Utility Fusion: M ap-Based Planning in a Behavior-Based System

Julio K. Rosenblatt
Australian Centre for Field Robotics
Dept. of Mechanical & Mechatronic Engineering
University of Sydney, NSW 2006, Australia
julio@mech.eng.usyd.edu.au
http://mecharea.mech.eng.usyd.edu.au/people/julio

Abstract

A new means of action selection via utility fusion is
introduced here as an alternative to both the
bottlenecks of centralized systems and the
incoherence of distributed systems. Within the
utility fusion framework, distributed, independent,
asynchronous behaviors indicate the utility of
various possible world states and the uncertainty
associated with them. A centralized arbiter then
combines these utilities and probabilities to
determine the next action based on the
maximization of expected utility. The construction
of a utility map allows the kinematic constraints of
the system being controlled to be modeled and
compensated for; experimental results verify that
the resulting system provides greater stability.

1 INTRODUCTION

In unstructured, unknown, and dynamic environments, such
as those encountered by outdoor mobile robots, an intelligent
agent must adequately address the issues of incomplete and
inaccurate knowledge; it must be able to handle uncertainty
in its sensed data, in any maps which may exist, in the
current state of the robot itself, as well asin the effects of the
agent’s actions. In order to function effectively in such
environments, planning systems cannot generate a plan a
priori that can be expected to perform reasonably in the face
of such uncertainty, nor can they anticipate all contingencies
that may arise. Planning systems must be reactive in the
sense that their decisions must take into account current
information and state at al times, proceeding in a
data-driven manner, rather than attempting to impose
unrealizable plans in atop-down fashion.

Nonetheless, deliberative planning and reactive control
are equally important for mobile robot navigation; when
used appropriately, each complements the other and
compensates for the other's deficiencies. Centralized
architectures provide the ability to coordinate, in a coherent
fashion, multiple goals and constraints within a complex
environment, while decentralized architectures offer the
advantages of reactivity, flexibility, and robustness.
However, sensor fusion creates a bottleneck, and command

arbitration runs the risk of losing information valuable to the
decision-making process; therefore a careful balance must be
struck between completeness and optimality on the one hand
versus modularity and efficiency on the other. In addition,
when dealing with a physical system such as a mobile robot,
it isimportant to consider aspects of control such as stability
and the limitations and constraints of the physical plant, for
example the non-holonomic constraints of a vehicle.

In order to achieve this desired symbiosis of
deliberative and reactive elements, the Distributed
Architecture for Mobile Navigation (DAMN) consists of a
group of distributed behaviors communicating with a
centralized command arbiter, as shown in Figure 1. This
information may take various forms, such as votes for and
against possible actions or effects (as described in
[Rosenblatt, 1997a]). The arbiter is then responsible for
combining the behaviors' votes and generating actions
which reflects their objectives and priorities; the appropriate
commands are then sent to the vehicle controller. The
distributed, asynchronous nature of the architecture provides
rea-time responsiveness to its immediate physical
environment and allows multiple goals and constraints to be
fulfilled simultaneously, while the centralized command
arbitration provides a framework capable of producing
coherent, rational, goal-directed behavior.

votes

BEHAVIOR
otes

votes

votes

Figure 1: DAMN framework consists of centralized
arbitration of votes from distributed behaviors.

DAMN
ARBITER

commands

Within the framework of DAMN, a new means of
action selection is introduced here as alternative to both the
sensor fusion and command fusion approaches. Information
concerning the desirability and probability of possible world

In Field and Service Robotics, Springer-Verlag, 1998.

states is obtained from multiple independent sources and
combined via utility fusion. The determination of what the
next action taken should be is then based on this combined
evidence. In this paradigm, behaviors do not select or
express preferences for actions but instead determine the
utility of possible world states. It is then the responsibility
of a central arbiter to determine which states are actually
attainable and how to go about achieving them.

2 BACKGROUND

Centralized mobile robot systems operate by gathering all
available sensory data, creating a complete model of its
environment, planning a series of actions within the
context of that model, and then executing that plan
[Moravec, 1990; Nilsson, 1984; Shafer et al., 1986]. The
robot then gathers more information and the process
repeats. This approach has the advantage of being able to
combine evidence to overcome ambiguities and noise
inherent in the sensing process [Durrant-Whyte, 1986], but
has the disadvantage of creating a computationaly
expensive sensory bottleneck; all sensor data must be
collected and integrated before it can be acted upon. A
single monolithic world model is also more difficult to
develop, maintain, and extend. In addition to introducing
potentially harmful delays, a centralized architecture also
leads to brittleness because the system fails entirely if any
single part of it is not functioning properly, particularly
when the real world deviates significantly from the models
employed.

In architectures which employ priority-based
arbitration such as the Subsumption Architecture [Brooks,
1986] and GAPPS [Rosenschein and Kaelbling, 1986],
action selection is achieved by assigning priorities to each
behavior; the active behavior with the highest priority isin
control and the rest are ignored. This alows for quick
responses to new situations and stimuli, athough, by
definition, prioritization only allows one module to affect
control at any given time. While this is an effective
scheme for choosing among incompatible commands, it
does not provide an adequate means for dealing with
multiple goals that can and should be satisfied
simultaneously. A compromise between behaviors cannot
be achieved in such an all-or-nothing scenario; whenever
one behavior's output is overridden by another, the
information and knowledge represented by that behavior is
completely lost to the system.

Architectures that perform command fusion combine
the commands from individual behaviors so that decisions
may be made based on multiple considerations while
preserving the modularity and reactivity of distributed
systems. Command fusion provides a mechanism for the
concurrent satisfaction of multiple goals, and allows
modules to be completely independent, thus allowing
incremental, evolutionary system development.

Motor schemas [Arkin, 1989] provide a genera
framework for command fusion, but because they are
implemented as potential fields [Khatib, 1990] they are
subject to drawbacks such as local minima, and the
averaged command that is the result of vector addition can
produce an action that is not satisfactory to any of the
contributing behaviors; for example, a robot cannot pass
through closely spaced obstacles such those surrounding a
doorway, and there also exist conditions under which

potential fields suffer from oscillations and instability
[Borenstein and Koren, 1991]. The root of these
limitations is that, like priority-based architectures, each
behavior simply outputs a single command, which is
insufficient for effective command fusion.

Many control systems have been constructed using
fuzzy logic [Lee, 1990], including a fuzzy control system
developed for mobile robot navigation [Kamada et al.,
1990]. A previous type of arbiter implemented within
DAMN operates in a similar manner and in fact has been
recast into afuzzy logic framework and used for control of
a mobile robot [Yen and Pfluger, 1992]; however, the
DAMN *actuation-space” arbiter is somewhat more
general in that it allows for an arbitrary distribution of
votes rather than being restricted to take on the shape of a
particular function or rule output [Rosenblatt and Thorpe,
1995]. As we shall see, this system also suffered from
some of the limitations shared by all command fusion
systems. In order to preserve the respective advantages of
centralized and distributed architectures, sufficient
information must be communicated from the behaviors to
alow the arbiter to make intelligent decisions, but the
arbiter must not be so complex as to become a bottleneck
for the system.

2.1 Limitations of Command Fusion

System Dynamics

Whether summing vectors in potential fields, combining
rules by fuzzy logic, or combining votes in the DAMN
actuation-space approach, the arbiter is fusing commands
proposed by the behaviors which are not physicaly
realizable; for example, a vehicle turn command may
require a change in the commanded curvature which
exceeds the steering wheel actuator’s torque capabilities.
Command fusion methods do not in general account for
vehicle dynamics and kinematic constraints; thus they
produce commands which are not executable by the
system being controlled. Another important difference
between the commanded and actual vehicle trajectories is
due to the system delays arising from latencies in data
acquisition, data processing, intermodule communications,
and actuator response. Given the continuous motion of the
vehicle, these delays imply that by the time the command
is being executed the vehicle is no longer in the state at
which the behavior commands were generated. Stable
control requires that the system anticipate these latencies
and allow the behaviors to consider actions that are
kinematically achievable and which originate from the
point where the vehicle will actualy be when the
command is executed [Kelly, 1995].

Synchronization

Synchronization allows reasoning to be coordinated and
therefore coherent, but reduces the throughput of the
system as modules must wait for a signal from each other
in order to remain synchronized. Allowing the modulesin
a distributed architecture to operate asynchronously, each
at the greatest rate of which they are capable, maximizes
throughput and therefore reactivity. However, if thereisno
synchronization between behaviors, then their votes are
produced based on different system states, so that the
semantics of combining the two sets of votesis ill-defined
and may yield unpredictable results.

Uncer tainty

Domains such as mobile robot navigation necessarily
contain a great deal of uncertainty. There exists
uncertainty in the sensing of internal state such as vehicle
position, uncertainty in perception such the location or
shape of an object, and uncertainty in the effects of
actions, e.g., due to dlippage. These uncertainties are
accounted for in an ad hoc manner in behavior-based
systems, for example by “ growing” the size of observed
obstacles by some fixed amount or by “fuzzifying” the
inputs to a system (including the DAMN actuation arbiter)
and using fuzzy reasoning to determine an approximately
appropriate output [Kamada et al., 1990].

3 UTILITY FUSION

A new means of distributed action selection via utility
fusion isintroduced as an alternative to priority-based and
command-fusion arbitration schemes. Instead of voting for
actions, behaviors indicate the utility of various possible
world states. The arbiter combines these utilities and
determines the next action based on the maximization of
expected utility, thus providing a unified conceptual
framework for defining vote semantics and for dealing
with uncertainty. As illustrated in Figure 2, behaviors
process sensory input to determine the utilities of possible
states, which the arbiter collects into a utility-space map.
The arbiter then evaluates candidate actions within this
map, using not the current state of the system but the
predicted state the system will be in when the action is
actually performed. The action which maximizes expected
utility is then chosen and sent as a command to the
controller.

BEHAVIOR ARBITER
Sensor |Domain & . M
Predict |Evaluate
—pr E
Kr?:\,?,?gégje B| state | Actions |
Uo
3
Dynamics 3
>
wn
CONTROLLERI

Figure 2: DAMN Arbiter evaluates predicted
candidate actions using utility map information.

Utility fusion does not to create a world model as
sensor fusion systems do. The information combined and
stored by the utility fusion arbiter does not represent
sensed features of the world, as in certainty grids
[Moravec and Elfes, 1985], but rather the desirability of
being in a particular state according to some criterion
defined by the behavior. The processing of sensory datais
till distributed among behaviors, so the bottlenecks and
brittleness associated with sensor fusion are avoided.

Unlike command arbitration or command fusion
systems, the utility fusion arbiter does not simply select
among or combine actions proposed by behaviors. Instead,
the arbiter is provided with much richer evaluation
information from behaviors, thus allowing for intelligent
decision-making. The arbiter accumulates utility and

probability evaluations from the behaviors and bases its
decision-making on the combined evidence, so that the
limitations of command fusion systems may be overcome.

For example, a utility map-based path arbiter for
steering control has been developed. Behaviors
communicating with the path arbiter vote on the
desirability of various possible vehicle locations, and the
arbiter maintains a local map of these votes. Figure 3
shows polygons of positive utility that a road-following
behavior has sent based on detected road location, with the
greatest value being the polygon closest to the centre of the
detected road, and polygons of negative utility that an
obstacle avoidance behavior has sent, with the greatest
value being the polygon closest to the centre of the
detected obstacle. Based on the vehicle's current state, the
path arbiter evaluates the possible trajectories which may
be followed, shown in the figure as arcs emanating from
the vehicle. The expected utilities are summed along each
arc, and the arbiter selects that one for which the total is
the greatest.

Figur e 3: Map-based path arbiter voting. Darker polygons reflect
higher vote utility values; striped polygons indicate negative
utilities. Arcsindicate trgjectories evaluated by the arbiter.

3.1 Advantages of Utility Fusion

System Dynamics

One advantage of map-based utility fusion over command
fusion is that the dynamics of the system being controlled
can be fully modeled and accounted for by the central
reasoning process, providing greater control accuracy and
stability. For example, because the arbiter is evaluating
candidate actions rather than the behaviors, it can use
knowledge of its own processing latencies as well as
delays inherent in the system and compensate for them via
predictive control. Using current vehicle state, a history of
recently issued commands, and knowledge of the effects
of those commands, the arbiter can determine
approximately where the vehicle will be when the next
command is actually executed and assess feasible
trajectories originating from that position, as indicated by
the lighter vehicle outline in Figure 4.

Figure 4: Map-based path arbiter voting with dynamics.
Trajectoriesevaluated by the arbiter are clothoids emanating from
the predicted vehicle position, indicated by the lighter vehicle.

Non-holonomic and kinematic constraints can also be
modeled and accounted for by the arbiter. For example, the
steering mechanism of the vehicle imposes a constraint of
continuous curvature along the path. A clothoid is a curve
whose curvature varies linearly with path length: k = Kk(s)
+ Ko, Where k specifies the sharpness, or rate of change of
curvature, and s is the total distance travelled [Kanayama
and Miyake, 1985]. Because it has sufficient state
information, the map-based utility arbiter can evaluate
clothoids rather than simple arcs, as suggested in the
diagram above, thus evaluating those actions which may
be followed faithfully by the vehicle.

If behaviors were to be able to account for system
dynamics, they would require a great amount of state
information, both from the vehicle and from the command
fusion arbiter. In addition, each behavior would need to
have a vehicle model and apply it to the state information,
representing a considerable duplication of effort. Such a
system would be difficult to develop and maintain, with
the possibility of introducing inconsistencies in the various
models. However, because the utility arbiter is evaluating
the candidate actions, behaviors need not know which
actions the system is capable of; a behavior can expressthe
utility of a desired world state independently of which
actions would need to be taken to achieve it. A behavior
only contains the domain and procedural knowledge
needed for evaluating possible world states in the context
of the task for which it is responsible. This provides
greater modularity and interchangeability of behaviors; for
example, a behavior developed for a vehicle with
Ackerman steering could be reused as is for a system to
control an omnidirectional robot.

As described in Section 4, experiments were
conducted comparing the map-based utility arbiter to the
previously implemented actuation-space turn arbiter. At
slow vehicle speeds, both arbiters were able to
successfully achieve their mission, but at higher vehicle
speeds the effects of system latency and dynamics became
very apparent, and the path arbiter with predictive control
performed much better than the turn arbiter under those
conditions [Rosenblatt, 1997b].

Synchronization

A map-based utility arbiter aso solves the problem of
unsynchronized behaviors because the information
received from them is not time dependent. Command
fusion involves combining behavior outputs which are
only valid for a brief interval, so that their semantics are
ill-defined unless executed immediately, but the utility
arbiter receives votes for external world states whose
meaning is well-defined independent of the current vehicle
state. The use of amap allows synchronization of the votes
to occur within the arbiter without imposing timing
constraints on the behaviors, which would reduce system
responsiveness. The external location-based scheme used
in the map-based path arbiter is capable of maintaining a
consistent interpretation of the votes received and
correctly coordinating votes received at different times and
from different locations. The trajectory evaluation process
is repeated as the vehicle moves, so that action selection is
based on the most recent information available, without
any new utility information from the behaviors being
immediately necessary.

Uncer tainty

Utility theory provides a unified conceptual framework for
defining votes and weights and dealing with uncertainty.
Because we are attempting to decide which among a set of
possible actions to take, it is natural to make judgments on
the usefulness of each action based on its consequences. If
we assign a utility measure U(c) for each possible
consequence of an action a, then the expected utility U(a)
IS.

U(a) = § U(c) xP(c|a, €)

Cc
where P(cla,e) is the probability that consequence c¢ will
occur, given that we have observed evidence e and taken
action a [Pearl, 1988]. Thus, if we can define these utilities
and probabilities, we can then apply the Maximum
Expected Utility criterion to select the optimal action based
on our current information.

By casting the voting scheme for this class of arbiter
within the framework of utility theory, uncertainty within
the system is explicitly represented and reasoned about
within the decision-making processes. Utility theory teases
apart the value of the consequence of an action from the
probability that the consequence will occur and provides a
Bayesian framework for reasoning about uncertainty
[Berger, 1985]. Each behavior votes for the subjective
utility of the vehicle being in the various particular
locations of concern to that behavior, e.g. obstacle
locations or road locations. The behavior also express any
uncertainty associated with the perception process as
covariances in a multi-dimensional normal distribution.
The arbiter can then use utility theory to reason explicitly
about the uncertainty in position and control of the vehicle
and apply the Maximum Expected Utility criterion to
select the optimal action based on current information. By
explicitly representing and reasoning about uncertainty
within the decision-making processes, a system can be
created whose effects are well-defined and well-behaved.

4 EXPERIMENTAL RESULTS

In this section we present some results from experiments
conducted on the Navlab Il HMMWYV Vehicle at Carnegie
Mellon University, and in simulation, demonstrating the
benefits of utility fusion in compensating for vehicle
dynamics. Figure 5 shows an example of the environment
in which the vehicle experiments took place; the terrain in
the “slag heap” test areaincluded hills, rocks, and ditches.

4
3

Figure 5: Experimental area.

4.1 Performance M etrics

M ean Obstacle Proximity

An important metric for a vehicle path is the average
distance to obstacles along that path. The distance to that
obstacle which is closest to the vehicle at any given
moment provides a measure of safety clearance; when
inverted, it provides a measure of proximity to obstacles
which isto be minimized. The sguare of distance is used to
reflect the increasing relative importance of obstacle
proximity when the vehicle is closer to an obstacle. Thus,
the mean obstacle proximity metric for a path is defined by
the inverse square of the distance | to the closest obstacle,
integrated along the path and normalized by the total
number of path points n:

o = minC o=J(x, = x0)2 + (v~ ¥e) D)

mean obstacle proximity =

Lower mean obstacle proximity means that the
vehicle was on the average further away from the nearest
obstacle, and therefore the path was safer.

Roughness

Roughness is defined by the square of the change in
vehicle curvature k with respect to time, integrated along
the path and normalized by the total time t:

)
\a§|_k0 ds

Oédtﬂ
roughness = 0

A lower roughness measure means that curvature
changed less over the course of the path, and therefore that
the vehicle path was smoother.

4.2 Path Arbiter: Vehicle Run Results

For the following vehicle experiments, two behaviors sent
utilities to the path arbiter, OBSTACLE AVOIDANCE and
FoLLOW PATH. Asinput to the first behavior, an ERIM
laser range finder generated a polar map of sensed depth
every 500ms. This range image was processed to create a
Cartesian depth map that was then used to determine the

presence and location of obstacles [Langer et al., 1994].
For each obstacle detected, the OBSTACLE AVOIDANCE
utility behavior sent to the arbiter a large negative utility
associated with the obstacle per se to avoid collision and
another negative utility with a smaller value was also
assigned to the obstacle location to reflect the problems
associated with getting too close to an obstacle, i.e.,
constrained mobhility, occlusion of unknown areas, etc. At
each iteration, the behavior sent utilities for all obstacles
within the map, overriding ones previously sent to the
arbiter so that the most recent information was always
used. The entire process of processing the image,
identifying obstacles, and reporting utilities to the arbiter
took approximately 250msto complete.

The FOLLOW PATH behavior associated a positive
utility with each of the subgoals to be reached by the
vehicle, and a line utility between subgoals was also
defined so that a corridor was effectively created between
consecutive goals. The line utility was given a higher
utility than the goal point so that the vehicle would be
drawn back to the corridor when it strayed from it, rather
than heading directly towards the subgoal, e.g. after
avoiding an obstacle. This behavior sent all utilities to the
arbiter at once, and each goal attracted the vehicle in turn
asit got closer; if a goal was unreachable or inadvertently
bypassed, then the utilities defined by the next corridor
attracted the vehicle to the next goal

The path arbiter combined the utilities from these
behaviors into its vehicle-centered utility map, evaluated
candidate trajectories within that map, and issued the
steering command that maximized the expected utility.
This process took 200ms on average, depending upon the
number and type of utilities within the map.

Path Arbiter without Predictive Control

This experiment was run with the predictive control
capability of the path arbiter turned off so that its effect
could be observed and compared to the subsequent
experiment conducted using predictive control. As can be
seen in Figure 6, the vehicle oscillated quite a bit, yielding
a roughness measure which we will see is high compared
to subsequent runs using predictive control.

0.100
0.050
0.000 ¢
-0.050 |
-0.100

“ulvawur e (it

100 200 . 300 400 500 60(
Time (seconds)

Figure 6: Vehicle curvature along vehicle run, without prediction.

The metrics for thisrun are:
* Mean obstacle proximity = 0.41487
* Path roughness = 0.00432

Figure 7a shows the path taken by the vehicle as it
wound its way between the dense obstacle field indicated
by the cross marks. The total length of the path was almost
400 meters, and the average vehicle speed was 0.7 meters/
second. Figure 7b and Figure 7c show close-up snapshots

of the vehicle in on-road and off-road portions of the path,
respectively, asindicated by the arrows.

300.0 .
A 7~
8 2500 A -
o /
c 2000 | 7
° ; -
7 1500 T SV
S L K
> 1000 ¢ 4 > o Positive Utility
L = Negative Utility
50.0 ; :
Vgglcle Path
L | L L
%0 0 . 2000 250.0
< i
E -
£

Figure 7: Vehicle run using path arbiter without prediction:
a) trace of full path, b) close-up of on-road portion of path,
¢) close-up of off-road portion of path

Path Arbiter with Predictive Control

Further experiments were conducted with the path arbiter,
this time with the predictive control capability in use. The
previous experiment could not be duplicated due to several
problems with the testbed vehicle and sensors. The laser
range finder was replaced with a pair of stereo cameras,
and depth map construction was sparser and more time
consuming. In addition, the runs were conducted without a
goal-based behavior in operation. In spite of these
complications, significantly better results were obtained
by using predictive control. Two separate short runs were
made in the slag heap, as shown in Figure 8. The first run
was 55 meters in length and the average speed was 0.9 m/
s. The second path was approximately 150 meterslong and

the average speed was 0.8 m/s.
3000

- Second

0 ment

S 2000 >y

]

2 L
1000 First o

> S&Jment /

-1000 -50.0 00 50.0 1000 150.0
X position

Figure 8: Path arbiter vehicle runs with predictive control.

The path metrics for the first segment were:
* Mean obstacle proximity = 0.15770
* Path roughness = 0.00007

and for the second segment:
* Mean obstacle proximity = 0.14090
e Path roughness = 0.00002

The curvature profile for these runs is shown in
Figure 9. It can be seen to be substantially smoother than
the curvature generated without predictive control shown
in Figure 6. Thisis borne out by the very low values of the
roughness metric for these runs, achieved while also
maintaining a low obstacle proximity value.

_. 010 First Second

€ 0050 | Segment Segment

=

~ 0000

g

S -0.050

@©

2 -0.100

3 00 500 1000 1500 2000 250.0

Time (seconds)
Figure 9: Vehicle curvature for path arbiter with prediction.

4.3 Simulation Experiments

A vehicle simulator was used for experiments where
conditions could be carefully controlled and higher speeds
could be used without risk of damage. The path arbiter
with and without predictive control, as well as the turn
arbiter used in previous systems [Rosenblatt, 1997a;
Langer et al., 1994], were compared at various vehicle
speeds and system latencies. For experiments at slow
speeds, all arbiters were able to successfully achieve their
mission, both in actual vehicle experiments and in
simulation. However, the effects of system latency and
dynamics became very apparent at higher vehicle speeds,
and the path arbiter with predictive control performed
much better than the path arbiter without predictive control
or the turn arbiter under those conditions.

2.0
15
1.0
0.5

0. = =
) >. 7y . .
o) 0 Vehig[gsp (os) 5.0 6.0

0.25
0.20
0.15
0.10
0.05 i =

0.0010 50 60

path roughness obstacle proximity

0 3.0 4.0
vehicle speed (m/s)
OG— map-based arbiter, prediction off
= E1 map-based arbiter, prediction on
<O=———&> arc-based arbiter (no prediction)
Figure 10: Path metrics as a function of speed:
a) mean obstacle proximity, and b) path roughness.

The graphs of mean obstacle proximity as a function
of speed in Figure 10a and of path roughness vs. speed in
Figure 10b show that the turn arbiter does very badly at
higher speeds; these runs are shown in Figure 11a The
graphs also show that, at higher speeds, the path arbiter
without predictive control performed even worse than the
turn arbiter, possibly due to the path arbiter's greater
complexity; these runs are shown in Figure 11b. However,
when the path arbiter made use of its predictive control
capabilities, it was still able to go through this narrow

corridor and reach the goal, in spite of the fact that a delay
of 2 seconds at a speed of 6 meters/second meant that the
vehicle travelled 12 meters between the time that a
command was issued and the time that it would actually be
executed. These successful path traces are shown in Figure
11c, along with the trace of the position of the vehicle as
predicted by the arbiter, which coincided well with the
actual path taken.

g b) 0
a) :
20 < -20
i)
o ‘B o
40 !‘ 8_ -40 ’, FH
x > K.
60 -60
-20 0 20 40 -20 0 20 AC
ot X position X position
ol oy > G—>OPostive Utility
— o X Negative Utility
Ot /»3*’ = Vehicle Path, 5m/s
T .
=7 —— Predicted Path, 5 m's
°l e \/chicle Path, 6 m/s
-20 0 20 40 — '
X pOSitiOﬂ Predicted Path, 6 m/s

Figure 11: Paths executed at high speeds with 2 second latency:
a) turn arbiter, b) path arbiter w/o prediction, c) w/ prediction.

5 CONCLUSION

Because reactivity is essential for any system operating in
adynamic, uncertain environment, it is necessary to avoid
the sensing and planning bottlenecks of centralized
systems, but if we are to avoid sensor fusion, the system
must combine command inputs to determine an
appropriate course of action. However, priority-based
arbitration only allows one module to affect control at any
given time. Command fusion provides a mechanism for
the concurrent satisfaction of multiple goals and allows
modules to be completely independent, thus allowing
evolutionary system development. However, existing
command fusion techniques deal with uncertainty in an ad
hoc manner, and they do not take system constraints into
consideration when deciding upon a proper course of
action.

Within DAMN, behaviors operate in a distributed
fashion to generate votes for actions based on
domain-specific knowledge, while a central arbiter
combines their results to generate reasonable behavior
which obeys all constraints and simultaneously satisfies as
many objectives as possible by choosing that action which
maximizes a function of the behavior votes. DAMN
performs centralized arbitration of votes from distributed,
independent, asynchronous decision-making processes
and in so doing provides coherent, rational, goal-directed
behavior while preserving real-time responsiveness to its
immediate physical environment.

A new means of action selection, via utility fusion,
was introduced as a solution to some observed
shortcomings of behavior-based systems. Instead of voting
for actions, behaviors indicate the utility of various
possible world states, and it is the responsibility of the

arbiter to determine which states are actually attainable
and how to go about achieving them. This new approach
strikes a balance between action selection and sensor
fusion and has been found to yield many benefits.

The utility fusion arbiter determines the next action
based on the maximization of expected utility, thus
providing a unified conceptual framework for defining the
semantics of votes and for dealing with uncertainty. For
example, a map-based path arbiter has been implemented
as a means of voting for and producing steering control.
The path arbiter maintains a utility map and evaluates
candidate trajectories within it, and selects that action for
which the total expected utility isthe greatest.

The utility space is not time-dependent, so that an
arbiter using such arepresentation is capable of effectively
synchronizing and maintaining a consistent interpretation
of the votes received from asynchronous behaviors, thus
providing coherent reasoning in a distributed system.
Behaviors can function without knowledge of the system
dynamics, thus increasing their reusability for other
systems. The utility arbiter can use models of the system
being controlled to determine which states are actually
attainable, and to increase the accuracy and stability of
control. In particular, the map-based utility arbiter gathers
information from behaviors about the desirability of
possible vehicle locations and then evaluates candidate
trajectories to determine appropriate actions. The arbiter
can then use kinematic models of the robot to determine
which actions can be commanded without violating
non-holonomic constraints, and use of the system to
provide greater stability.

DAMN has been used to combine various systems of
differing capabilities on several mobile robots, at various
sites; in addition to its use on the CMU Navlab vehicles,
DAMN has also been used at the Lockheed Martin
Corporation, the Hughes Research Labs, and the Georgia
Institute of Technology. DAMN arbiters have been used to
integrate navigation modules for the steering and speed
control of single as well as multiple vehicles at these sites,
and have also been used to select field of regard for the
control of a pair of stereo cameras on a pan/tilt platform.
Vehicles under the control of DAMN have driven at
highway speeds, navigated across stretches of off-road
terrain some kilometers in length, cooperated with other
robotic vehicles, and performed teleoperation, all while
providing for the safety of the vehicle and meeting mission
objectives.

ACKNOWLEDGMENTS

This research was supported in part by grants from ONR
(NO0014-391-1451), ARL (DAAH049610297), and
ARPA (N00014-94-1090, DAST-95-C003,
F30602-93-C-0039). Work done at Carnegie Mellon
University under the UGV project was supported by
ARPA under contracts DACA76-89-C-0014 and
DAAEQ7-90-C-R059, and by the National Science
Foundation under NSF Contract BCS-9120655. The
author was supported by a Hughes Research Fellowship.

REFERENCES

[Arkin, 1989] Ronald Arkin. Motor Schema-Based Mobile
Robot Navigation. In International Journal of Robotics
Research, Vol. 8(4), August 1989, pp. 92-112.

[Berger 85] James Berger. Statistical Decision Theory and
Bayesian Analysis, 2nd ed. New Y ork: Springer, 1985.

[Borenstein and Koren, 1991] Johann Borenstein and
Yoram Koren. Potential Field Methods and Their
Inherent Limitations for Mobile Robot Navigation. In
Proceedings of the International Conference on
Robotics and Automation, 1991.

[Brooks, 1986] Rodney Brooks. A Robust Layered Control
Systemfor aMobile Robot. In1EEE Journal of Robotics
and Automation, vol. RA-2, no. 1, pp. 14-23, April 1986.

[Durrant-Whyte, 1986] Hugh Durrant-Whyte. Integration,
Coordination, and Control of Multi-Sensor Robot
Systems (Ph.D. dissertation). University of
Pennsylvania, Philadelphia, PA, 1986.

[Kamada et al., 1990] H. Kamada, S. Naoi, and T. Gotoh.
A Compact Navigation System Using | mage Processing
and Fuzzy Control, In Proceedings of IEEE
Southeastcon, New Orleans, April 1-4, 1990

[Kanayama, 1985] Yutaka Kanayama and N. Miyake.
Trajectory Generation for Mobile Robots. In
Proceedings of Third International Symposium on
Robotics Research, pp. 333-340, Gouvieux, France,
1985.

[Kelly, 1995] Alonzo Kelly. An Intelligent Predictive
Control Approach to the High-Speed Cross-Country
Autonomous Navigation Problem (Ph.D. dissertation).
Carnegie Mellon University Robotics Institute
Technical Report CMU-RI-TR-95-33, 1995.

[Khatib, 1990] Omar Khatib, Real-Time Obstacle
Avoidance for Manipulators and Mobile Robots. In
Proceedings of the International Conference on
Robotics and Automation, 1990.

[Langer et al., 1994] Dirk Langer, Julio Rosenblatt, and
Martial Hebert. A Behavior-Based System For Off-Road
Navigation. In |EEE Journal of Robotics and
Automation, vol. 10, no. 6, pp. 776-782, December 1994,

[Lee, 1990] C. Lee. Fuzzy Logicin Control Systems: Fuzzy
Logic Controller -- Parts1 & 1. In|EEE Transactionson
Systems, Man and Cybernetics, Vol 20 No 2, March/
April 1990.

[Moravec and Elfes, 1985] Hans Moravec and Alberto
Elfes. High Resolution Map From Wide-Angle Sonar. In
Proceedings of the IEEE International Conference on
Robotics and Automation, pp.116-121,1985.

[Nilsson, 1984] Nils Nilsson. Shakey the Robot. SRI Tech.
Note 323, Menlo Park, Calif., 1984.

[Pearl, 1988] Judea Pearl, Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, 1988.

[Rosenblatt, 1997a] Julio Rosenblatt. The Distributed
Architecture for Mobile Navigation. In Journal of
Experimental and Theoretical Artificial Intelligence,
vol. 9, no. 2/3, pp.339-360, April-September, 1997.

[Rosenblatt, 1997b] Julio Rosenblatt. DAMN: A
Distributed Architecture for Mobile Navigation (Ph.D.
dissertation). Carnegie Mellon University Robotics
Institute Technicad Report CMU-RI-TR-97-01,
Pittsburgh, PA, 1997.

[Rosenblatt and Thorpe, 1995] Julio Rosenblait and
Charles Thorpe. Combining Multiple Goals in a
Behavior-Based Architecture. In Proceedings of 1995
International Conference on Intelligent Robots and
Systems, Pittsburgh, PA, August 7-9, 1995.

[Rosenschein and Kaelbling, 1986] Stanley Rosenschein
and Leslie Kaelbling. The Synthesis of Digital Machines
with Provable Epistemic Properties. In Proceedings of
Theoretical Aspects of Reasoning about Knowledge, pp
83-98. 1986.

[Shafer et al., 1986] Steve Shafer, Anthony Stentz, and
Charles Thorpe. An Architecture for Sensor Fusion in a
Mobile Robot. In Proceedings of the |EEE International
Conference on Robotics and Automation, pp.
2002-2011, San Francisco, CA, April, 1986.

[Yen and Pfluger, 1992] J. Yen and N. Pfluger. A Fuzzy
Logic Based Robot Navigation System. In Proceedings
of AAAI Fall Symposium, 1992.

