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Abstract

We have implemented a wall following control
law which takes its input signal from a kalman
filter. The kalman filter comprises a wall model
as well as the control law dynamics. The
benefits of using this kalman filter approach
include: (i) the effect of sensor’s noise on the
control law is lessen, (ii) a compromise between
the control’s law operational conditions' and
the actual environment is achieved, (iii) reliable
methods can be implemented to detect when
the control law should no longer be executed.

We propose a system architecture that allows
to detect inconsistences between the environ-
ment and the kalman filter’s dynamic and mea-
surement models. We develop a strategy for a
smooth change to a new wall model (if possible),
whenever the current wall model is no longer
valid.

1 Introduction

Following a boundary (wall) when navigating an
environment is one of the most common tasks
for an autonomous robot. Different control
laws can be designed to robustly perform this

lthe ideal condition under which the control law works

task. However, the operational conditions under
which these control laws are supposed to work
are not necessarily met by the environment
or the robot’s sensorimotor aparatous. In
particular, sensor noise and unexpected changes
in the boundary can cause the control law to
produce wrong control signals. In this paper we
describe the implementation of a wall following
control law which takes its input signal from a
Kalman filter. The use of a Kalman filter allows
to explicitly deal with the robot’s sensorimotor
noise as well as to detect when the control law
should no longer be used.

In order to follow a wall we specify the dis-
tance the robot should keep from the wall (i.e.
the setpoint). At specific intervals of time, the
robot determines how much it has to turn ac-
cording to the following control law

w = Ke.e + Kyb

where w is the angle to turn, e is the current
error with respect to the given setpoint? and 6
is the orientation with respect to the wall (see
figure 1). The control law is used to define a
control input [d,w] such that the robot rotates
w rad followed by a forward translation of d mm.

2the error is the difference between the setpoint and
the actual distance to the wall
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Figure 1: Wall following control law. The set-
point is the distance to keep from the wall. e
denotes the difference between the robot’s cur-
rent distance from the wall and the setpoint. 6
denotes the robot’s orientation with respect to
the wall. r denotes the sonar reading.

Previous implementations of this control law
calculated the values of e and 6 directly from
sonar readings (see [4]). In these implementa-
tions, heuristics were use to deal with sonar
noise, specially with sonar’s specular reflection.
In this report, we describe the use of a kalman
filter in order to calculate the current values of
e and 6. We argue that this approach allows for
the use of more reliable methods to deal with
sensor noise as well as for detecting qualitative
changes in the execution of the control law.

2 Kalman Filter

Since the function of the Kalman filter is to
produce the input to the control law, we model
the state of the system by the tuple (e,8), where
e and @ are defined as above.?

Dynamic model. The control input asso-
ciated with the control law defines the state
transition function of the Kalman Filter. The

3see [2] for an introduction to Kalman filters

corresponding equations are as follows:*

etr1 = ep—d*sin(0; + Keep + Kgby) + we

01 = 0i+ Keer + Kgb: + wp

where d is the forward displacement the robot
does bhetween two consecutive applications of
the control law, we and wy are the random noise
associated with e and 6 respectively.

Measurement model. We only use the
reading of the right (left) sonar to calculate the
distance to the wall. Let r; denote the reading
of this sonar at time t. Assuming that a sonar
behaves like a ray-trace scanner, then

xsetpoint x —ey 0,
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where w, is the random noise associated with

Tt
cos 8,

Notice that the kalman filter’s dynamic model
corresponds to the dynamics of the control law,
while the measurement model is derived from
a model of a wall and its relation with the
robot’s location. The term (1—‘95t0—)2wr is included
in the measurement model in order to deal with
sonar’s specular reflection. This term captures
the idea that, when the orientation is not in
the interval (—15°,15°), sonar reading are not
reliable. Conversely, when the orientation is in
such interval, sonar readings should be trusted.’

“More sophisticated vehicle kinematics could be used
but this simple point kinematics model suffices for our
purposes.

5The angle of 15° was experimentally determined.



3 Implementing the Control

Law

In this section we describe the overall architec-
ture to implement a wall following control law
using a Kalman filter. Notice in figure ( 2) that
, in addition to the kalman filter we have two
more modules: the pre-filtering and monitor
modules. The pre-filtering module filters out
sonar readings that do not agree with the
measurement model while the monitor module
detects when the dynamic model is no longer
valid.
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Figure 2: System overall architecture.

3.1 Pre-filtering the sonar reading

One of the problem when using Kalman filters
is that the innovation® can be very big and
consequently the state predicted by the filter
is not a valid one. For example, whenever an
intersection is present at the end of the wall,
the sonar reading will be very big compared to
the one expected by the kalman filter. If we
input such reading to the filter, it will estimate
an erroneous state which in turn will cause
the control law to produce a sharp turn angle.
The pre-filtering module detects inconsistencies
between the actual reading and the kalman filter

5The innovation is the difference between the actual
measurement and the expected one.

We use a variant size
window approach to dectect these inconsistencies
as explained next.”

measurement model.

Given the current reading r, the current state
(e,0), and the current variance on the estima-
tions of e and 6, we define a confidence interval,
[min,max], around the expected reading associ-
ated with the state (e,0). In order to decide the
output of the pre-filtering module we proceed as
follows:

1. If r € [min, maz], return r.
2. If r < min, return min.

3. otherwise, return the expected reading as-
sociated with (e,f).

The justification for (2) and (3) above is that
short sonar readings are more reliable than large
ones.

3.2 Detecting the end of the control
law

Because of the pre-filtering module, the kalman
filter does not have access to the actual reading.
However, readings rejected by the pre-filtering
module could indicate the end of the control
law. The monitor modules detect the end of the
control law by looking at the correction asso-
ciated with the actual reading. This correction
is compared with the previous ones in order
to decide whether it is qualitatively different.
When various consecutive qualitative changes
in the corrections are detected, the end of the
control law is signaled. Next we explain how
this is done.

"This window correspond to the validation gate
used in [3].



The Kalman’s filter update rule has the form
zy=z; + K *(r —r})

where z; denotes the state of the system at time
t, x7 is the dynamic’s model projected state at
time t, K is the kalman gain, r is the current mea-
surement, and rf is the measurement’s model
projected reading at time t. The term r — rf is
call the innovation. The term K *(r —rj) is the
correction at time t. Notice that the correction
is a vector of the same dimension as the system
state vector. In our particular application, it is
a two-dimensional vector whose first component
is the correction in the error and whose second
component is the correction in the orientation.
The end of the wall following control law is de-
tected as follows:

1. Let N and M denote two natural numbers,
and R a real constant.

2. Let avN denote the average of the error’s
correction associated with the last N read-
ings.

3. Given a new error correction, er, er is good
if it belongs to the interval ((1—R)avN, (1+
R)avN), otherwise er is bad.

4. Update avN to include er.

5. Whenever M consecutive bad error correc-
tions are detected, the end of the control law
is signaled.

4 Experiments

In this section we compare the use of a Kalman
filter as opposed to the use of raw sonar readings
to calculate the error and orientation needed by
the control law. For such purpose, we consider

the problem of following a 5m long cardboard
wall at a distance of 400 mm(i.e. setpoint = 400
mm). The robot started aligned with the wall
at 200 mm from the wall (i.e initial state = (e,
#) = (-200, 0.0)). The robot then followed the
wall at a constant speed of 100 mm/sec until
an intersection was found. Sonar readings were
taken at 1sec intervals. We ran the experiments
using two different methods to calculate the
error and orientation: the first method used the
kalman filter as described above®; the second
method used raw sonar readings as explained
next.

Calculating the error and orientation di-
rectly from sonar readings. Let r; and r9 be
two consecutive (right) sonar readings, and let d
denote the distance traveled during these read-
ings® Then, the orientation can be calculated by
the equation

_1T2—"n
d
Once the orientation is calculated, the error is
determined by

0 = tan

error = xsetpoint x — rg * cos(6)

Figures ( 3) through ( 6) show the evolution
of the error and orientation when the robot
followed the wall. Figures ( 3) and ( 4) show
the evolution of the error and orientation as
predicted by the kalman filter. Figures ( 5)

81n the actual implementation, two set of readings are
taken separated by a 0.5sec period. Consequently, the
robot moves 150mm forward between two consecutive ap-
plications of the Kalman filter (i.e. d=150).

°In the actual implementation we use the following
approach to identify sporious readings. The average, av,
of the previous readings is kept. Whenever r; is such that
2 x av < r;, the average reading value av is used instead
of Ti.



and ( 6) show the evolution of the error and
orientation as predicted by the kalman filter. In
all cases, the dashed lines indicate the error and
orientation evolution as predicted by the control
law under “ideal” conditions.

Enor(inmm)

Figure 3: Kalman’s Filter predicted evolution of
the error. The dashed line indicates the control’s
law expected error evolution.
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Figure 4: Kalman’s Filter predicted evolution of
the orientation. The dashed line indicates the
control’s law expected orientation evolution.

Discussion. It can be observed that the con-
trol’s law input signal generated by the Kalman
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Figure 5: Sonar Based predicted evolution of the
error.The dashed line indicates the control’s law
expected error evolution.
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Figure 6: Sonar Based predicted evolution of the
orientation. The dashed line indicates the con-
trol’s law expected orientation evolution.

filter fits the expected control’s law operational
conditions. This is not surprising since the
Kalman’s filter dynamic model corresponds to
the control’s law dynamics. Differences between
the expected and observed conditions are due to
noise in the sonar readings as well as odometry
errors in the robot’s motor aparatous. The
Kalman filter compensates these errors while



fiting the control’s law dynamics.

The error and orientation calculated from
raw sonar readings present an erratic behavior
while preserving the “general behavior shape”
expected by the control law. This erractic
behavior causes the control law to output
consecutive contradictory turn angles that make
the robot shake while following the wall.

Notice also that there exist significant dif-
ferences between the control’s law expected
orientation and the calculated one. In the
Kalman filter case, these differences are ex-
plained by errors when the robot rotates. The
current robot cannot rotate in small angles'®
commanded by the control law. When using
raw sonar reading, these differences are due to
sonar noise and translational odometry errors
when taking the readings used to calculate the
orientation.

5 Related work

Leonard and Durrant-White [3] present an ex-
tensive use of Kalman Filters for mobile robot
navigation using sonar. After pointing out the
main characteristics of sonar, they introduce the
notion of regions of constant depth (RCD)
as a qualitative representation of the informa-
tion content in a sonar scan. RCDs are used for
robot localization by matching a predicted RCD
to an observed RCD. In addition, they are used
for map building by matching multiple RCDs ob-
served from different locations based on different
target assumptions. Next we summarize some of

Yangles in the interval (-0.1,0.1)

the main points in [3] related to the methods
presented in this paper.

1. In [3], targets (i.e. walls, edges, corners,
etc.) are represented with respect to a
global frame of coordinates. A local frame
of coordinates suffices for our wall-following
control law.

2. RCDs and not raw sensor data are used as
input to the kalman’s filter measurement
model for robot localization. ”A RCD pro-
vides a means of reducing a target’s angular
uncertainty, as multiple adjacent returns to
the same target constraint the possible true
bearing to the target” [3].

3. Measurements has to be validated before
using them for position estimation. The
validation gate approach in [3] reduces
to our pre-filtering method when only one
reading is available.

4. The RCD’s methods used for identifying
targets are different from the one we use to
detect the end of the control law. In partic-
ular, the circle test!! could be used to
detect the end of the control law instead of
our monitor module.

6 Conclusions and future work
The key ideas presented in this paper are:

1. The effect of sensorimotor noise in the con-
trol’s law output can be aminorated by us-
ing a Kalman filter to generate the control’s
law input signal.

11RCDs which correspond to a plane will all be tangent
to the plane. See [3] page 99.



2. A Kalman filter allows to integrate the con-
trol’s law dynamics and a local model of
the environment. Consequently, a compro-
mise between the control’s law operational
conditions and the actual conditions of the
environment can be achieved.

3. By modeling uncertainty in the current
state of the system, reliable methods for de-
tecting inconsistencies between the sensory
input and the environment model can be de-
tected. Heuristics for handling sporious sen-
sory input can be replaced by or combined
with more solid mathematical tests.

4. Differences between the Kalman filter mod-
els and the actual environment have to be
detected by additional mechanisms. A pre-
filtering step identifies differences between
the current measurements and the filter’s
measurement model while a monitor module
identifies when the filter’s dynamic model is
no longer valid.

We are planning to use the methods pre-
sented in this paper to implement more complex
trajectory-following control law (for example, a
middle-line following behavior) as well as add the
use of Kalman Filters for autonomous learn be-
haviors as presented in [1]. In addition, we would
like to adapt the RCD’s methods presented in [3]
in order to detect the end of a control law.
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