follow this restriction in the implementation itself. For example, we use a fairly sophisticated

method called principal component analysis [15] as a feature identi�cation method. However, principal component
analysis may be implemented as a neural network [29].

4Real sonar sensors may not satisfy this requirement due to specular re
ection, a property of sonar sensors that

makes them di�cult to use, even in systems that are engineered by hand.

6

2 Learning a model of the sensory apparatus

The learning agent's �rst step is to learn a model of the robot's sensory apparatus. The output

of the learning method used in this step (i.e., the learned model of the sensory apparatus) is a set

of groups of related sensors and a description of the physical layout of the sensors. The source of

information for this step is the sequence of values produced by the robot's sensors while the agent

wanders by choosing motor control vectors randomly. The rest of this section describes the learning

method in detail and demonstrates the method on two very di�erent simulated robots.

2.1 A simulated robot

For concreteness, the learning methods are illustrated with a particular robot and environment.

The robot's world is simulated as a rectangular room of dimensions 6 meters by 4 meters. The

room has a number of walls and obstacles in it. The robot itself is modeled as a point. The robot

has 29 sensors. Each sensor's value lies between 0:0 and 1:0. Collectively, these de�ne the raw

sense vector s, which is the input from the robot to the learning agent. The �rst 24 elements of the

raw sense vector give the distances to the nearest objects in each of 24 directions. These have a

maximum value of 1.0, which they take on when the nearest object is beyond one meter away. The

sonars are numbered clockwise from the front. The 21st element is defective and always returns a

value of 0.2. The 25th element is a sensor giving the battery's voltage, which decreases slowly from

an initial value of 1.0. The 26th through 29th elements comprise a digital compass. The element

with value 1 corresponds to the direction (E, N, W, or S) in which the robot is most nearly facing.

There is no sensor noise. The robot has a \tank-style" motor apparatus. Its two motor control

signals a0 and a1 tell how fast to move the right and left treads. Moving the treads together at the

same speed produces pure forward or backward motion; moving them in opposition at the same

speed produces pure rotation. Moving the treads at di�erent speeds causes the robot to move in

a circular arc. The learning agent does not know what any of these sensors or e�ectors do. The

learning agent only knows that that robot's raw sense vector has 29 elements and its raw motor

control vector has two elements.

2.2 A language of features

The learning agent develops an understanding of the robot's sensory apparatus by learning new

features . A feature, as de�ned in this paper, is a function over time whose current value is completely

determined by the history of current and past values of the robot's raw sense vector. The type of the

feature is determined by the type of that function's value (thus a vector feature is one whose value

at any point in time is a vector.) The types of features used in this paper are the following: scalar ,

vector , group, matrix , scalar �eld (or image), image element , focused image, vector �eld , and vector

�eld element . Scalar, vector, and matrix features are based on standard mathematical constructs.

The group feature (a type of vector feature) is de�ned in Section 2.3. The image and image-

element features are de�ned in Section 2.4. The focused-image feature is de�ned in Section 4.1.1.

The vector-�eld and vector-�eld-element features are de�ned in Section 3.2. Examples of features

are the raw sense vector (a vector feature) and the elements of the raw sense vector (scalar features).

7

The learning agent produces new features using feature generators . A feature generator is a rule

that creates a new feature or set of features based on already existing features.

2.3 Discovering related sensory subgroups

A sensory apparatus may contain a structured array of similar sensors. Examples of such arrays

are a ring of distance sensors, an array of photoreceptors in a video camera, and an array of touch

sensors. The learning agent uses the group-feature generator to recognize such arrays of similar

sensors. A group feature is a vector feature, x, whose elements, xi, are all related in some way (e.g.,

all correspond to sensors in an array of similar sensors).

The group-feature generator is based on the following observation. Given a well engineered

array of sensors (e.g., a ring of distance sensors) that measure a property that typically varies

continuously with sensor position (e.g., the distance between the robot and nearby objects), the

following holds: Sensors that are physically close together in the array \behave similarly." Two

sensors are said to behave similarly if (1) the two sensors' values at each instant in time tend to be

similar and (2) the two sensors' frequency distributions are similar. Given a scalar feature x, the

frequency distribution (dist x) is an n-element vector that gives, for each of n subintervals in the

variable's domain, the percentage of time that the variable assumes a value in that subinterval.

Corresponding to these two criteria are two distance metrics (examples of matrix features) that

are used by the group-feature generator.

� The �rst metric d1 is based on the principle that in a continuous world, adjacent sensors

generally have similar values. The metric is de�ned, for vector feature x, as a matrix feature:

d1;ij(t) =
1

t + 1

tX
�=0

jxi(�)� xj(�)j:

Here, d1;ij(t) is the distance between sensors xi and xj measured at time t. The variable � is

a time index ranging from 0 to t.

� The second metric d2 is based on the observation that sensors in a homogeneous array have

similar frequency distributions. For example, an array of binary touch sensors can be dis-

tinguished from an array of photoreceptors by the fact that the di�erent types of sensors

have radically di�erent frequency distributions. Binary touch sensors can assume value 0 or 1

whereas photoreceptors can assume any value from a continuous range. d2;ij is proportional

to the sum over the distribution intervals of absolute di�erences in frequency for elements i

and j:

d2;ij =
1

2

X
l

j(dist xi)l � (dist xj)lj

where l ranges over the subintervals of the frequency distributions. In the implementation,

the frequency distributions use 50 subintervals uniformly distributed over the range [-1, 1].

This generator computes these two distance metrics over a period of several minutes while the

learning agent moves the robot using the following strategy: choose a random motor control vector;

8

execute it for one second (10 time steps); repeat.5 The values of the distance metrics, d1 and d2,

after the example robot has explored for 5 minutes (3000 observations) are given in Figure 2.

5
10

15
20

25

0
5

10
15

20
25

00.10.20.30.40.50.60.70.8

5
10

15
20

25

0
5

10
15

20
25

0
0.5
1

d1 d1

Figure 2: Two measures of dissimilarity, d1;ij and d2;ij, between the ith and jth elements of the raw sensory

feature after the robot has wandered for �ve minutes. The coordinates are indices i and j.

The group-feature generator exploits these distance metrics in two steps: (1) formation of

subgroups of sensors that are similar according to all of the distance metrics, and (2) taking the

transitive closure of the similarity relation to form close groups of related sensors.

1. Formation of subgroups of similar sensors. The group-feature generator's �rst step is

to use the distance metrics dk to form subgroups of similar sensors. Elements i and j are similar,

written i � j, if they are similar according to each distance metric dk:

i � j i� 8k : i �k j:

The de�nition of i �k j requires the use of a threshold. One way to de�ne this threshold, that has

proven to be more robust than the use of a constant, is this:

�k;i = 2 min
j
fdk;ijg:

Each element i has its own threshold based on the minimum distance from i to any of its neighbors.

Elements i and j are considered similar if and only if both dk;ij < �k;i and dk;ij < �k;j , that is if j

is close to i from i's perspective and vice versa. Combining these constraints gives

i �k j if dk;ij < minf�k;i; �k;jg:

5Our experiments have shown that this strategy is more e�ective for e�ciently exploring a large subset of the

robot's state space than choosing motor control vectors randomly at each time step.

9

2. Formation of closed subgroups. The group-feature generator's second step is to take the

transitive closure of the similarity relation to produce the related-to relation �. Consider again

the ring of distance sensors. Adjacent sensors tend to be very similar according to the distance

metric, but sensors on opposite sides of the ring may be dissimilar (according to d1) since they

detect information from distinct and uncorrelated regions of the environment. In spite of this fact,

the entire array of distance sensors should be grouped together. This is accomplished by de�ning

the related-to relation � as the transitive closure of the similarity relation �. Two elements i and

j are related to each other, written i � j, if i � j or if there exists some other element k such that

i � k and k � j:

i � j i� i � j _ 9k : (i � k) ^ (k � j):

The related-to relation � is clearly re
exive, symmetric, and transitive and is therefore an equiva-

lence relation. Computing the relation � for i and j given the relation � is straightforward (e.g.,

[4]). An equivalence class of the relation �, if not a singleton, is described as a group feature of s.

For the example robot, the raw sensory feature has 29 elements. In order, these are: 24 distance

sensors (one of which is defective), a battery-voltage sensor, and a four-element digital compass.

The distance metric is computed while the robot wanders randomly for 3000 steps. For each of the

elements of the raw sensory feature, the set of similar elements fj j i � jg is computed and shown

below:

(0 1 2 22 23) (0 1 2 3 23) (0 1 2 3 4) (1 2 3 4 5) (2 3 4 5 6) (3 4 5 6 7) (4 5 6 7)

(5 6 7 8 9) (7 8 9 10) (7 8 9 10 11) (8 9 10 11 12) (9 10 11 12 13) (10 11 12 13 14)

(11 12 13 14 15) (12 13 14 15 16) (13 14 15 16 17) (14 15 16 17 18) (15 16 17 18 19)

(16 17 18 19) (17 18 19 21) (20) (19 21 22 23) (0 21 22 23) (0 1 21 22 23) (24) (25) (26)

(27) (28).

Notice that the distance sensors are grouped together into groups of neighboring sensors. For

example, the group (0 1 2 22 23) contains two elements on each side of element 0. The related-to

relation � is obtained by taking the transitive closure of the similarity relation and is described by

the following equivalence classes:

(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 21 22 23)
(20) defective
(24) battery voltage

(25) east
(26) north
(27) west
(28) south

The distance sensors have all been grouped together into a group containing no other sensors.

2.4 A structural model of the sensory apparatus

The grouping of the sensors into subgroups is a �rst step but it tells nothing about the relative

positions of the sensors in the array. This is accomplished by the image-feature generator . The

image-feature generator is a rule that takes a group feature and associates a position vector with

10

each element of the group feature in order to produce an image feature (which represents the

structure of the group of sensors). An image feature is a function over time, completely determined

by the current and past values of the raw sense vector, whose value at any given time is an image.

An image is an ordered list of image elements . An image element is a scalar with an associated

position vector (a vector of n real numbers that represents a position in a continuous, n-dimensional

space). An example of the use of an image feature is to represent the pattern of light intensities

hitting the photoreceptors in a camera.

The task of the image-feature generator is to �nd an assignment of positions to elements that

captures the structure of an array of sensors as re
ected in the distance metric d1. This means

that the distance between the positions of any two elements in the image should be equal to the

distance between those elements according to the metric d1. Expressed mathematically, image

feature y should satisfy

k(pos yi)� (pos yj)k = d1;ij

where (pos yi) is the position vector associated with the ith element in the image and k(pos yi)�

(pos yj)k is the Euclidean distance between the positions of the ith and jth elements.

Finding a set of positions satisfying the above equation is a constraint-satisfaction problem. If

the group feature x has n elements, then the metric d1 provides n(n�1)=2 constraints.6 Specifying

the positions of n points in n� 1 dimensions requires n(n� 1)=2 parameters: 0 for the �rst point,

which is placed at the origin; 1 for the second, which is placed somewhere on the x axis; 2 for

the third, which is placed somewhere on the x-y plane; etc. Thus, to satisfy the constraints, n

position vectors of dimension n�1 are required. Solving for the position vectors given the distance

constraints can be done using a technique called metric scaling [15].7

The problem remains that n points of dimension n� 1 are inconvenient to use, if not meaning-

less, for large n. In general, sensory arrays are 1-, 2-, or 3-dimensional objects. What is needed

is a method for �nding the smallest number of dimensions that are needed to satisfy the given

constraints without excessive error, where the error is given by the equation

E =
1

2

X
ij

(k(pos yi)� (pos yj)k � dij)
2:

Metric scaling helps by ordering the dimensions according to their contribution toward minimizing

the error term.

Ignoring all but the �rst dimension (i.e., using only the �rst element of the position vectors),

yields a rough description of the sensory array with large error (unless the array really is a one-

dimensional object). Using all n�1 dimensions yields a description that has zero error but contains a

lot of useless information. Statisticians use a graph called a \scree diagram" (Figure 3a) that shows

the amount of variance in the data that is accounted for by each dimension, to subjectively choose

the right number of dimensions. The image-feature generator chooses the number of dimensions to

6The metric can be represented as a symmetric matrix with zeros on the diagonal. Such a matrix has n(n� 1)=2

free parameters.
7It seems plausible that metric scaling could be implemented using a neural net analogous to that used to implement

principal component analysis (Oja, 1982) since in both cases the main computation is the decomposition of an input

matrix into a set of eigenvectors.

11

be equal to m where m maximizes the expression �2(m)��2(m+1) where �2(m) is the variance in

the data accounted for by the mth dimension. For the example, m = 2. The set of two-dimensional

positions found by metric scaling for the group of distance sensors is shown in Figure 3b.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10

Metric scaling eigenvalues

0
1
2
3

4
5

6789
10

11
12
13
14
15
16

17
1819 21 22

23
0
1
2
3

4
5

6789
10

11
12
13
14
15
16

17
1819 2122

23

a b c

Figure 3: Learning a structural model of a ring of distance sensors. (a) The scree diagram gives the amount

of variance (vertical axis) accounted for by each dimension (horizontal axis) and shows that the �rst two

dimensions account for most of the variance. (b) Metric scaling is used to assign positions to elements of the

group of distance sensors. The 22-dimensional position vectors are projected onto the �rst two dimensions to

produce the representation shown above. (c) A relaxation algorithm is used to �nd a set of two-dimensional

positions for the group of distance sensors that best satis�es the constraints kp
i
�p

j
k = d

ij
: (The usefulness

of the relaxation algorithm is more obvious in the example of the next section.) Notice the gap corresponding

to the defective distance sensor. The element with index 0 corresponds to the robot's forward sensor.

The set of (n� 1)-dimensional position vectors optimally describe the structure of a group, but

when these positions are projected onto a subspace of lower dimensionality, the resulting description

is no longer optimal. Elements that were the right distance apart in n� 1 dimensions are generally

too close together in the two-dimensional projection. To compensate for this, a relaxation algorithm

is used to �nd the best set of positions in a small-dimension space to approximate the given distances

in n�1 dimensions.The relaxation algorithm is an iterative process. On each iteration, each position

vector is adjusted slightly in a direction that reduces the value of the error term E (de�ned above).

The process continues until the error is very small or ceases to decrease appreciably on each iteration.
8

The relaxation algorithm could be used without metric scaling by simply initializing the vector

of positions randomly. Metric scaling provides two bene�ts. It shows how many dimensions are

needed for the image feature, and it provides a starting point for the relaxation algorithm, decreasing

the chance that the algorithm �nds a local but not global minimum of the error function. The

application of the relaxation algorithm to the group of distance sensors is illustrated in Figure 3c.

To summarize, the image-feature generator takes a group feature x and produces an image

feature y whose position vectors pi are found using metric scaling and a relaxation algorithm so

8See Pierce (1995) p. 65 for a description of the algorithm.

12

that they approximately satisfy the constraints

kpi � pjk = k
X
t

jxi(t)� xj(t)j

while keeping the dimensionality of the position vectors pi small. The result of the experiment

is a structural description of the robot's ring of distance sensors (Figure 3c) that is used later to

analyze the robot's motor apparatus.

2.5 Learning a sensory model of the roving eye

The learning methods are further demonstrated using a more fanciful robot called a \roving eye."

Its primary sensory array is a retina of photoreceptors.

This robot is a simulation of a small camera mounted on the movable platform of an X-Y

plotter, pointing down at a square picture 10 centimeters on a side. The camera sees one square

centimeter of the picture at a time. The robot has 3 degrees of freedom (translation in two directions

and rotation) and its state space is described by three state variables (two for position and one

for orientation). The robot's structure is shown in Figure 4a. The actual picture used is shown

x

y θ

Picture

Camera
image

a b

Figure 4: (a) The robot is a \roving eye" that can see a 1 centimeter wide image that is part of a picture

that is 10 centimeters wide. (b) The picture used for the roving-eye experiment is a close-up view of the

Oregon coast.

in Figure 4b. The sensory system is as before except that the ring of distance sensors has been

replaced by a 5 by 5 retinal array looking down on a picture. The motor control vector of this robot

has three elements: rotate, slip (for motion to the left or right), and slide (for motion forward or

backward).

The results parallel those of the previous experiment. The group-feature generator identi�ed

seven equivalence classes: six singletons and one candidate for application of the image-feature

generator. Metric scaling produces the scree diagram of Figure 5a indicating that the sensory array

is best modeled as a two-dimensional object. Metric scaling assigns positions to each element of

13

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

1 2 3 4 5 6 7 8 9 10

Metric scaling eigenvalues

0
1234

5
6789

10
11121314

15161718
19

20212223
24

01234

56789

10
111213

14

15
161718

19

202122
2324

a b c

Figure 5: (a) The metric-scaling scree diagram for the group of photoreceptors indicates that the sensors

are organized in a two-dimensional array. (b) The 2-D projection of the set of positions produced by metric

scaling for the group of photoreceptors provides an initial approximation of the grid structure of the array

of photoreceptors. (c) The �nal set of positions are produced using the constraint-satisfaction relaxation

algorithm, with the previous set of positions as initial values.

the group feature. Projecting these positions onto the �rst two dimensions produces the mapping

shown in Figure 5b. The set of positions produced by metric scaling is improved by the relaxation

algorithm so that the distances in the resulting image more closely match the distance metric d1.

The resulting set of positions is shown in Figure 5c.

3 Learning a model of the motor apparatus

Using its learned model of the robot's sensory system, the learning agent's second step is to learn a

model of the robot's motor apparatus. The result of the learning is a new abstract interface to the

robot that identi�es the types of motion that the robot's motor apparatus is capable of producing

and that tells how to produce each type of motion. The source of information for this step is the

sequence of values of a learned motion feature (a type of �eld feature, de�ned in Section 3.2) as

the agent wanders by choosing motor control vectors randomly. In the simulations, if the robot is

touching a wall, it is capable of turning but cannot change its position unless it is facing away from

the wall.9

The image feature makes it possible to de�ne spatial attributes of the sensory input, in terms of

the locations of sensors in the image. With spatial attributes, it is possible to de�ne spatial as well

as temporal derivatives, so motion features can be de�ned, even without knowledge of the physical

structure of the environment. The learning agent uses the new motion feature to analyze its motor

apparatus using the following steps:

1. Sample the space of motor control vectors. The robot's in�nite space of motor control

vectors is discretized into a �nite set of representative vectors, fuig.

9The use of a physical robot would require a provision such as an innate obstacle-avoidance behavior to prevent

the robot from damaging itself.

14

2. Compute average motion vector �elds (amvf 's). The agent repeatedly executes each

representative control vector many times in di�erent locations and measures the average value

of the resulting motion feature. It is this average value that characterizes the e�ect of that

control vector.

3. Apply principal component analysis (PCA). The set of computed amvf 's is a repre-

sentation of the e�ects that the motor apparatus is capable of producing. PCA is used to

decompose this set into a basis set of principal eigenvectors , a set of representative amvf 's

from which all amvf 's may be produced by linear combination.

4. Identify primitive actions. Each principal eigenvector is matched against the amvf 's

produced by the representative control vectors to �nd a control vector that produces that

e�ect or its opposite. Such a motor control vector, if it exists, is identi�ed as a primitive

action and can be used to produce motion for one of the robot's degrees of freedom.

5. De�ne a new abstract interface. For each degree of freedom, a new control signal is

de�ned that allows the agent to specify the amount of motion for that degree of freedom.

The result of the learning is a new abstract interface to the robot comprised of a new set of control

signals, one per degree of freedom of the robot. The new interface hides the details of the motor

apparatus. For example, whether a mobile robot's motor apparatus uses tank-style treads or a

synchro-drive mechanism, the learned interface presents the agent with two control signals: one for

rotating and one for advancing. These learned control signals are used to further characterize the

robot's motor apparatus using the static and dynamic action models (Sections 4 and 5). Steps 1

through 5 are explained in detail in the rest of this section.

3.1 Sample the space of motor control vectors

The choice of the set of representative motor control vectors must satisfy two criteria: �rst, they

must adequately cover the space of possible motor control vectors so that the space of possible

e�ects (amvf 's) is adequately represented. Second, the distribution of motor control vectors must

be dense enough so that, given a desired e�ect (e.g., an amvf that corresponds to one of the robot's

degrees of freedom), a motor control vector that produces that e�ect can be found.

Since we have already made the assumption that the motor apparatus is approximately linear,

it su�ces to characterize the e�ects of a uniformly distributed set of unit motor control vectors. (A

unit vector has a magnitude of 1 where its magnitude is equal to the square root of the sum of squares

of its elements.) For two- and three-dimensional spaces of motor control vectors, respectively, 32 and

100 vectors have been found to be adequate. For the 2-D case, it is easy to �nd a set of vectors that

are uniformly distributed on the unit circle. The ith of n vectors has value (cos(2�i=n); sin(2�i=n)):

For the 3-D case, a set of vectors uniformly distributed on the unit sphere is found using the

relaxation algorithm of Section 2.4. The vectors are constrained to lie on the unit sphere (i.e., to

have magnitude 1), and the target distance between any pair of points is much larger than 2. The

resulting con�guration of vectors is analogous to a collection of electrons on a charged sphere |

each vector is as far from its neighbors as possible. These vectors are used as the representative

15

motor control vectors for sampling the continuous space of average motion vector �elds. This

method generalizes to any dimension.

3.2 Compute average motion vector �elds

A vector �eld feature is a function over time, completely determined by the current and past values

of the raw sense vector, whose value at any given time is a vector �eld . A �eld is an ordered

list of vector �eld elements . A vector �eld element is a vector with an associated position vector.

Given image feature x, (motion x) denotes a vector-�eld feature (speci�cally, a motion vector-�eld

feature) whose elements measure the amount of motion detected at the corresponding points in the

image.

To understand what this feature is measuring, suppose that, corresponding to an object in the

robot's environment, there is a property of the image feature (e.g., a local minimum or discontinuity)

that changes location from one image element to another on subsequent time steps due to the motion

of the robot. A vector from the position of the �rst image element to the position of the second

represents the motion of that object and is an example of a local motion vector . A list of local

motion vectors, one for each image element, is a motion vector �eld .

The detection of these motion vectors does not require sophisticated object recognition. It

simply requires spatial and temporal information, both of which are provided by an image feature.

The spatial information is provided by the positions of the elements of the image; the temporal

information is provided by the derivatives of the elements' values with respect to time. A temporal

sequence of images, represented as vectors of values and associated positions, can be viewed as an

intensity function E(p; t) that maps image positions to values, called intensities, as a function of

time. Such a function has both a spatial derivative, ~Ep and a temporal derivative, Et. The spatial

derivative ~Ep, also called the gradient of E, is a vector in image-position coordinates that gives the

direction in which the intensity increases most rapidly.

A large gradient in an image detected by a robot's sensory array corresponds to a detectable

property of the environment such as the edge of an object. If the object moves relative to a robot's

sensory array (or vice versa), the edges detected in the image will move. This motion results in

a change in intensity. A point in the image with a large gradient will, in the presence of motion,

also have a large temporal derivative. This is an informal motivation for the optical
ow constraint

equation [11], which de�nes the optical
ow at a point in an image to have magnitude �Et=k ~Epk

and direction ~Ep:

v = �
Et

k ~Epk

~Ep

k ~Epk
= �

Et
~Ep

k ~Epk2

Here, k ~Epk is the magnitude of the vector ~Ep, equal to the square root of the sum of squares of

the elements of ~Ep. A problem with this formulation is that if the magnitude of ~Ep is small (or

zero), then the calculation is prone to error (or is unde�ned). Since the goal here is to measure

average motion over time and since the measurement of the optical
ow is more precise at edges or,

in general, when the gradient ~Ep is large, we have found it useful to weight the expression using

16

the term k ~Epk
2 and measure the value of:

v = �Et
~Ep

In most computer vision applications, images are represented as regularly spaced arrays of pixels

(picture elements). With such a representation, it is straightforward to de�ne an approximation

for the spatial derivative at a point in the image. The images as de�ned here, however, do not have

such a regular structure so we use a di�erent approach to de�ning what we call the sensory
ow

�eld . The sensory
ow measured at element i is taken to be a weighted sum of local motion vectors

vij in the direction from element i to element j where j ranges over all of the elements close to

element i (as de�ned in Section 2.3). The weight is inversely proportional to the distance between

elements i and j. The precise de�nition of the motion operator is given below, where (pos x)

denotes the vector of positions associated with feature x, and (val x) denotes the vector of values

associated with feature x.

pos(motion x)
def
= pos x

(val(motion x))i
def
=

X
j�i

vij=kpijk

pij = (pos xj)� (pos xi)

vij = �Et;i
~Ep;ij

Et;i =
d

dt
(val x)i

~Ep;ij =
((val x)j � (val x)i)

kpijk

pij

kpijk

Here, kpijk is the distance in the image between the positions of elements i and j; Et;i is the

temporal derivative of the intensity function for element i; and ~Ep;ij is the component of gradient
~Ep at element i in the direction toward element j.

Using the motion operator, the de�nition of the amvf associated with the ith representative

motor control vector ui is

amvfi = � ((motion x) j (= u u
i))

where x is the image feature that has already been learned (Section 2.4), u is the motor control

vector used to control the motor apparatus, and � is an operator that computes the average value

of its argument. In this case, the average value is taken over all time steps during which u
i was

taken. Examples are shown in Figure 6. These are obtained after the learning agent has wandered

for 20 minutes using the exploration strategy of randomly choosing a representative motor control

vector and executing it for one second (ten time steps).

3.3 Apply principal component analysis

The goal of this step is to �nd a basis set for the space of e�ects of the motor apparatus, i.e., a set

of representative motion vector �elds from which all of the motion vector �elds may be produced

17

(1.00 -0.01) (0.74 0.68) (-0.05 1.00) (-0.72 0.69)

(-1.00 0.01) (-0.74 -0.68) (0.05 -1.00) (0.72 -0.69)

Figure 6: Examples of average motion vector �elds (amvf 's) (represented as collections of line segments)

and associated motor control vectors (shown in the lower-left corner of each picture). An amvf associates

an average local motion vector with each position in an image (see Figure 3). Each line segment represents

the position, direction, and magnitude of one of these average local motion vectors.

by linear combination. This type of decomposition may be performed using principal component

analysis (PCA). (See Mardia et al. [25] for an introduction. Oja [29] discusses how a neural network

can function as a Principal Component Analyzer. Ritter et al. [37] show that self-organizing maps

[13] can be seen as a generalization of PCA.)

Principal component analysis of a set of values for a variable y produces a set of orthogonal

unit vectors fvi
g, called eigenvectors , that may be viewed as a basis set for the variable y. The

ith principal component of y is the dot product of y and eigenvector vi. In practice, y may be

approximated as a linear combination of the �rst few eigenvectors while throwing the remaining

ones away.10 Principal component analysis may be performed using a technique called singular

value decomposition [35], which identi�es the eigenvectors and computes the standard deviation of

each principal component. The relative magnitudes of the standard deviations tell how important

each eigenvector is for the purposes of approximating the sample values for y. The �rst four

eigenvectors obtained in the experiment are shown in Figure 7.

3.4 Identify primitive actions

In the previous step, principal component analysis was used to determine a basis set of e�ects for

the motor apparatus, namely, the set of eigenvectors. The goal of this step is to discover which

motor control vectors can be used to produce those e�ects. This is accomplished by matching

the eigenvectors with the amvf 's of all of the representative motor control vectors. The matching

involves computing, for each i and j, the angle �ij between the ith eigenvector and the jth amvf .

This angle is de�ned by the equation �ij = v
i
� amvf j where the vector �elds vi and amvf j are

10The principal components are ordered according to their standard deviations. This means that the �rst eigen-

vector accounts for the most variance in the set of observed values for y, and so forth.

18

1.61 0.35 0.27 0.15

u0= (-0.66 0.74) u1= (0.74 0.68)

Figure 7: The �rst four eigenvectors and the standard deviations of the associated principal components

for the space of average motion vector �elds. The �rst corresponds to a pure rotation motion and the second

corresponds to a forward translation motion. In these diagrams, the top-left element is associated with the

robot's front sensor. The robot's motor apparatus can produce the �rst two e�ects directly using the motor

control vectors shown.

treated as simple vectors by
attening their n m-dimensional local motion vectors into a single

nm-dimensional vector and ignoring the positions of the local motion vectors. An angle near zero

indicates that the amvf is similar to the eigenvector. An angle near 180 degrees indicates that the

amvf is similar to the opposite of the eigenvector. If any amvf 's match the ith eigenvector to within

45 degrees, then action ui+ is de�ned to be the motor control vector whose amvf is most collinear

with the ith eigenvector and u
i� is de�ned to be the motor control vector whose amvf is most

anti-linear.11 The de�nitions of control laws (Section 5) assume that the robot's motor apparatus

is linear, implying that ui+ = �ui�. In the case that ui+ � �ui�, they can be approximated by

plus and minus ui, respectively, where ui def
= 1

2
(ui+ � u

i�). Subsequently, this will be used as the

de�nition of the ith primitive action. The values of ui are shown in Figure 7. The analogous results

for the roving-eye experiment are shown in Figure 8.

0.43 0.37 0.21 0.04

(-0.17 -0.99 -0.05) (0.03 0.03 -1.00) (-0.99 0.13 0.04)

Figure 8: The �rst four principal eigenvectors and associated singular values for the roving-eye robot. The

�rst two correspond to pure translation motions and the third corresponds to a pure rotation motion. The

robot's motor apparatus can produce the �rst three e�ects directly using the motor control vectors shown.

11This matching criterion is more restrictive than it appears. In a high-dimensional space such as the space of

amvf 's, it is highly unlikely that two random vectors will de�ne an angle less than 45 degrees.

19

3.5 De�ne a new abstract interface

The goal of this step is to de�ne a new interface to the robot that abstracts away the details of

the motor apparatus. For each of the robot's degrees of freedom, a new control signal is de�ned

for producing motion along that degree of freedom. Negative values of the control signal move the

robot in the opposite direction. For the robot of the example, there are two control signals, one for

turning (left and right) and one for advancing (forward and backward). The e�ect of the control

signals is de�ned by the following equation:

u = u0u
0 + u1u

1

where u0 and u1 (which range from -1 to 1) are the new control signals and u
0 and u

1 are the

primitive actions corresponding to the �rst two principal eigenvectors.

3.6 Discussion

The learning methods described in this section have also been applied to a simulated synchro-drive

robot for which the motor control signals directly specify how fast to turn and advance, respectively.

The details of that experiment are given in [31]. The synchro-drive and tank-style robots demon-

strate two di�erent motor apparatuses with identical capabilities. The learned abstract interface,

since it is grounded in sensory e�ects rather than motor control signals, is the same for both: it

abstracts away the details of the motor apparatus, providing a new set of control signals, one for

each of the robot's degrees of freedom.

The learning methods described in this section build on the sensory image structure learned

in the previous section. The result is a new abstract interface whose control signals are used in

Section 5 to de�ne behaviors for navigation.

4 Local state variables

The result of the agent's learning so far is an abstract interface that includes a model of the robot's

sensorimotor apparatus. The model of the sensory apparatus is the description of its physical

structure represented primarily by the positions of the elements of the learned image feature. The

model of the motor apparatus is the set of learned primitive actions that tells the agent how many

degrees of freedom it has, and how to produce motion in each.

The agent's ultimate goal is to abstract the continuous world of the robot to a cognitive map by

which the world is viewed as a discrete set of recognizable places with well-de�ned paths connecting

them. The cognitive map gives the learning agent the ability to predict the e�ects of high-level

behaviors and to navigate among a set of recognizable places. Learning the cognitive map requires

that the agent learn path-following behaviors for moving the robot through its state space. In

order to be useful for prediction, these behaviors must be repeatable in the sense that executing a

behavior from a given initial state always moves the robot to the same �nal state. The following

paragraph gives a few examples of such path-following behaviors.

If the learning agent has a feature that gives the distance from the robot to the wall and it

knows how to make the robot move while keeping this feature constant, then it can make the robot

20

follow the wall. For a robot with a retina (Section 2.5), a feature as simple as the sum of all of

the inputs could be used to de�ne a path-following behavior. Moving while keeping the feature

constant would correspond to following a path of constant intensity. A more complex feature based

on the retina is a line detector, which could be used as the basis for a line-following behavior. For

a robot with a continuous compass giving the robot's heading, a path-following behavior based on

the compass's value would move the robot in a constant direction. Finally, consider a robot with

an omni-directional photo-sensor responding to a light mounted on the robot and suppose that the

robot is in a dark room with white walls. The amount of light detected by the robot's sensor would

decrease with distance from the nearest wall. A wall-following behavior could be based on an error

signal that was the di�erence between the light level detected by the sensor and a nominal value

(e.g., a value in the middle of the sensor's range of values).

In this section and the next, we describe the following three-step method for learning path-

following behaviors: (1) �nd a set of features that the learning agent can control, called local state

variables and use them to de�ne error signals; (2) learn behaviors for minimizing the error signals;

and (3) learn behaviors that move the robot while keeping the errors near zero. This section

shows how to learn local state variables. Section 5 shows how to use them to de�ne path-following

behaviors.

What is required of a local state variable is that it be controllable, i.e., the learning agent must

know how its control signals a�ect it. A feature is controllable if it meets the following de�nition:

Let û be the vector of control signals uj . A scalar feature yi
is a local state variable if the e�ect of the control signals on

yi can be approximated locally by

_yi =mi � û (=
X
j

mij uj) (1)

where mi is nonzero.

Determining whether a feature is a local state variable while learning the context-dependent value

of mi is the job of the static action model (Section 4.2). The source of information for this step is

the set of learned features produced while the learning agent wanders by using its learned primitive

actions.

Local state variables are analogous to state variables in the following sense. If x is a state

variable, then the constraint _x = 0 reduces the dimensionality of the robot's state space by one.

If y is a local state variable, then the constraint _y = 0 reduces the dimensionality of the robot's

motor control vector space by one.12 In other words, the constraint reduces the robot's degrees of

freedom by one. Since the learning agent does not have access to the robot's state space, it de�nes

local state variables using its knowledge of motor control vector space to which it does have access.

They are called local state variables because they are not required to be de�ned everywhere in the

robot's state space.

12If _y = 0, then by Equation 1, û must lie in the subspace perpendicular to vector mi.

21

An important feature of local state variables is that they are controllable: feature yi may be

moved to a target value y�i using a simple control law. This fact is exploited in the de�nition of

the homing behaviors (Section 5.2). The discovery of local state variables has two components:

generating new features (Section 4.1), and testing each feature to see if it satis�es the de�nition of

local state variable (Section 4.2).

4.1 Generating new features

If a sensory system does not directly provide useful features, it may be possible to generate features

that are useful. A generate-and-test approach is demonstrated in the following experiment using

the tank-style mobile robot in which the agent learns new scalar features that are better candidates

for local state variables than are the elements of the raw sense vector.

4.1.1 A set of feature generators

In this paper, we identify a small set of feature generators that are used to produce new features

as candidates for local state variables. Our feature generators are essentially a special case of

the functional transformations of [39]. These feature generators are appropriate for a robot with

a rich sensorimotor apparatus and are, as we will demonstrate, su�cient for a particular set of

environments and sensorimotor apparatuses. We do not claim that this particular set of feature

generators is necessary for the robots described in this paper nor that it is su�cient for all robots

and environments.

The generated features are based on a set of generic mathematical constructs (e.g., scalars,

vectors, matrices, scalar �elds, and vector �elds) rather than on a human-generated list of salient

properties of a robot's environment. The feature generators used for the experiments described in

this paper are described below:

� splitter takes a vector feature of length n and produces n scalar features.

� vmin and vmax apply to vector features of length greater than 1. They provide two di�erent

ways to reduce a vector feature to a scalar feature.

� group and image (described in Section 2) identify useful structure in the sensory apparatus.

Group and image features are not scalar features and thus are not able to serve as local state

variables, but they do serve as the basis for higher-level features that may turn out to be

useful.

� lmin (local-min) and lmax (local-max) apply to image features. They produce focused-image

features. A focused-image feature is a (scalar �eld, boolean �eld) pair where the boolean �eld

is used to mask the scalar �eld. It can be viewed as an image feature for which each element

has an associated weight (0 or 1). The weights focus attention on particular properties of an

image, e.g., local minima or maxima.

� tracker applies to focused-image features and produces image-element features (single value-

position pairs). From the focused image produced by the lmin generator, the tracker gen-

erator produces one image-element feature for each local minimum in the image. The tracker

22

implements a form of focus of attention, abstracting away small changes in value and position

of an image element in order to produce a feature that tracks an interesting property of the

robot's environment such as the minimum distance to a nearby object.

� val extracts a scalar value feature from an image-element feature.

This set of feature generators has proven successful for the robot with a ring of distance sensors. To

handle the \roving eye" robot, we would augment this set with generators for features based on a

variety of convolution masks and other two-dimensional image-processing operators. An interesting

open problem is to de�ne a general set of feature generators appropriate to learning mobile robots,

analogous to the small and general set of functional transformations used by Shen [39] to replicate

the performance of AM [22]. We conjecture that a reasonably sized set of feature generators will

apply to a broad class of mobile robots and that such a set of feature generators can be discovered

by developing solutions for a small subset of that class: initially, each new robot would require

one or more new feature generators; eventually the set of feature generators would converge to a

generally applicable set.

4.1.2 Generating and testing features

The generate-and-test process of learning potentially useful features executes the following steps

in a continuous loop. Initially, there is only one feature, the raw sensory feature. This feature is

marked as new.

1. Each generator is applied to each new feature to which it is applicable.

2. The features that were new are marked as old, and the features just generated are marked as

new.

In generate-and-test approaches to learning, controlling the search through a large space of possi-

bilities is an important concern. Without any constraints, the number of features generated on each

iteration of the generate-and-test loop may grow exponentially. There are several ways to constrain

a search algorithm. One way is to limit the depth of the search. In the current implementation

of the generate-and-test algorithm, it is possible to set a limit on the number of generations of

new features that are created. A second way is to limit the breadth of the search. This method is

used in genetic algorithms where population size is constrained to a certain number. This method

requires a �tness measure to tell which members of the population are worthy of survival. Such a

�tness measure can be de�ned as a feature tester, though this has not been done here. A third way

to constrain a search space is to limit the branching factor. For the feature-learning problem, this

is the average number of new features that are generated for each old feature at each step of the

generate-and-test process. The branching factor for the feature learning problem is limited in two

ways: the total number of generators is kept reasonably small and the number of generators that

apply to any given feature is kept small by using strongly typed generators (e.g., the image-feature

generator only applies to group features).

23

4.1.3 An experiment

In the experiments described in this paper, the combinatorial explosion of features has not been

an issue. The generators form deep but narrow hierarchies with a tractable set of features. To

study this, we devised an experiment in which the agent explores by randomly choosing unit motor

control vectors and executing them for one second (10 time steps) each. Figure 9 shows the complete

hierarchy of features and generators for the learning agent's feature-learning process. At the top

of the �gure is the raw sense vector s. We refer to each feature using a name derived from the

sequence of feature generators used to produce that feature (where g=group, im=image, tr=tracker,

val=value). Thus, for example, s-g-vmin results from applying the vmin generator to the feature

produced by applying the group feature generator to the raw sense vector s. The features shown

in the �gure are, from top to bottom and from left to right: s, s-g, s-vmin, s-vmax, s0, s1, : : :,

s28, s-g-im, s-g-vmin, s-g-vmax, s-g-im-lmin, s-g-im-lmax, s-g-im-lmin-tr, s-g-im-lmax-tr, s-g-im-

lmin-tr-val, and s-g-im-lmax-tr-val. Notice that, depending on the robot's position, there may be

multiple s-g-im-lmin-tr-val or s-g-im-lmax-tr-val features. Each of the generated scalar features

(the leaves of the tree of generated features) is tested (Section 4.2) to see if it can serve as a local

state variable.

4.2 The static action model

The purpose of the static action model (a set of equations of the form given in Equation 1 of

Section 4) is to predict the behavior of each scalar feature. The learning of the static action model

for a feature proceeds in three steps. In the �rst step, the learning agent tries to predict the

behavior of the feature without taking into account which primitive action is being used. If it fails,

then it tries to predict the behavior of the feature as a function of the action being taken. If this

fails for a primitive action, then the agent tries to predict the context-dependent e�ect of that

action on the feature. If a feature is action dependent and is predictable in all contexts, then it

can serve as a local state variable.13 With the information contained in the static action model, it

is a simple matter to de�ne homing behaviors for moving the robot so that the local state variable

moves toward a target value.

When trying to predict the e�ects of actions on features, the learning agent looks for approxi-

mately linear relationships between action magnitudes and feature derivatives because the control

laws used to de�ne path-following behaviors (Section 5) are based on the assumption that these

relationships are approximately linear.

4.2.1 An action-independent model

The �rst step toward modeling the behavior of a feature yi is to see if it is possible to predict its

behavior independently of the motor control vector being used. The agent explores by repeatedly

choosing a primitive action and executing it for one second (ten time steps). It analyzes the behavior

13One could use a less constrained de�nition of local state variable: if a feature is action dependent and predictable

in a given context, then it is a local state variable for that context. We have chosen the more constraining de�nition

because it results in more robust control laws.

24

vector

group

image

scalar

tracker

lmin lmax

group

image

tracker

vmin, vmax

scalar

value

focused
 image

 image
element

splittervmin
vmax

Figure 9: The complete hierarchy of features and generators in the learning agent's feature-learning process

used to produce candidate local state variables. The feature generators are shown in bold face; the feature

types are shown in italics.

25

of the feature using a device that we call a correlator . This produces a set of statistics based on

the plot of the feature's value as a function of time (Figure 10). The coordinate for the horizontal

�s0 vs. �t �s24 vs. �t lmin vs. �t

Figure 10: Plots of �y
i
(vertical axis) vs. �t (horizontal axis), used by the learning agent to try to predict

the behavior of feature y
i
independently of the motor control vector. Whenever a new motor control vector

is used, �y
i
and �t are reset to 0 (at the center of each plot). From the sets of (�t;�y

i
) points, statistics

m
i
, r

i
, and

i
are computed (see text). The numbers shown are the correlations r

i
between �y

i
and �t.

From these statistics the learning agent concludes that features s0 and lmin (short for s-g-im-lmin-tr-val)

are unpredictable (
 is large and r is small) and that s24 is constant (
 < 0:001).

axis is �t = t � t0 where t0 is the last time the motor control vector changed. The vertical axis

gives �yi = yi(t)� yi(t0).

The statistics are mi, ri, and
i. The value of mi is the slope of the line that best �ts the set

of (�t;�yi) points. The value of ri is the correlation between variables �yi and �t. The value of

i is the ratio of the standard deviations of �yi and �t. It is a measure of how fast the feature

changes as a function of time. A number of properties are de�ned in terms of these statistics. The

feature is constant if
i < 0:001. It is increasing if ri > 0:6; decreasing if ri < �0:6. It is

predictable if any of these properties holds. Otherwise, it is unpredictable and the learning agent

tries to predict the behavior of the feature using an action-dependent model.

For the running example, the features s-vmin, s-vmax , s20 (the broken distance sensor), s24
(the battery voltage), and s-g-vmax are all diagnosed as constant and are thus not suitable for

use as local state variables. The rest are candidates for the next step in the learning of the static

action model.

4.2.2 An action-dependent model

If the previous step failed to produce a model that predicts the behavior of a feature yi, then the

learning agent uses one correlator for each primitive action to analyze its e�ect on the feature. In

this case, the correlator characterizes the relationship between uj�t and �yi where �t and �yi
are de�ned as before. The agent continues to explore by randomly selecting primitive actions and

executing them for a second at a time. It computes the statistics mij (the slope of the line that

best �ts the set of (uj�t;�yi) points), rij (the correlation between uj�t and �yi), and
ij (the

ratio of the standard deviations of uj�t and �yi). A feature is labeled constant for control signal

26

uj if
ij <
i=4. The properties increasing, decreasing, and predictable for control signal uj

are de�ned as before. For each predictable feature-control signal pair, a rule of the form

_yi = mij uj

is added to the static action model. If a feature is predictable for all of the primitive actions, then

�s0 vs. u0�t �s0 vs. u1�t �lmin vs. u0�t �lmin vs. u1�t

Figure 11: Plots of �y
i
vs. u

j
�t for two features and two primitive actions. These are used to see if it

is possible to predict the behavior of the feature as a function of the motor control vector. Feature s0 is

unpredictable for action u0 (r is small and
 is large) but predictable for action u1 (r is large). Feature lmin

is constant for action u0 (
 < 0:001) but unpredictable for action u1 (r is small and
 is large).

the feature itself is predictable.

For the running example (Figure 11), all of the distance sensors are found to be unpredictable

for primitive action u0 (rotating). The e�ect of u1 (advancing) is to decrease features s0, s1, s2,

s3, and s23; to increase features s9 through s14. Its e�ect is unpredictable for features s4{s8,

s15{s19, s21, and s22. The discrete compass sensors s25 through s28 are unpredictable for u0 and

constant for u1. The features s-g-vmin and s-g-im-lmin-tr-val (a.k.a. lmin) are constant for u0 and

unpredictable for u1. Feature s-g-im-lmax-tr-val (a.k.a. lmax) is unpredictable for both primitive

actions. One might guess that lmax would be constant for u0. In fact, lmax , which is only de�ned

when the robot is in a corner,
uctuates too rapidly with small turns to be diagnosed as constant.

4.2.3 A context-dependent model

If uj has an e�ect on yi that is unpredictable, then the learning agent tries to �nd a partition of

sensory space into a discrete set of contexts so that the relationship can be approximated by a

linear equation for each context.14 In general, a context feature zij , for local state variable yi and

control signal uj , is an integer-valued feature that takes on a �nite set of values. This set de�nes

a partition of the robot's state space into a �nite set of contexts de�ned by the predicates zij = k.

One way to de�ne a context feature is to �rst choose a feature x and divide its range of values into

a �nite set of intervals, fIkg, where each interval de�nes its own context. The context feature is

then de�ned by zij = k i� x 2 Ik. Using feature x to de�ne a set of contexts is appropriate if the

value of x is a good predictor of the e�ect of the control signal uj on the feature yi. To test the

hypothesis that x is a good predictor for the e�ect of uj on yi, a correlator can be used to determine

uj 's e�ect on yi for each context de�ned by the predicate zij = k.

14This approach is analogous to Drescher's marginal attribution [7].

27

Testing each of a large set of features to see if they improve the predictability of a control

signal's e�ect is expensive. Heuristics can be used to guide the search for relevant features to use

in de�ning contexts. For example, it makes sense to �rst look at features that are closely related to

the feature being analyzed, in the sense that they are close together in the tree of features produced

by the generate-and-test process.

Currently, only one such heuristic is implemented: if a feature is based on the value of a element

of an image, then use the position of that element in the image to de�ne the context. Since there

is a discrete set of possible positions for an image-element feature, it is trivial to break the space

of possible positions into a discrete set of contexts. For example, in the case of the lmin and

lmax features, there are 23 possible positions and these can be used to break sensory space into

a partition of 23 contexts each de�ned by the predicate zij = k where zij is an integer feature

whose value is between 0 and 22 and identi�es the position associated with the local minimum or

maximum.

For each context zij = k, a correlator is used to try to predict the e�ect of uj on yi given that the

robot is in that context. The agent continues to explore randomly while computing the statistics

mijk, rijk, and
ijk. The properties constant , increasing , decreasing , and predictable are

de�ned as before. For each predictable context, a rule of the form

_yi = mijk uj , if zij = k

is added to the static action model. If mijk is 0, then the predicate zij = k de�nes a \constant

context" (which is useful for de�ning path-following behaviors). If the primitive action's e�ect on

the feature is predictable for every context, then the feature is predictable for that action.

For the running example, the only features with associated context features are lmin and lmax .

� lmin is already predictable (constant) for control signal u0.

� The e�ect of u1 on lmin is predictable for every context. Its e�ect is to decrease lmin for

contexts 0{5 and 19{22, and to increase it for contexts 7{17. For contexts 6 and 18 (in which

the robot's heading is parallel to the wall), lmin is constant (see Figure 12).

� The e�ect of u0 on lmax is unpredictable for almost every context.

� The e�ect of u1 is to decrease lmax for contexts 0{5 and 20{22 and to increase it for contexts

8{16. The e�ect is unpredictable for contexts 6, 7, 17, and 18.

At this point the only feature that is both predictable and action-dependent (and is thus a local

state variable) is lmin. Its behavior can be modeled by the equation _yi = mi1k u1 where k is the

current value of the context feature zij that represents the location of the local minimum in the

image feature. The feature lmin was produced by the tracker generator. This generator actually

produces multiple lmin features, one for each local minimum in the input image feature. The

number of local state variables depends on the robot's location. There are two local state variables

in the neighborhood of a corner, three in the neighborhood of a T-intersection, but just one if only

a single wall is within range.

28

k=0 k=6 k=12

Figure 12: Example plots of �y
i
vs. u1�t for the s-g-im-lmin-tr-val feature for three di�erent contexts.

These are used to see if it is possible to predict the behavior of the feature as a function of the motor control

vector and the current context. For action u1, feature lmin is decreasing, constant, and increasing for

contexts 0, 6, and 12, respectively.

5 Learning control laws

The goal of this step is to learn a suitable set of homing and path-following behaviors using the

results of the preceding sections, speci�cally, the set of local state variables and the set of primitive

actions. Recall that for the robot of the running experiment, the local state variables are the

lmin features, the only features identi�ed as controllable by the learning agent. The sources of

information for this step are the learned static action model (Section 4.2) and dynamic action

model (Section 5.3.2).

A behavior , as the term is used in this paper, is an object with four components, called output ,

app, done, and init . The output component is a function that returns a vector of motor control

signals. The app component is a scalar function whose value indicates whether the behavior is

currently applicable. The value of this feature may be 0 (indicating that the behavior is not

applicable) or 1 (indicating that the behavior is applicable) or some number in between (indicating

a certainty less than 100% that the behavior is applicable). The done signal is a Boolean function

that tells when the behavior has �nished. The init signal is an input signal that tells the behavior

to initialize itself (in case it has internal state information that needs to be reset).

Path-following behaviors are learned in three steps: (1) continuous error signals are de�ned; (2)

behaviors are learned for minimizing the error signals; (3) behaviors are learned for moving while

keeping the error signals near zero.

5.1 De�ning error signals for control laws

The learning agent's approach to exploration, mapping, and navigation uses path-following be-

haviors in which the robot moves while maintaining an error signal near zero. An example of a

path-following behavior based on an error signal involves a person walking down a corridor. The

error signal is e = (y�� y) where y is the distance from the person to the right side of the corridor

(left in Britain) and y� is a constant that depends on the person, his mood, and the number of

other people in the corridor. The error signal is used in a control law for moving along the corridor.

If the error is positive, the person moves to the left (away from the wall) while walking; if it is

29

negative, he moves to the right. The control law is e�cient and repeatable: by using the control

law, the person follows an e�cient (i.e., straight) path from one end of the corridor to the other,

and each time the person follows the path, he ends up in the same place.

In this example, y is a local state variable. The agent's approach to de�ning path-following

behaviors is to �rst de�ne error signals of the form e = y� � y for each local state variable y.15

5.2 Learning homing behaviors

The purpose of a homing behavior is to move an error signal toward zero so that path-following

behaviors based on that error signal will become applicable. While it would be possible to use

reinforcement-learning methods to learn a homing behavior given an error signal [33, 24], most of

the relevant learning has already been done. The homing behavior can be de�ned as an instance of

the generic, domain-independent control law in Figure 13, drawing on the knowledge in the static

action model.

For each local state variable yi and control signal uj , a homing behavior is de�ned for reducing

the error e = y�i � yi. It is applicable in every context zij = k for which the static action model

includes a rule of the form _yi = mijkuj where mijk is nonzero. It is done when the error is close

to zero. Its output is given by a simple control law. The de�nition is based on the partition of

sensory space used by the static action model to characterize the e�ects of uj on yi. This partition

is described by the set of contexts fkg. The components of the homing behavior (app, output , and

done) are de�ned for each possible context k (Figure 13). A homing behavior that the agent learns

for the mobile robot is illustrated in Figure 14.

5.3 Learning path-following behaviors

The previous section presented a method for learning homing behaviors that minimize a given

error signal. In this section, a method is presented for moving while minimizing the error signal.

The result is a path-following behavior. Learning a path-following behavior involves two steps: 1)

learning how to move in the general direction that keeps the error near zero and 2) learning the

necessary feedback for error correction to avoid straying o� the path de�ned by the minimum of

the error signal.

The learning agent uses its static action model to determine which primitive action to use to

provide motion along a path. It learns a dynamic action model to tell how to use the remaining

primitive actions to provide error correction.

5.3.1 Learning open-loop path-following behaviors

The static action model does not give the agent enough information to de�ne closed-loop path-

following behaviors with error correction, but it does give the agent enough information to de�ne

open-loop path-following behaviors.16 An open-loop path-following behavior lacks error correction

15Choosing an optimal target value y� for a feature y is beyond the scope of this paper. The implemented learning
agent chooses a value equal to half the feature's maximum value.

16In a closed-loop control law, an error signal is used as feedback to determine a motor control vector that minimizes

that error.

30

For each context zij = k,

app(k) = maxf0; 2jrijkj � 1g

output(k) = uijk u
j

done �
jy�i � yij

y�i
< 0:1

where

uijk =
2�!

mijk

ei +
!2

mijk

Z
ei dt

ei = y�i � yi:

Figure 13: A homing behavior is de�ned for each local state variable y
i
and for each primitive action uj

to achieve the goal y
i
= y�

i
. The applicability and output are de�ned as functions of the current context

as de�ned by the context feature z
ij
. The applicability has a maximum value of 1.0 if the correlation r

ijk

between u
j
and _y

i
has a magnitude of 1.0 and a minimum value of zero if the correlation has a magnitude of

0.5 or less. The output is given by a proportional-integral (PI) control law with parameters � = 1:0, ! = 0:05

(see [21]) that minimizes the di�erence between y
i
and y�

i
. The behavior is done when this di�erence is close

to zero. The init function resets the value of the integral of the error to zero.

but is useful for learning the dynamic action model, which is in turn useful for de�ning path-

following behaviors with error correction. Recall that the static action model identi�es constant

contexts zij = k in which primitive action uj has no e�ect on local state variable yi.

For each local state variable yi and primitive action uj , for each constant context zij = k, two

open-loop behaviors are de�ned, one for each direction of motion. The behaviors' outputs are given

by

u = u
� +

X
� 6=j

u� u
�

where u� = �uj and ju�j � 1. The u� components are used in learning the dynamic action model.

The purpose of an open-loop path-following behavior is to allow the agent to learn the e�ects of

the orthogonal control signals on the feature while motor control vector u� is used.17 With this

knowledge, it is possible to use the other control signals for error correction. The de�nition of

open-loop path-following behaviors is summarized in Figure 15. A behavior is done when the robot

strays too far o� the path or when a new behavior becomes applicable indicating that the agent

has a choice to make: to continue the current behavior or start a new one.

For the mobile robot of the running example, there is an open-loop path-following behavior

based on u0 (for turning) for each local state variable yi (see Figure 16a). It is applicable whenever

yi = y�i since, according to the static action model, turning has no e�ect on yi. There is also an

17The primitive actions are orthogonal to each other in the sense that their amvf 's are orthogonal to each other

(see Section 3.3).

31

y=y*

Figure 14: An example of a homing behavior for the mobile robot with distance sensors and tank-style

motor apparatus. The agent's static action model predicts that in this context the second primitive action

u1 decreases the value of local state variable y. This information is used in the de�nition of a homing behavior

that is (a) applicable in this context, (b) uses primitive action u1 to move the robot so as to minimize the

error e = y� � y, and (c) is done when y � y�.

open-loop path-following behavior based on u1 (for advancing) for each feature yi (see Figure 16b).

It is applicable when the robot is facing parallel to the object being detected by yi (that is, when

context feature zij has value 6 or 18). Figure 20b shows a trace of the behavior of the robot that

results as the learning agent uses its learned open-loop path-following behaviors to explore the

robot's environment.

5.3.2 The dynamic action model

The static action model predicts the context-dependent e�ects of a control signal on the local state

variables. The dynamic action model predicts the context-dependent e�ects of control signals on

the local state variables while an open-loop path-following behavior is being executed.

The dynamic action model tells, for each open-loop path-following behavior, the e�ect of each

orthogonal action (each primitive action other than the path-following behavior's base action),

on the local state variable that is used in the de�nition of the path-following behavior's error

signal. To learn the dynamic action model, an exploration behavior is used that randomly chooses

applicable homing and open-loop path-following behaviors. A behavior runs until it is no longer

applicable, or a new path-following behavior becomes applicable. Linear regression is used to learn

the relationships between the orthogonal actions u� and the features yi in the context of running the

open-loop path-following behavior based on feature yi, motor control vector u
� = �uj , and context

zij = k. While it is running, linear regressors test the hypotheses _yi = mijk�1 u� and �yi = mijk�2 u�

by computing the correlations rijk�n between u� and y
(n)
i . If rijk�1 > rijk�2 and jrijk�1j > 0:6, then

the rule

_yi = mijk�1 u�; if zij = k ^ u = �u
j + u�u

�

is added to the dynamic action model. Otherwise, if jrijk�2j > 0:6, then the rule

�yi = mijk�2 u� if zij = k ^ u = �uj + u�u
�

32

app �
jy�i � yij

y�i
< 0:1 ^ zij = k

output = u
� +

X
� 6=j

u�u
�

done �
jy�i � yij

y�i
> 0:4

_ (a new behavior becomes applicable)

Figure 15: An open-loop path-following behavior is de�ned for each local state variable y
i
, for each primitive

action (or opposite) u�, and for each constant context z
ij

= k. The predicate z
ij

= k de�nes a constant

context if it implies that u� maintains y
i
constant according to the static action model. The behavior is

applicable when the error signal y�
i
� y

i
is small. The output has two components: a base motor control

vector and a small orthogonal component. During learning of the dynamic action model, the orthogonal

component changes every 3 seconds. Only one of the u
�
's is nonzero at a time. The behavior is done when

the error signal is too large or a new behavior becomes applicable.

is added to the dynamic action model. Otherwise, the relationship between u� and yi is either zero

or unpredictable.18

Suppose that the mobile robot of the running experiment has a wall to its left and that its

heading is parallel to the wall (Figure 16b). In this context, primitive action u
1 (advancing)

maintains the distance to the wall, yi, constant (mijk = 0). Therefore, the open-loop path-following

behavior based on u1 and yi is applicable. While executing this behavior, the e�ects of other control

signals (i.e., u0) can be diagnosed. In this example, u0 a�ects the second derivative of the feature:

18For the dynamic action model, it is necessary to consider both �rst and second derivatives of the features.

Informally, this is because u� may a�ect the derivative of mij in the equation _yi = mij uj , that is, _mij = mj� u�.

Together, these give �yi = _mij uj = mj� u� uj = mij�2 u�, using the product rule and the fact that uj is constant for

a path-following behavior.

y=y*

(a) (b)

Figure 16: Two examples of open-loop path-following behaviors. (a) A behavior based on u0 (for turning)

and constraint y
i
= y�

i
is applicable whenever y

i
= y�

i
since u0 never changes the value of y

i
. (b) A behavior

based on primitive action u1 (advancing) and constraint y
i
= y�

i
is applicable whenever y

i
= y�

i
and the

robot's heading is parallel to the wall on its left (i.e., z
ij

= 18) since in this context u1 keeps the error

e = y�
i
� y

i
near zero.

33

�yi = mi1k0;2 u0: This is because turning changes the robot's direction of motion relative to the

wall and this direction determines how fast the robot moves toward or away from the wall as it

advances. Examples of the linear regressors used to learn the dynamic action model for the robot

of the running example are illustrated in Figure 17.19According to the dynamic action model, u0

has a predictable e�ect on yi while any of the open-loop behaviors based on u
1 is executing. For

the open-loop path-following behaviors based on u0, the e�ect of u1 on yi is unpredictable.

0; 0; 0; 1; 1 0; 0; 0; 1; 2 0; 1; 6; 0; 1 0; 1; 6; 0; 2

Figure 17: Plots illustrating the relationships measured by the linear regressors used in learning the dynamic

action model. The labels under the plots give the values of i, j, k, �, and n, where n is the number of the

derivative of y
i
being tested. The �rst two plots show the e�ect of u1 (advancing) on _y0 and �y0 respectively

while an open-loop path-following behavior based on u0 is executed. Here y0 is one of the local state variables

(instances of lmin) produced by the tracker generator. The second two plots show the e�ect of u0 (turning)

on _y0 and �y0 respectively while an open-loop path-following behavior based on u1 is executed in context

z0;1 = 6. This is the context in which the robot heading parallel to a wall on its right.

5.3.3 Learning closed-loop path-following behaviors

The �nal step in learning path-following behaviors is to add error correction to the open-loop path-

following behaviors in order to de�ne closed-loop path-following behaviors. A closed-loop behavior

is one that receives feedback from the environment in the form of an error signal which it uses to

modify its motor control signals so as to minimize the error. Consider again the case where the

robot is facing parallel to a wall on its left. In this context, the learning agent knows, because

of its static action model, that primitive action u
1 leaves feature yi (the distance to the wall)

approximately constant. Moreover, the agent knows, because of its dynamic action model, how

control signal u0 (turning) a�ects yi while u
1 is being taken. Together, this information is su�cient

to de�ne a closed-loop path-following behavior that robustly moves the robot along the wall. If yi
goes below its target value (i.e., if the robot gets too close to the wall), then the agent knows to

increase the value of u0 (i.e., to turn right as shown in Figure 18). Because of the error correction

implemented using control signal u0, the path-following behavior is robust in the face of noise in

the sensorimotor apparatus, small perturbations in the shape of the wall, and even inaccuracies in

the action models themselves.

A closed-loop path-following behavior is de�ned using the generic template in Figure 19 for each

19The linear regressors operate on �ltered versions of yi and uj to remove noise that would otherwise hide the

relationship between the signals. The signals are �ltered using a moving average taken over several seconds.

34

Figure 18: De�ning closed-loop path-following behaviors. The learning agent uses the dynamic action

model to add error correction to an open-loop path-following behavior in order to obtain a closed-loop path-

following behavior. In this example, a small turning motion is used to keep the robot on the path as it

advances.

constraint y = y
�, for each primitive action or opposite u� = �u

j , and for each constant context

z = k. The predicate z = k (where z is a vector of context features zij and k is a vector of context

values ki) de�nes a constant context if for each zij 2 z and ki 2 k, zij = ki de�nes a constant

context for yi and u
j according to the static action model. The variable rijk�n is the correlation

between u� and y
(n)
i while motor control vector u� is used in context k. The behavior is applicable

when all of the elements of y are near their target values (i.e., y � y
�) and when z = k indicating

that the static action model predicts that motor control vector u� keeps the error vector y� � y

near zero. The behavior is done when a new path-following behavior becomes applicable indicating

that the agent now has a choice | to continue the current path-following behavior or to choose a

new one.

For the example robot, the set of path-following behaviors contains behaviors for turning in

place as well as for following walls. For the behavior based on u
1 (advancing), the e�ect of the

orthogonal primitive action u
0 on the local state variables is predictable and thus it can be used

for error correction. For the behaviors based on u0 (turning), no error correction is used since the

e�ect of u1 is unpredictable.20

Figure 20 shows the behavior of the robot at three di�erent stages as the agent learns the set

of path-following behaviors. Section 6 demonstrates the learning of the set of homing and path-

following behaviors for a rectangular environment containing a number of obstacles and a T-shaped

environment. In Section 7, the path-following behaviors learned in this section are used as the basis

for an exploration and mapping strategy that allows the agent to develop a discrete abstraction of

the robot's continuous world.

6 Additional Experiments

The previous sections have demonstrated a set of learning methods that a learning agent may

use to learn the sensorimotor and control levels of the spatial semantic hierarchy. The purpose of

this section is to describe a number of experiments (in addition to those described in the previous

sections) that demonstrate the generality and some limitations of the methods for learning the

sensorimotor and control levels.

The learning methods are �rst demonstrated for the mobile robot in a cluttered room. Then,

20The implemented learning agent learns a context-dependent static action model. An extension would be to learn

a context-dependent dynamic action model for each open-loop path-following behavior. In this way the e�ect of u1

could become predictable and the action could be used for error correction in a context-dependent control law.

35

app � 8y
i
2 y :

�
jy�

i
� y

i
j

y�
i

< 0:1

�
^ 8z

ij
2 z : (z

ij
= k

i
)

output = u� +
X
� 6=j

u
�
u�

done = 9y
i
2 y :

�
jy�

i
� y

i
j

y�
i

> 0:4

�

_ (a new behavior becomes applicable)

where

u
�

=
X
yi2y

u
�i

u
�i

=
2�!

m
ijk�1

e
i
+

!2

m
ijk�1

Z
e
i
dt if jr

ijk�1j � jr
ijk�2j; 0:6

u
�i

=
!2

m
ijk�2

e
i
+

2�!

m
ijk�2

_e
i

if jr
ijk�2j > jr

ijk�1j; 0:6

u
�i

= 0; otherwise

e
i

= y�
i
� y

i
:

Figure 19: De�nition of a closed-loop path-following behavior. Here, y is a vector of local state variables y
i
;

y� is the corresponding vector of target values; u� = �uj is one of the primitive actions or their opposites;

z is a vector of context features z
i
, one for each local state variable y

i
; and k is the corresponding vector of

context values k
i
. The equation z = k de�nes a context in which u� maintains y constant according to the

static action model. The values of m
ijk�n

and r
ijk�n

are taken from the dynamic action model. Simple PI

and PD (proportional-derivative) controllers are used (see [21]) depending on whether the primary e�ect of

u� is on _y
i
or �y

i
, respectively. Again, �=1.0, !=0.05.

(a) (b) (c)

Figure 20: Exploring a simple world at three levels of competence. (a) The robot wanders randomly while

learning a model of its sensorimotor apparatus. (b) The robot explores by randomly choosing applicable

homing and open-loop path-following behaviors based on the static action model while learning the dynamic

action model. (c) The robot explores by randomly choosing applicable homing and closed-loop path-following

behaviors based on the dynamic action model.

36

to demonstrate that the learned model of the sensorimotor apparatus applies beyond the particular

environment in which the model was learned, the learning agent is transferred to a new, T-shaped

environment after its control-level learning has been erased. Here it re-learns the control level and

demonstrate a set of learned path-following behaviors. Finally, to demonstrate that the learning of

the control level applies beyond the particular environment in which it was learned, the learning

agent is transferred to an empty room where it again demonstrates the learned path-following

behaviors.

Sections 6.4 and 6.5 describe two experiments in which various of the learning methods failed

and explain why they failed. Section 6.4 describes an experiment in which the image-feature

generator fails to produce a ring-shaped representation of the structure of the ring of distance

sensors. Section 6.5 describes an experiment in which the learning agent fails to discover any local

state variables. Section 6.6 summarizes the ways in which the learning methods can fail. Finally,

Section 6.7 identi�es a number of ways in which the learning methods can be improved.

6.1 A cluttered room

The environment used in this experiment is a rectangular room with dimensions six meters by

four meters, containing four rectangular obstacles (Figure 23). The simulated mobile robot used

throughout this section is the same as that described in Section 2.1.

6.1.1 Modeling the sensory apparatus

The �rst step in modeling the robot's sensory apparatus is to apply the group-feature generator.

The learning agent computes distance metrics d1 and d2 after wandering for 20 minutes. Their

values are qualitatively similar to those shown in Figure 2. The group-feature generator identi�es

the same groups as those in Section 2.3. The second step in modeling the robot's sensory apparatus

is to apply the image-feature generator. The learning agent computes distance metric d1 for the

group of 23 related sensors after wandering for 40 minutes.21 The outputs of the metric scaling

and relaxation algorithm are qualitatively similar to those shown in Figure 3.

6.1.2 Modeling the motor apparatus

The �rst step in modeling the robot's motor apparatus is to characterize the e�ects of each of a large

set of representative motor control vectors. In this experiment, 100 representative motor control

vectors of unit magnitude are chosen. Eight example amvf 's and their associated motor control

vectors are shown in Figure 21. These were obtained while the learning agent wandered for 60

minutes, repeatedly choosing a representative motor control vector at random and executing it for

one second (ten time steps). The �rst four eigenvectors produced by principal component analysis

from are shown in Figure 22. The �rst corresponds to a pure rotation motion and the second

corresponds to a pure translation motion. The two motor control vectors identi�ed as primitive

21We use fairly long wandering periods so that the robot adequately explores its state space. For the uncluttered,

rectangular room, shorter periods were used because the group- and image-feature generators quickly converged. See

Section 6.7 for a discussion of improved feature generators that automatically detect when they have converged.

37

(1.00 -0.00) (0.69 0.73) (0.00 1.00) (-0.73 0.69)

(-1.00 0.00) (-0.69 -0.73) (-0.00 -1.00) (0.73 -0.69)

Figure 21: Example amvf 's and associated motor control vectors for the cluttered-room experiment.

1.40 1.10 0.27 0.22

u0= (-0.706 0.707) u1= (0.728 0.683)

Figure 22: The �rst four eigenvectors and the primitive actions for the cluttered-room experiment.

38

Figure 23: The path taken by the robot while the learning agent randomly selects learned homing and

path-following behaviors. When no other behavior is applicable, it randomly selects primitive actions. The

robot is initially in the middle. The learning agent begins by using a homing behavior to move toward the

long obstacle and then using a path-following behavior to move along it. The diagonal trajectories in the

corners are the results of homing behaviors that move the robot from a wall to a path.

actions are shown above under the two principal eigenvectors. None of the other eigenvectors match

any of the amvf 's. Notice that the primitive actions identi�ed here very closely match those shown

in Figure 7. The result of the analysis is that the robot's motor apparatus has two degrees of

freedom and that the above primitive actions can be used to produce motion for each degree of

freedom.

6.1.3 Learning behaviors

As described in Section 4, the learning agent identi�es the set of local-minimum features (s-g-im-

lmin-tr-val) as local state variables (they are the only generated features that are identi�ed as both

action dependent and predictable).

The learned static and dynamic action models are qualitatively similar to those learned in

Sections 4 and 5. In this experiment, the learning agent again discovers that it can use the �rst

(turning) primitive action for error correction while executing an open-loop path-following behavior

based on the second (advancing) primitive action. It uses this information to de�ne closed-loop

path-following behaviors. Figure 23 shows a trace of a random exploration behavior demonstrating

the learning agent's learned behaviors.

6.2 Re-learning the behaviors in a T-shaped room

For this experiment, the robot was moved from the cluttered room to a T-shaped environment

and the learning agent's control-level learning (i.e., static action model, dynamic action model,

and learned behaviors) was erased. Its task was to begin with an intact model of the robot's

sensorimotor apparatus and learn an appropriate set of homing and path-following behaviors. The

environment used in this experiment consists of two corridors connected to form a T. The corridor

forming the top of the T is 6 meters long and 1.5 meters wide. The shorter corridor is 4.5 meters

long and 1.5 meters wide.

39

Figure 24: Re-learning behaviors in a T-shaped room. Path-following behaviors based on the advancing

primitive action produce the straight-line trajectories that are parallel to the walls. Path-following behaviors

based on the turning primitive action leave the robot in the same place while changing the robot's heading.

The homing behaviors based on the advancing action produce most of the rest of the trajectories shown in

the picture. A few of the trajectories are produced by a random wandering behavior that is used whenever

none of the other behaviors are applicable. (The learning agent selects its behaviors stochastically and

occasionally selects a random wandering behavior even when other behaviors are applicable.)

The learning agent successfully learns the open-loop and closed-loop path-following behaviors.

Figure 24 shows a trace of a random exploration behavior demonstrating the learned behaviors.

This experiment demonstrates that both the set of features and the model of the sensorimotor

apparatus that were learned in the �rst environment are applicable in the second environment.

6.3 Using the behaviors in an empty room

For this experiment, the robot was moved from the T-shaped environment to an empty rectangular

room (of dimensions 6 meters by 4 meters). The learning agent's model of the robot's sensorimotor

apparatus and its set of learned behaviors were left intact. Figure 25 shows a random exploration

behavior demonstrating that the learned behaviors do not apply only to the environment in which

they were learned.

6.4 A long and narrow room

This experiment demonstrates an instance in which the image-feature generator does not produce

a ring-shaped representation of the structure of the ring of distance sensors. The environment used

in this experiment is a long, narrow, rectangular room. The room is six meters long and one half

meter wide. This environment was designed to confuse the image-feature generator. Since the

room is so narrow, the values of distance sensors on opposite sides of the ring are often similar: If

40

Figure 25: Using the learned homing and path-following behaviors in an empty room.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

1 2 3 4 5 6 7 8 9 10

Metric scaling eigenvalues

0
1
2

34
5

6

7
8910

11
12

13

14
1516

17
18

19

2122
23

0
1

2
3

4
5

6

7

89
10

11
12
13

14
15

16
17

18 19

21
22
23

Figure 26: The outputs of the metric-scaling and relaxation algorithms for the narrow-room experiment.

a sensor detects the distance to one of the long walls of the room, then the sensor opposite to it

detects the distance to the wall on the opposite side of the room. Both sensors produce a small

value (less than 0.5). On the other hand, if a sensor returns a large value, then there is a good

chance that the sensor opposite to it will also return a large value.

If opposite sensors return similar values, on average, then the image-feature generator will place

them close together in the image feature. It is unlikely, in this case, that the image feature will

capture the ring structure of the array of distance sensors.

6.4.1 Modeling the sensory apparatus

The result of the group-feature generator is the same as before: The distance sensors are all grouped

together. The outputs of the metric scaling and relaxation algorithm are shown in Figure 26.

According to the metric-scaling scree diagram on the left, the structure of the array of sensors is

best captured by a four-dimensional representation { there is no arrangement of points in fewer

than four dimensions for which the distance between any two points approximates the distance

between corresponding sensors as measured by distance metric d1. The middle �gure below shows

the projection onto two dimensions of the set of points generated by the metric-scaling algorithm.

41

1.36 0.83 0.30 0.27

u0= (-0.723 0.680) u1=(-0.532 -0.837) u2= (-0.877 -0.481)

Figure 27: The �rst four eigenvectors and the primitive actions for the narrow-room experiment.

The �gure on the right shows the results of the relaxation algorithm.22 Notice that sensors that

are adjacent in the ring of sensors are close together in the image. 23

6.4.2 Modeling the motor apparatus

The �rst four principal eigenvectors for the space of average motion vector �elds are shown in

Figure 27. The method actually identi�es the turning motor control vector correctly. The second

primitive action is primarily an advancing action but has a signi�cant turning component to it.

The method erroneously identi�es three primitive actions. The second and third primitive actions

are both poor approximations of a motor control vector that produces a pure advancing motion.

6.5 A circular room

This experiment demonstrates an instance in which the learning agent fails to discover any local

state variables. The robot's environment is a circular room three meters in diameter. The results

of the learning of the sensorimotor apparatus are summarized by the set of principal eigenvectors

and primitive actions shown in Figure 28. The learning agent identi�es two primitive actions

corresponding to turning and advancing, but fails to discover any local state variables. The following

analysis explains why this happened.

For a feature to be a local state variable, it must be both action-dependent and predictable. For

a feature to be predictable, the e�ects of the primitive actions on the feature must be known for

all possible contexts. In the rectangular and T-shaped environments, the local-minimum features

(which give distances from the robot to nearby objects or walls) were identi�ed as local state

variables. Here is a summary of what was learned by the learning agent (and represented in the

static action model) for the robot in the rectangular environment:

22The metric-scaling algorithm, the relaxation algorithm, and the de�nition of the image and motion features can

all handle images of arbitrary dimension. However, in the current implementation, we have constrained the image

feature to be two-dimensional. A goal for future research is to remove this arti�cial constraint and test the methods

on sensory arrays that are genuinely three-dimensional.
23Though the results are not shown here, we have also run the relaxation algorithm for this distance metric in three

dimensions. In that case the resulting pattern of sensors resembles the pattern of stitching on a baseball.

42

1.11 0.71 0.24 0.21

u0= (-0.746 0.659 u1= (0.765 0.632)

Figure 28: The �rst four eigenvectors and the primitive actions for the circular-room experiment.

� The �rst primitive action (turning) does not a�ect the local-minimum features. The e�ects

of the primitive action are thus predictable for all contexts.

� The e�ect of the second primitive action (advancing) is context dependent:

{ When the robot is facing toward a wall, the primitive action reliably decreases the value

of the local-minimum feature.

{ When the robot is facing away from a wall, the primitive action reliably increases the

value of the local-minimum feature.

{ When the robot is facing parallel to the wall (in either direction), the primitive action

leaves the value of the feature constant.

For this experiment (with the circular environment), the learning agent's learned static action

model is identical to that described above, but with the following exception: When the robot is

facing parallel to the wall, the e�ect of the second primitive action on the local-minimum feature

is unpredictable. Here is an explanation for the di�erence. When facing parallel to a straight wall,

a robot can move for many steps without changing the distance to the wall signi�cantly. This is

why it is possible for the linear regression tester that analyzes the e�ect of the primitive action to

conclude that its e�ect is, to a good approximation, zero in this context. In the circular world, on

the other hand, the robot can only advance a few steps without changing the distance to the wall.

The only conclusion that the learning agent is able to draw from the linear regression tester is that

the e�ect of advancing is unpredictable in this context.

6.6 Failure modes

Sections 6.4 and 6.5 gave two examples of cases in which the learning agent failed to learn a set

of homing and path-following behaviors. This section provides a more exhaustive list of ways in

which the learning methods described in this paper can fail. The next section discusses how the

learning methods may be improved.

Modeling the sensory apparatus. If there is no structured array of sensors, then the group-

feature generator will produce only small or singleton groups and the image-feature generator will

43

not apply. If there is an array of sensors but the sensors do not adequately sample a continuous

property of the environment, then the group and image features will fail to produce a representation

of the structure of those sensors. For example, if there are only four distance sensors, then the

values of adjacent sensors may not be similar enough for the group-feature generator to group

them together. If the environment is large and the learning agent does not adequately explore the

environment before applying the group- and image-feature generators, then the measured inter-

sensor distance metrics may not accurately re
ect the structure of the sensory apparatus.

Representing motion. The motion-feature generator requires an image feature (either learned,

as is the case here, or given a priori by the robot's designer). If there is no image feature, then

the motion-feature generator will not apply. If the robot's motion is so fast that successive image-

feature values are unrelated, then the motion feature will fail to produce meaningful results.

Modeling the motor apparatus. The matching process that identi�es primitive actions (i.e.,

motor control vectors whose amvf 's match the principal eigenvectors) can fail to correctly identify

a primitive action if the amvf 's have not converged (i.e., if the learning agent has not wandered

long enough and the values of the amvf 's are still
uctuating with time). This is one possible

explanation for the failure to identify just two primitive actions in Section 6.4.2.

Generating candidate local state variables. The discovery of local state variables may fail if

the language of features and feature generators is not general enough. In such a case, none of the

generated scalar features would satisfy the de�nition of local state variable (as in the experiment

described in Section 6.5). On the other hand, if the language of features and generators is too

general, the learning agent will quickly become bogged down in a combinatorial explosion of mostly

useless features. In this paper, we identi�ed a small set of feature generators that are appropriate

for a robot with a rich sensorimotor apparatus and then demonstrated that they are su�cient for

a particular set of environments and sensorimotor apparatuses.

Learning action models. The learning agent will fail to correctly learn the static and dynamic

action models if it does not explore long enough for the linear-regression calculations to converge.

In the case that the learning agent must learn the relationships between a motor control vector and

a feature for a large number of contexts, the method requires that the learning agent experiment

with the motor control vector in each of those contexts.

Learning path-following behaviors. The learning of path-following behaviors can depend on

the set of learned primitive actions. If none of the primitive actions can be used to maintain any

of the local state variables constant, then no path-following behaviors will be learned.

In the experiments described in this paper, each learning method builds on the results of the

preceding methods, which means that one source of failure for a method is the failure of a preceding

method. This observation, if left unquali�ed, sells the learning methods short. First, the methods

are interesting in their own right (for example, the modeling of the motor apparatus could be

applied to a sensory system whose structure was given by the robot's designer rather than being

44

learned). Second, the sequential nature of the learning is partially an artifact of our particular

learning problem. For example, the discovery of local state variables does not, in general, depend

on the success of the image-feature generator but is instead the result of an independent process of

generate and test.

6.7 Future work

Section 6.6 identi�ed a number of ways in which the learning methods can fail. This section provides

suggestions for improvements to the learning methods.

Improved feature testers. One way that several of the learning methods can fail is by jumping

to a conclusion prematurely. For example, if the group-feature generator uses a distance metric

before the distance metric has converged, then the output of the generator may be incorrect. If

primitive actions are identi�ed before the amvf 's have converged, then the model of the motor

apparatus may be incorrect.

In these examples, the distance metrics and the amvf 's are examples of feature testers | features

that are used to characterize other features. A solution to the problem of drawing premature

conclusions is to have each feature tester tell when its output is meaningful. It can do this by

providing a measure of con�dence in addition to its output value. For example, the con�dence level

for a tester might be close to 1 if the tester's output is stable (changing slowly) and close to 0 if

the tester's output is still
uctuating.

For a linear regression tester, the con�dence level should be a function of the set of inputs it

has received. Consider, for example, how the static action model uses linear regression testers. It

uses a separate linear regression tester for each hfeature, primitive action, contexti triple. If the

robot is never in a given context, then the con�dence level for any linear regression tester based on

that context should be zero. The con�dence level for a linear regression tester might be de�ned in

terms of the 90% con�dence interval24 for the correlation between the input variables. The smaller

the con�dence interval, the greater the tester's con�dence level. Associating con�dence levels with

features could improve all of the learning steps listed in the previous section by reducing the chance

of producing inaccurate or incomplete models.

An improved static action model. The learning agent uses the static action model to de�ne

a set of open-loop path-following behaviors | behaviors that move the robot while maintaining a

local state variable constant. In the current implementation, open-loop path-following behaviors are

based on primitive actions. If a primitive action maintains a local state variable constant, according

to the static action model, then it can be used as the \base action" for a path-following behavior.

Using only primitive actions as base actions is a limitation of the current implementation. The

method for learning path-following behaviors would be improved if the static action model could

predict the e�ects of arbitrary motor control vectors, not just the primitive actions. With a more

comprehensive static action model, more path-following behaviors could be de�ned. For example,

24See, for example, [15, p. 415].

45

in the circular room, a path-following behavior could be based on a motor control vector with a

large advancing component and a small turning component.

One approach to improving the static action model would be to discretize the space of all motor

control vectors into a set of representative motor control vectors and then to learn models of all

of these instead of just the primitive actions. Another approach would be to use a neural network

[12] to learn to predict the context-dependent e�ects of arbitrary actions. The network could then

serve as the static action model and could be used to �nd base actions for path-following behaviors.

Reinforcement learning. It may be possible to use reinforcement learning [3, 23, 36, 42, 45] to

learn homing and path-following behaviors without the need for the primitive actions or explicit

action models. An advantage of such an approach is that it does not presume that a particular

model of the sensorimotor apparatus has been learned. A disadvantage is that it is di�cult to

train more than one behavior at a time [44] whereas it is possible to learn action models for a large

number of features simultaneously.

Learning composite primitive actions. Consider a robot that is capable of rotating and

advancing and that has a ring of distance sensors that is always oriented in the same direction.

The learning methods of Section 2 will succeed in identifying the structure of the ring of sensors.

The �rst three steps of Section 3 will succeed in identifying two basic motions: one for translating

in one direction, and one for translating in a perpendicular direction. The fourth step of Section 3,

as currently implemented, will fail to identify two corresponding primitive actions since the robot

is not capable of directly translating in two directions.

This suggests a topic for future research: to extend the learning of primitive actions to allow

for composite actions (action sequences). In the example of the robot with the �xed sensor ring, a

primitive action could be composed of a turn to a particular direction followed by an advance. An

alternate solution is that of the preceding section: to learn homing and path-following behaviors

directly using reinforcement learning without �rst learning primitive actions. This example illus-

trates that it is more di�cult to learn a model of a sensorimotor apparatus for which an important

action has no immediate e�ect on the sensors.

7 From continuous world to �nite-state world

The learning agent has made the transition from raw senses and motor control vectors to local

state variables and high-level behaviors (which comprise the control level of the spatial semantic

hierarchy). The goal of the next step is to abstract from the continuous sensorimotor apparatus

to a discrete sensorimotor apparatus by de�ning �nite sets of views and actions . The source of

information for this step is the set of learned behaviors (including the knowledge of when each is

applicable).

For any given state of the robot, there is a �nite set of homing and path-following behaviors.

These behaviors are the actions of the discrete sensorimotor apparatus. Executing one of the

actions involves running the corresponding behavior until it terminates. The set of states in which

actions terminate is also �nite. These states are named via a mapping from sense vectors to symbols

46

v1v2

v3

v4 v5 v6

v7

v8

v9

v10

v11
v12

a b

Figure 29: A demonstration of the discrete abstract interface. We used the abstract interface of the

discrete sensorimotor apparatus to select appropriate behaviors to drive it around the room. At each step,

the interface provides the view name (e.g., v1) that identi�es the current state, and a �nite set of applicable

homing and path-following behaviors. The dotted arrows represent behaviors based on left turn motor

control vectors (u0 > 0). The solid arrows represent behaviors based on forward advance motor control

vectors (u1 > 0). During this exploration, the robot identi�es the 12 unique views shown in the �gure on

the right.

called views . In our experiments, this mapping is implemented using a matching predicate: two

sense vectors are judged to be similar if their Euclidean distance is less than a small constant. If

the current sense vector is new then a new view is created and associated with it. If the current

sense vector matches one previously seen, it is associated with the same view as the previous sense

vector.

This interface abstracts from continuous time to discrete time. While a path-following behavior

is executing, the interface is unde�ned. When the behavior terminates, the interface identi�es the

current view and lists the current set of applicable behaviors. Figure 29 demonstrates this interface.

Initially (v1), no wall is within sensor range and the only available action is the wandering behavior.

When the wandering behavior terminates (v2), a homing behavior is applicable. Selecting this

behavior leads to view v3 where two path-following behaviors based on u0 (turning) are applicable.

Selecting the �rst leads to view v4. Selecting it again leads to view v5. At this point, two 1-

degree-of-freedom path-following behaviors based on u1 (advancing) are applicable. Choosing the

�rst leads to v6. The �gure shows the behavior of the robot during a user-guided exploration that

leads it to v12. The rest of the exploration around the room (not shown) eventually returns the

robot to the southeast corner. Using its matching predicate, the learning agent recognizes that it

has returned to view v6. The robot's experience is represented as a collection of (Vi; Aj; Vk) triples,

called schemas . This knowledge is the basis for the causal level of the spatial semantic hierarchy.

8 Learning the topology of the environment

In Section 1.1, we described the spatial semantic hierarchy, which is comprised of �ve levels: sen-

sorimotor, control, causal, topological, and metrical. We have demonstrated a learning agent that

has learned the �rst three levels: The sensorimotor level was learned in Sections 2 and 3. The

47

control level was learned in Sections 4 and 5. The causal level was learned in Section 7. We now

describe how the result of the agent's learning could be used to learn the remaining levels of the

spatial semantic hierarchy.

The robot's path-following behaviors constrain its motion to a one-dimensional subspace of

the robot's complete state space. This 1-D skeleton is the basis for an abstraction of the robot's

environment as a graph (a set of nodes and a set of edges connecting the nodes together). The edges

correspond to paths | trajectories in the robot's state space produced by path-following behaviors.

The nodes correspond to states where paths terminate, that is, states where a new path-following

behavior becomes applicable and the agent stops to choose one of the currently applicable paths.

The agent's goal is to construct this graph.

In the case where views uniquely identify states, the problem is straightforward. The agent

keeps track, for each state it has seen, of all the actions applicable at that state. Each time it

takes an action, Aj , that takes it from view Vi to Vk, it adds the edge (Vi; Aj; Vk) to the graph. It

continues to explore (intelligently or randomly) until there are no state-action pairs that it has not

explored.

In the case that views do not uniquely identify states, a more sophisticated exploration strategy

is required. Such strategies are generally based on the following idea: If the current view does not

uniquely identify the current state, the agent supplements the current sense vector with the sense

vectors of nearby states. With enough information about the surrounding area, the current state

can be uniquely identi�ed.

Finally, metrical information can be added to the topological representation by recording the

time taken to traverse each path. With this information, navigation including shortest-path plan-

ning is possible.

To summarize, the learning agent has made a critical change of representation by abstracting

a continuous sensorimotor apparatus to a discrete sensorimotor apparatus with a �nite set of

sense values and actions. Understanding a continuous world is very di�cult. Our learning agent

demonstrates a way to reduce the problem of understanding a continuous world to the problem of

understanding a discrete world, a problem that has been extensively studied (see Section 9.1).

9 Related Work

The work mentioned in this section deals with the general problem of learning a model of an

environment. A complete model of an environment is a description that is su�cient for predicting

the input/output behavior of the environment, i.e., for predicting the sensory input that will be

received from the environment in response to any sequence of actions. In some cases, learning a

complete model is impractical, in which case a partial model may be learned.

Methods for learning a model of an environment can be divided into two types: those that deal

with �nite-state worlds and those that deal with continuous worlds. Examples of the �rst type are

given in Section 9.1. Examples of the second type are given in Section 9.2. Our contribution has

been to show how a learning agent can abstract a robot's continuous world to a �nite-state world

to which �nite-state learning methods may be applied.

48

9.1 Inferring the structure of �nite-state worlds

The task of inferring the structure of a �nite-state environment is the task of �nding a �nite-state

automaton that accurately captures the input-output behavior of the environment. In the case that

the learning agent is passively given examples of the environment's input/output behavior, it has

been shown that �nding the smallest automaton consistent with the behavior is NP-complete [1, 9].

With active learning, in which the agent actively chooses its actions, the problem becomes tractable.

Kuipers [17] describes the TOUR model, a method for understanding discrete spatial worlds based

on a theory of cognitive maps. Dudek, et al. [8] generalize Kuipers and Byun's [18, 19] strategy for

topological map-learning and provide algorithms for discriminating perceptually identical states.

Angluin [2] gives a polynomial-time algorithm using active experimentation and passively received

counterexamples. Rivest & Schapire [38] improve on Angluin's algorithm and give a version that

does not require the reset operation (returning to the start state after each experiment).

Dean et al. [5] have extended Rivest and Schapire's theory to handle stochastic FSA's. They

assume that actions are deterministic but that the output function mapping states to senses is

probabilistic. The key to their method is \going in circles" until the uncertainty washes out.

Dean, Basye, and Kaelbling [6] give a good review of learning techniques for a variety of stochastic

automata. Drescher's schema mechanism [7] employs a statistical learning method called marginal

attribution. Schemas emphasize sensory e�ects of actions rather than state transitions and are

ideal for representing partial knowledge in stochastic worlds.

Wei-Min Shen's LIVE system [40] learns the structure of a �nite-state environment from ex-

perience (and experimentation) within it. His complementary discrimination learning algorithm

exploits observed counterexamples to a hypothesized concept de�nition to re�ne the boundary

between positive and negative examples of the concept. When the environment is only partially

observable, LIVE uses locally distinguishing experiments to test the hypothesized properties of

unobserved state variables.

A primary focus of the work of Shen and other constructive inductionists [10, 28, 39, 41] is the

learning of new features. At this level of description, our approach and Shen's are similar. However,

in terms of the actual methods used and the domains of applicability, the two approaches are very

di�erent and are in fact complementary.

We focus on feature-learning methods applicable to robots with continuous-valued sensors and

control signals situated in a 2-dimensional approximation of a 3-dimensional world. We provide a

language of features and generators especially suitable for robots with structured arrays of sensors.

Our emphasis is on learning of sensory features and continuous control laws. Shen, on the other

hand, focuses on learning rules (consisting of conditions, actions, and predictions) that are expressed

symbolically. The conditions and predictions are expressed in terms of \percepts," which are high-

level, symbolic descriptions (e.g., ON(disk, peg)). The actions may have continuous parameters

(e.g., rotate(�)), but each action is atomic rather than continuous.

The two approaches might be combined in the following way: a learning agent �rst uses our

methods to learn to navigate using its continuous sensorimotor apparatus, viewing the world in

terms of discrete states and actions. It then uses Shen's methods to learn relationships expressed in

terms of these states and actions and to acquire nonspatial knowledge such as the e�ects of pushing

objects,
ipping switches, or opening doors.

49

A more speci�c example of a potential combination of the two approaches is the use of Shen's

complementary discrimination learning in learning context-dependent action models (see Section 4.2.3).

We currently use a brute-force method for determining whether a control signal u has a predictable

e�ect on a given feature x. The method involves testing a large set of features to see if any can be

used to de�ne a partition of the robot's state space as a set of contexts such that in each context

there is a simple, linear relationship between u and x. We expect that methods such as Shen's

complementary discrimination learning could be used to generate such partitions more e�ciently

and more intelligently.

9.2 Inferring the structure of continuous worlds

Applying �nite-state automaton learning methods to the real world or a continuous simulation of

it requires an abstraction from a continuous environment to a discrete representation. Kuipers

and Byun [18, 19] demonstrate an engineered solution to the continuous-to-discrete abstraction

problem for the NX robot. NX's distinctive places correspond to discrete states and its local control

strategies correspond to state transitions. These constructs have to be manually redesigned in order

to apply to a robot with a di�erent sensorimotor apparatus. Mataric [26, 27] and Kortenkamp &

Weymouth [14] have engineered similar solutions on physical robots.

Lin and Hanson [24] use a physical robot, called Ratbot, with 16 sonar sensors and 16 infrared

sensors to demonstrate learning of a topological map of locally distinctive places. Their work is

inspired by the work of Kuipers and Byun, but they use reinforcement learning25 to train the

local control strategies, rather than engineering them by hand. The target behaviors (e.g., corridor

following) are speci�ed by a human teacher. For example, when learning the corridor-following

behavior, the robot is rewarded when it moves along the corridor without running into obstacles.

Our approach [30, 31, 32, 34] is complementary to that of Lin and Hanson. They specify the

desirable behaviors by de�ning appropriate reward signals and then letting the robot learn on its

own how to gain the rewards. Our learning agent, on the other hand, speci�es its own target

behaviors, eliminating the need for the human teacher. It does this by �rst learning a set of local

state variables and then using them to de�ne a set of error signals. Homing and path-following

behaviors are then speci�ed as behaviors that minimize the error signals or move the robot while

maintaining them near zero. All of this is accomplished in a domain-independent manner | the

robot does not need to be given any knowledge about corridors or corridor-following behaviors.

Once the error signals are de�ned, there are a number of ways in which the homing and path-

following behaviors might be learned. Reinforcement learning is one approach.26 The approach used

in this paper is to learn static and dynamic action models that characterize the e�ects of actions

on the local state variables and then to use these models to directly de�ne the homing and path-

following behaviors. This approach does require that the learning agent be given some knowledge

of control theory, but the required knowledge consists of domain-independent templates. It would

be interesting to combine our approach with that used by Lin & Hanson's Ratbot to produce a

learning method that uses neither domain-dependent knowledge nor a knowledge of control theory.

25The reinforcement-learning algorithm is a neural-network version of Q learning [43, 23].
26In earlier work we explored the use of reinforcement learning to learn homing behaviors [33].

50

The error signals would be de�ned as for our learning agent and a neural-net version of Q learning

would be used to learn the local control strategies based on those error signals. The control laws

would be implemented as mappings from sensory inputs to motor control signals. If the sensory

inputs include the error signals, their derivatives, and their integrals, then the set of control laws

that can be de�ned in this way includes the PI and PD control laws used by our implemented

learning agent.

An important di�erence between our approach and that of Lin and Hanson is that our approach

handles context dependence at the feature level rather than at the behavior level: Our learning

agent learns, given the current context, the e�ects of each primitive action on each feature. Lin

and Hanson's learning agent learns, given the current context, which action to take in order to

produce a particular behavior. There are two advantages to learning at the feature level. First,

what is learned about one feature may be used to de�ne multiple behaviors, e.g., a homing behavior

(in which a primitive action is used to increase or decrease the value of the feature) and a path-

following behavior (in which a primitive action is used to move while maintaining the feature

constant). Second, the learning agent can learn the e�ects of motor control signals on multiple

features simultaneously, whereas it is only possible for Lin and Hanson's learning agent to learn

one behavior at a time.

10 Discussion

10.1 What is the value of an existence proof?

As discussed in Section 1.3, the results presented here are an existence proof, demonstrating one

path from the beginning to the end of a complex learning problem. Once a single path has been

demonstrated, however narrow, future research can broaden the way and �nd alternate routes.

We have made some progress toward assessing the width and solidity of the path, �rst by

applying the same learning methods to a signi�cantly di�erent robot (Section 2.5), and second by

applying our methods to a variety of di�erent environments systematically designed to demonstrate

both success and failure of the methods (Section 6). This is a step toward determining how much and

what type of sensory input a robot must have to learn a meaningful cognitive map of a continuous

environment, and how observable and predictable the environment must be for the robot to be able

to comprehend it.

The existence proof demonstrates that a hard and interesting learning problem may have a

heterogeneous solution, combining the strengths of several focused learning algorithms. While this

solution does rely on a number of assumptions about the sensorimotor system and the environment

(Section 6.6), we believe that several of those assumptions can be eliminated by future research

(Section 6.7). An irreducible minimum set of assumptions would be a signi�cant scienti�c result.

10.2 Why learn what can be programmed directly?

This paper has shown, among other things, how a learning agent can learn a model of its sensori-

motor apparatus. There are several reasons why it is worthwhile to take the trouble to learn what

could be directly programmed by a robot's designer.

51

Sensor variation and failure. Direct programming does not take sensor failure into considera-

tion. For example, if one of a set of distance sensors fails, the learning methods will accommodate

the failure with no additional human intervention. These methods will also accommodate random

variation in the position or direction of distance sensors. Such variation is inevitable if robots are

mass produced.

Generality. Ideally, one learning algorithm applies to many di�erent types of sensorimotor ap-

paratuses and thus can replace the process of designing a particular solution for each sensorimotor

apparatus.

A deeper understanding of the problem domain. The design of the learning agent required

the identi�cation of sources of information that could be exploited by the learning agent and the

development of general-purpose learning algorithms to exploit that information. These sources of

information and learning algorithms comprise a deeper understanding of the problem domain.27

10.3 What about innate goals?

We have characterized a robot in terms of its set of sensors and e�ectors, without concern for its

innate goals (e.g., survival, curiosity, pain avoidance). The learning methods we have developed

function by observing the sensory e�ects of actions, either during a random walk through the

environment (as described in this paper) or during goal-directed behavior.

Reactive behavior in pursuit of innate goals can support the learning methods described here.

With a goal such as pain avoidance, for example, a learning agent might quickly learn a re
exive

behavior for obstacle avoidance. Such a behavior would help keep the learning agent out of danger as

it applies the higher-level learning methods. On the other hand, by operating in the background of

goal-directed behavior, the learning agent could receive a biased set of experiences and observations

of the environment.

Conversely, the learned methods can serve as a foundation for goal-directed learning. When

the agent has learned higher-level sensorimotor primitives, it can search for behaviors in an action

space of larger granularity, describing the environment at a higher level (see Figure 20), and making

it easier to achieve innate goals such as survival and curiosity.

10.4 How general are the learning methods?

This paper has identi�ed and demonstrated a number of generic methods for modeling and using an

uninterpreted sensorimotor apparatus. This section lists several examples where a generic object

or method is used that subsumes a more speci�c object or method but is more general because it

makes fewer assumptions.

The learned features are based on a set of generic mathematical constructs (e.g., scalars, vectors,

matrices, scalar �elds, and vector �elds) rather than on a human-generated list of salient properties

27Of course, designing a learning agent does not guarantee a deeper understanding of the problem domain. An

opaque method such as neural net or genetic algorithm learning could conceivably learn a model of its sensorimotor

apparatus without teaching us anything about perception, behavior, or map building.

52

of a robot's environment. The method for identifying the structure of a sensory apparatus uses

generic distance metrics that make no assumptions about what the sensors are sensing (for example,

the method does not assume that the sensors measure distances to objects). The method for

characterizing the e�ects of motor control vectors is based on spatial and temporal derivatives, not

motion of objects (which would require the identi�cation and tracking of objects). The local state

variables learned by the learning agent in the example are de�ned in terms of the purely generic

concept of local minimum, rather than the concept of distance-to-wall, which is only meaningful to

the robot's designer. The learned control laws are based on error signals derived from the learned

local state variables { the learning agent of the example needed no concept of wall when de�ning

its path-following behaviors. The path-following behaviors are implemented using generic control

laws. The parameters used in the control laws are found by analyzing relationships between control

signals and local state variables without any understanding of the meanings of the control signals or

local state variables. The views of the learning agent's discrete abstract interface are the terminal

states of path-following behaviors, as opposed to places meaningful only to the robot's designer.

Related to the concept of generality is the concept of extensibility. The current implementation

may be extended by adding new types of features and feature generators. For example, new distance

metrics could be used with the group-feature generator to capture new ways of distinguishing

di�erent types of sensors; the method for generating and recognizing local state variables could be

made more general by adding new feature generators.

10.5 Changes of representation

Each abstract interface that the agent learns provides a new representation to reason with.

� At the sensorimotor level, the group and image-feature generators analyze inter-sensor cor-

relations to produce the image feature, which has substantially more structure than the raw

sense vector.

The learned set of primitive actions provide a new representation of the robot's motor capa-

bilities that is grounded in sensory e�ects.

� At the control level, behaviors and features are learned that are no longer purely egocentric.

Whereas the primitive actions are grounded in sensory e�ects averaged over time, the homing

and path-following behaviors are grounded in the structure of the external environment as

re
ected by the local state variables.

� At the causal level, the continuous state space is reduced to a �nite set of states and trajec-

tories, which can then be represented as the nodes and edges of a graph in the topological

map.

11 Summary

This paper has presented a sequence of learning methods su�cient for learning a cognitive map of a

robot's continuous world in the absence of domain-dependent knowledge of the robot's sensorimotor

53

Sensorimotor Level

Control Level

Causal Level

a0

a1

Raw senses and actions Sensory Structure

+

−

+

−
u1 u0

Motion detection Primitive actions

< Vi, Aj, Vk >

Discrete Abstract Interface

Homing behaviors

y=y*

Open−loop
path−following
behaviors

Closed−loop
path−following
behaviors

Static
Action
Model

Local
State
Variables Dynamic

Action
Model

Figure 30: A graphical summary of the learning methods used in this paper, showing the objects learned

at each of the �rst three levels of the spatial semantic hierarchy.

apparatus or of the structure of its world. The reader may object that the sequence is tenuous:

if any method failed, then the subsequent methods would not even apply. While this is true, we

maintain that each of the learning methods is interesting in its own right and is applicable beyond

the particular learning problem investigated here. Each learning method identi�es a source of

information available through experimentation with an uninterpreted sensorimotor apparatus and

each provides a method for exploiting that information to give the learning agent a new way of

understanding the robot's sensory input or a new way of interacting with the robot's environment.

The learning methods are summarized below and in Figure 30. Section 2 showed how to use

the group and image-feature generators to learn a structural model of a sensory apparatus. They

exploit the fact that, in a well engineered array of sensors sampling an almost-everywhere continuous

property of the environment, the layout of the sensors may be reconstructed based on inter-sensor

similarities. Section 3 showed how to use this structural knowledge to �rst de�ne motion detectors

54

and then use them to characterize the capabilities of a motor apparatus using a set of primitive

actions, one for each of the robot's degrees of freedom. Section 4 showed how to recognize local

state variables | scalar features whose derivatives can be approximated by context-dependent

linear functions of the motor control signals. The e�ects of the primitive actions on the local

state variables are captured by the static action model. Section 5 showed how to use the static

action model to de�ne homing and open-loop path-following behaviors, how to learn a dynamic

action model to predict the e�ects of the primitive actions on the local state variables while open-

loop path-following behaviors execute, and how to use the dynamic action model to de�ne robust,

closed-loop path-following behaviors. Finally, Section 7 showed how to use the homing and path-

following behaviors to de�ne a discrete abstract interface that allows the learning agent to abstract

its continuous world to a �nite-state world. By using the �nite-state automaton as the target

abstraction, the learning agent inherits a powerful set of methods for inferring the structure of its

world.

In the biological world, the newly hatched organism embodies a great deal more knowledge

than our learning agent. However, we hope that an exploration like that reported here will shed

light on the structure and learnability of fundamental knowledge about an agent's relationship with

its world. If so, it could provide insights into the evolution, development, and learning of spatial

knowledge in biological organisms.

The potential for application of these methods to mechanical robots is much more direct. New

robots, with new sensors and e�ectors, are being designed and built all the time. Robots will one

day be sent into environments that humans have never directly experienced (e.g., the deep ocean

oor or the surface of another planet). For a newly-created robot to be able to orient itself to

its sensorimotor system and its environment through autonomous experimentation would be of

substantial value. We believe that the methods presented here are a step in that direction.

A Computational Complexity

This appendix summarizes the complexities of the various learning methods described in this paper.

The overall complexity of the sequence of learning methods is potentially exponential in the size

of the raw sense vector and the depth of the tree of generated features. In our experience, this

level of complexity can be drastically reduced by using an appropriate set of feature generators as

is explained in Section A.3.

A.1 Modeling the sensory apparatus

Computing the distance metric d1 (used by both the group-feature generator and the image-feature

generator) is of complexity O(n2T) where n is the number of elements in the raw sense vector and

T is the number of time steps taken before the group-feature generator is applied. Computing

the distance metric d2 (used by the group-feature generator) requires an O(1) computation for

each element of the raw sense vector at each time step (to update the frequency distributions)

and an O(n2) computation when the group-feature generator is applied for a total complexity of

O(nT + n2).

55

Identifying similar subgroups is an O(n2) computation. Using transitive closure to identify

closed subgroups is an O(n3) computation. The metric-scaling is performed with an iterative

algorithm for which each iteration involves an O(n3) computation. The relaxation algorithm is also

iterative with each iteration being O(n2). Since the dependence of the number of iterations on n is

unknown, these are lower limits on the actual complexities. In our experiments, T is much greater

than n so the overall complexity of the sensory-modeling step can be approximated by O(n2T).28

A.2 Modeling the motor apparatus

The calculation of the motion feature requires an O(n2) computation at each time step. The

calculation of the amvf 's is thus of complexity O(n2T). The principal component analysis algorithm

is of complexity O(n3). Again, since T is much greater than n, the overall complexity can be

approximated by O(n2T).

A.3 Identifying local state variables

The �rst step in identifying local state variables is to generate new features. If every subset of the

current set of de�ned features can be used to produce a new set of features, then the complexity

of generating and testing features will be at least O(2n) where n is the number of elements of the

raw sense vector. In our experience, this potential combinatorial explosion can be avoided by using

an appropriate set of feature generators (e.g., generators that collapse many input features into

a small set of output features, or that only apply to certain types of features). For example, the

group generator does not create arbitrary subsets of the raw sense vector { it creates at most n

non-overlapping group features.

The second step in identifying local state variables is to compute the static action model. The

complexity of the computation of the action-dependent model is O(sT) where s is the number of

singleton features that have been learned and T is the number of time steps over which the model

is learned. The complexity of the computation of the action-independent model is O(sTa) where

a is the number of primitive actions, The complexity of the computation of the context-dependent

model is O(sTac) where c is the average number of contexts associated with each feature.

A.4 Learning control laws

The number of open-loop path-following behaviors is O(vac) where v is the number of learned

local state variables, a is the number of primitive actions, and c is the average number of contexts

associated with each local state variable. The complexity of the computation of the dynamic action

model is O(vacT (a� 1)). The number of generated closed-loop path-following behaviors (worst-

case) is O(2va2c). In practice, the number of path-following behaviors can be made much less than

this upper bound. For example, the terms 2v and 2c can be replaced by v3 and c3 by only de�ning

path-following behaviors whose error vectors are based on at most three local state variables.

In our experiments, the number of path-following behaviors is kept reasonable by the following

facts: (1) the number of learned local state variables is small and (2) the number of contexts in

28An open problem is to predict the value of T for each learning method that requires an exploration phase.

56

which a primitive action maintains a local state variable constant is small relative to the total

number of contexts. In our example, v is at most 3 and c is around 20.

B Acknowledgements

The authors would like to thank Rick Froom, Wan Yik Lee, Risto Miikkulainen, Ray Mooney, Lyn

Pierce, Mark Ring, Boaz Super, and two anonymous reviewers for their technical, editorial, and

moral support.

References

[1] Dana Angluin. On the complexity of minimum inference of regular sets. Information and

Control, 39:337{350, 1978.

[2] Dana Angluin. Learning regular sets from queries and counterexamples. Information and

Computation, 75:87{106, November 1987.

[3] David Chapman and Leslie Pack Kaelbling. Learning from delayed reinforcement in a complex

domain. Tech. Report TR-90-11, Teleos Research, Palo Alto, California, December 1990.

[4] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.

MIT Press/McGraw-Hill Book Company, Cambridge, MA, 1990.

[5] Thomas Dean, Dana Angluin, Kenneth Basye, Sean Engelson, Leslie Kaelbling, Evangelos

Kokkevis, and Oded Maron. Inferring �nite automata with stochastic output functions and

an application to map learning. In Proceedings, Tenth National Conference on Arti�cial In-

telligence, pages 208{214, San Jose, CA, July 1992. AAAI Press/MIT Press.

[6] Thomas Dean, Kenneth Basye, and Leslie Kaelbling. Uncertainty in graph-based map learning.

In Jonathan H. Connell and Sridhar Mahadevan, editors, Robot Learning, pages 171{192.

Kluwer Academic Publishers, Boston, 1993.

[7] Gary L. Drescher. Made-Up Minds: A Constructivist Approach to Arti�cial Intelligence. MIT

Press, Cambridge, MA, 1991.

[8] Gregory Dudek, Michael Jenkin, Evangelos Milios, and David Wilkes. Robotic exploration as

graph construction. IEEE Transactions on Robotics and Automation, 7(6):859{865, December

1991.

[9] E. Mark Gold. Complexity of automaton identi�cation from given data. Information and

Control, 37:302{320, 1978.

[10] Kazuo Hiraki. Abstraction of sensory-motor features. In Proceedings of the Sixteenth Annual

Conference of the Cognitive Science Society, Hillsdale, NJ, 1994. Lawrence Erlbaum Associates.

57

[11] B. K. P. Horn. Robot Vision. MIT Press, Cambridge, MA, 1986.

[12] Michael I. Jordan and David E. Rumelhart. Forward models: Supervised learning with a distal

teacher. Cognitive Science, 16:307{354, 1992.

[13] Teuvo Kohonen. Self-Organization and Associative Memory. Springer-Verlag, Berlin, second

edition, 1988.

[14] David Kortenkamp and Terry Weymouth. Topological mapping for mobile robots using a

combination of sonar and vision sensing. In Proceedings of the Twelfth National Conference

on Arti�cial Intelligence (AAAI-94), 1994.

[15] W. J. Krzanowski. Principles of Multivariate Analysis: A User's Perspective. Oxford Statis-

tical Science Series. Clarendon Press, Oxford, 1988.

[16] B. J. Kuipers. An ontological hierarchy for spatial knowledge. In Proc. 10th Int. Workshop on

Qualitative Reasoning About Physical Systems, Fallen Leaf Lake, California, USA, May 1996.

[17] Benjamin J. Kuipers. Modeling spatial knowledge. Cognitive Science, 2:129{153, 1978.

[18] Benjamin J. Kuipers and Yung-Tai Byun. A robust, qualitative method for robot spatial

learning. In Proceedings of the National Conference on Arti�cial Intelligence (AAAI-88),

pages 774{779, 1988.

[19] Benjamin J. Kuipers and Yung-Tai Byun. A robot exploration and mapping strategy based on

a semantic hierarchy of spatial representations. Journal of Robotics and Autonomous Systems,

8:47{63, 1991.

[20] Benjamin J. Kuipers and Tod S. Levitt. Navigation and mapping in large-scale space. AI

Magazine, 9(2):25{43, 1988.

[21] Benjamin C. Kuo. Automatic Control Systems. Prentice-Hall, Inc., Englewood Cli�s, N.J., 4

edition, 1982.

[22] Douglas B. Lenat. On automated scienti�c theory formation: A case study using the AM

program. In J. E. Hayes, D. Michie, and L. I. Mikulich, editors, Machine Intelligence 9, pages

251{286. Halsted Press, New York, 1977.

[23] Long-Ji Lin. Reinforcement Learning for Robots Using Neural Networks. PhD thesis, Carnegie

Mellon University, Pittsburgh, PA, 1993.

[24] Long-Ji Lin and Stephen Jose Hanson. On-line learning for indoor navigation: Preliminary

results with RatBot. In NIPS93 Robot Learning Workshop, 1993.

[25] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic Press, New York,

1979.

58

[26] Maja J. Mataric. Navigating with a rat brain: A neurobiologically-inspired model for robot

spatial representation. In J.-A. Meyer and S. W. Wilson, editors, From Animals to Animats:

Proceedings of The First International Conference on Simulation of Adaptive Behavior, pages

169{175, Cambridge, MA, 1991. MIT Press/Bradford Books.

[27] Maja J. Mataric. Integration of representation into goal-driven behavior-based robots. IEEE

Transactions on Robotics and Automation, 8(3):304{312, June 1992.

[28] Christopher J. Matheus. The need for constructive induction. In Lawrence A. Birnbaum and

Gregg C. Collins, editors,Machine Learning: Proceedings of the Eighth International Workshop

(ML91), pages 173{177, San Mateo, CA, June 1991. Morgan Kaufmann Publishers, Inc.

[29] Erkki Oja. A simpli�ed neuron model as a principal component analyzer. Journal of Mathe-

matical Biology, 15:267{273, 1982.

[30] David Pierce. Learning a set of primitive actions with an uninterpreted sensorimotor apparatus.

In Lawrence A. Birnbaum and Gregg C. Collins, editors, Machine Learning: Proceedings of the

Eighth International Workshop (ML91), pages 338{342, San Mateo, CA, June 1991. Morgan

Kaufmann Publishers, Inc.

[31] David Pierce. Learning turn and travel actions with an uninterpreted sensorimotor apparatus.

In Proceedings IEEE International Conference on Robotics and Automation, pages 246{251,

Los Alamitos, CA, April 1991. IEEE Computer Society Press.

[32] David Pierce. Map Learning with Uninterpreted Sensors and E�ectors. PhD thesis, University

of Texas at Austin, May 1995. (http: //ftp.cs.utexas.edu /pub /qsim /papers /Pierce-PhD-

95.ps.Z).

[33] David Pierce and Benjamin Kuipers. Learning hill-climbing functions as a strategy for gener-

ating behaviors in a mobile robot. In J.-A. Meyer and S. W. Wilson, editors, From Animals

to Animats: Proceedings of The First International Conference on Simulation of Adaptive Be-

havior, pages 327{336, Cambridge, MA, 1991. MIT Press/Bradford Books. Also University of

Texas at Austin, AI Laboratory TR AI91-137.

[34] David Pierce and Benjamin Kuipers. Learning to explore and build maps. In Proceedings of the

National Conference on Arti�cial Intelligence (AAAI-94), Cambridge, MA, 1994. AAAI/MIT

Press.

[35] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical

Recipes in C. Cambridge University Press, 1988.

[36] Mark Ring. Continual Learning in Reinforcement Environments. PhD thesis, University of

Texas at Austin, August 1994.

[37] H. J. Ritter, T. Martinez, and K. J. Schulten. Neural Computation and Self-Organizing Maps:

An Introduction. Addison-Wesley, Reading, Massachusetts, 1992.

59

[38] Ronald L. Rivest and Robert E. Schapire. Inference of �nite automata using homing sequences.

Information and Computation, 103(2):299{347, April 1993.

[39] Wei-Min Shen. Functional transformations in AI discovery systems. Arti�cial Intelligence,

41(3):257{272, 1990.

[40] Wei-Min Shen. Autonomous Learning from the Environment. W. H. Freeman and Company,

1994.

[41] Wei-Min Shen and Herbert A. Simon. Rule creation and rule learning through environmental

exploration. In Proceedings IJCAI-89, pages 675{680, 1989.

[42] R. S. Sutton. Integrated architectures for learning, planning, and reacting based on approxi-

mating dynamic programming. In B. W. Porter and R. J. Mooney, editors, Proceedings of the

Seventh International Conference on Machine Learning, pages 216{224. Morgan Kaufmann

Publishers, Inc., 1990.

[43] C.J.C.H. Watkins. Learning from Delayed Rewards. PhD thesis, King's College, Cambridge,

1989.

[44] Steven Whitehead, Jonas Karlsson, and Josh Tenenberg. Learning multiple goal behavior

via task decomposition and dynamic policy merging. In Jonathan H. Connell and Sridhar

Mahadevan, editors, Robot Learning, pages 45{78. Kluwer Academic Publishers, Boston, 1993.

[45] Ronald J. Williams. Reinforcement-learning connectionist systems. Technical Report NU-

CCS-87-3, College of Computer Science, Northeastern University, February 1987.

60

