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Abstract

This work addresses the problem of robot exploration. That is, the task of
automatically learning a map of the environment which is useful for mobile
robot navigation and localization. The exploration mechanism is intended to
be applicable to an arbitrary environment, and is independent of the particular
representation of the world. We take an information-theoretic approach and
avoid the use of arbitrary heuristics. Preliminary results are presented and we
discuss future directions for investigation.
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1 Introduction

In order for an autonomous robot to operate in its environment, it requires
knowledge of its task and how it can be accomplished. An essential aspect
of this knowledge is a map. That is, information which enables the robot to
estimate where it is, where it’s going, and how to get there. To date, many
researchers have devoted a significant amount of work to solving these three
tasks, given a prior map [22, 38, 16, 33]. A few have tackled the problem of
constructing a map semi-autonomously[47, 24], and some have attempted the
map acquisition problem in a fully autonomous setting [20, 8, 31]. Of the latter
works, the majority commit to a particular sensing modality (sonar) and assume
that the world can be represented as a 2-D piecewise-linear map.

We will define exploration as the process of discovering those aspects of the
world that allow us to reliably model its structure and/or behaviour. Like scien-
tific investigation, exploration in the real world never terminates. However, for
practical reasons, the robot can cease exploration when it has acquired sufficient
information to perform its tasks with a certain measure of confidence.

Our work aims to develop a framework for autonomous exploration that
is both domain- and sensor-independent. We accomplish this task by posing
the problem as one of optimizing the robot’s knowledge or information about
the world. Most prior work in this domain is constrained to sonar sensing
or, where vision sensors are used, a restricted class of models [33, 48, 10, 51,
2]. We seek to generalize the models employed, facilitating a wider domain of
environments, and aim to address the open questions posed by other entropy-
motivated approaches to exploration. The principle contribution of this work
will be a theory of exploration which accommodates multiple hypotheses about
the correct representation of the world and takes into account the uncertainty
associated with the robot’s actions.

The balance of this paper will divided as follows: First, we will define the
problem, taking into account the question of sensor and odometric uncertainty.
The problem statement will be followed by a review of prior work on the explo-
ration problem. We will then present our approach to the problem, and provide
some preliminary results. Finally, we will look at future directions for the work.

2 Problem Statement

Our goal is to develop a robust and efficient method for autonomous explo-
ration of an arbitrary, unknown environment. The task is rife with uncertainty—
odometry and sensor readings are unreliable and hence we must take these fac-
tors into account when planning where to move the agent. In this sense, our
goal is to maximize our certainty about the world. However, the problem is
further compounded by other factors, such as task-specific requirements (for
example, a prori needs for higher accuracy in certain parts of the world), safety
issues, the limitations imposed by any particular choice of model of the world,
and questions of computational tractability. Finally, in light of our definition



of exploration, we will also require criteria that allow us to determine when
exploration can be terminated. It should be clear that any robust and efficient
solution will require careful consideration of all of these issues.

3 Previous Work

In this section we consider previous work that is relevant to the exploration
problem.

3.1 Approaches in Computational Geometry

Problems in computational geometry (CG) often provide insight about related
real-world tasks. For example, sonar maps of the real world can sometimes be
approximated in terms of polygons, and hence the body of research concern-
ing polygons is immediately applicable. An important question that can be
answered in the context of CG is that of complexity. If we know that a par-
ticular CG problem is difficult to solve, then we can conclude that the related
real-world problem is at least as hard. Furthermore, if the world can be exactly
expressed in terms of geometry, then the exact solution to a particular prob-
lem represents a lower bound on what must be accomplished in the presence of
uncertainty, providing us with a measure by which to evaluate algorithms that
tackle uncertainty. We first consider the Watchman Route Problem, whose so-
lution represents the minimum distance a robot must travel in order to discover
the world, as represented by a polygon.

Figure 1: A polygon with inscribed shortest watchman route for starting point
S. The route is marked by the bold line.

The Watchman Route Problem is related to the Art Gallery Problem [28, 35].
Chin and Ntafos define a watchman route for a polygon P as a closed walk
in P such that every point of P is visible from some point in the walk [7].



Given a starting point S, and a polygon P, the watchman route problem is to
find a shortest watchman route for P that starts at S (Figure 1). Chin and
Ntafos demonstrate that the problem is NP-hard if the given polygon has holes.
However, the problem is much simpler for polygons without holes, and Chin and
Ntafos develop an O(n) algorithm for an orthogonal polygon [7]. In other work,
they provide an O(n*) algorithm for simple polygons [6]. Carlsson, et al have
developed an O(n®) algorithms for solving the problem when § is unspecified.

For the purposes of exploration with a single robot, one is faced with solving
the watchman route problem in the face of only partial knowledge. There is a
class of navigation algorithms, known as Bug algorithms, which deal with the
task of finding a path from a start point to a goal in an environment populated
with unknown obstacles [25, 29]. A Bug-style exploration strategy involves trav-
eling through the world, searching for obstacles and circumnavigating obstacles
as they are encountered. Taylor and Kriegman employ such an approach, build-
ing a set of local maps based on a set of visible landmarks [46]. Such topological
representations of the world are considered in the next section.

A second class of CG problems which are relevant are Geometric Prob-
ing problems. Geometric probing considers problems of determining geomet-
ric structure from the results of a measuring device or probe. In the context
of exploration, geometric probing is relevant because results from the problem
domain specify lower-bounds on the number of discrete sites which must be
sampled in order to completely reconstruct the environment. In many cases,
the probing models reflect the idealized behaviour of real-world sensors, such
as laser-range points, calipers, or the absorption of X-rays. Skiena provides a
broad survey of the wide range of probing models and related results [41].

Of significant interest is the finger probe model, introduced by Cole and Yap
[9]. A finger probe measures the first point of intersection between a directed
line and an object. Such a model is equivalent to a perfect sonar measure-
ment or laser-range sample. Cole and Yap show that 3n probes are sufficient
to completely determine a convex polygon. However, their probing model is in-
sufficient for determining arbitrary polygons. Alvizos, et al modify the probing
model developed by Cole and Yap, allowing the probe to follow an arbitrary
curve and returning not only the point of intersection with the polygon but also
the surface normal at the point of intersection [1]. Under this probing model,
the authors show that 3n — 3 probes are sufficient to probe a polygon with n
non-collinear edges. Of related interest is the problem of geometric testing, or
object verification problem: given a set of objects and a target object, find the
minimum set of probes which allow the target to be discriminated from all other
objects in the set. Romanik provides a detailed survey of results in geometric
testing [32].

Finally, Rekleitis and Dudek have developed a multi-robot collaborative al-
gorithm for exploring a simple polygon [31, 30]. In this work, two robots com-
mence exploration by positioning themselves at two adjacent vertices of the
polygon and sweep the free space by traveling along edges while maintaining a
line of sight. The traversal of the entire polygon results not only in a descrip-
tion of the polygon, but a topological representation which is based on a planar



decomposition (for example, triangulation) of the polygon.

3.2 Topological Representations and Autonomous Map Con-
struction

One of the earliest works that aims to address the autonomous exploration
problem is that of Kuipers and Byun [21, 20]. That work models the world as
a graph embedded in a 2-dimensional environment populated with point and
line features. The goal is to automatically extract a topological representation
where vertices are located at local maxima of a measure of distinctiveness on
a subset of the sensory features, and vertices of the graph are recognized by a
local signature of the environment. The vertices are connected to one another
by arcs which define local control strategies for traveling between the vertices,
and vertex recognition is verified via a rehearsal procedure. This approach to
map-making has been duplicated somewhat by Choset’s Generalized Voronoi
Graph (GVG), which also deals with the particular issues of defining the local
control mechanisms for moving from vertex to vertex [8].

Another topological approach that is of relevance to the work presented here
is that of Tagare, et al [44]. In that work, the world is represented topologically
as a set of places, each of which is characterized by a particular visual appear-
ance. The problem of localizing in such a world is that of recognizing a known
place based on the current input image.

The advantage of employing a topological representation is that it side-steps
the difficult problem of maintaining the robot’s pose in an absolute or global
reference frame. Furthermore, it introduces a level of abstraction which can
be employed for high-level inference (for example, understanding the command
“Go to the living room via the kitchen.”) One difficulty, however, with the
approaches taken by Kuipers and Byun and Choset is that the robot is forced to
operate in the context of the extracted topology, which may not be adequate for
tasks that require specialized knowledge of places that are not well-represented
by the graph. Simhon and Dudek resolve this issue by defining a set of metric
maps, or islands of reliability in the neighbourhoods of distinctive places. The
distinctive places themselves are selected on a measure that combines task-
specific information with a quantitative measure of how well the robot is likely
to be able to localize in the neighbourhood, selecting the best sensor for the
task in the given neighbourhood.

Figure 2 summarizes the spectrum of representations that we have consid-
ered thus far, ranging from purely metric maps to purely topological maps.
Clearly, any useful representation requires both metric and high-level infor-
mation. Dudek has proposed that these requirements impose a hierarchy of
representations that increase in generality as one ascends the hierarchy [14].

3.3 Inverse Problem Theory and Bayesian Analysis

Before we move on to the problems of map-building and exploration, we first
examine the theory that motivates most current approaches to these tasks.
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Figure 2: The spectrum of environment representations.

We commence by first defining some notation; the pose q of the robot repre-
sents the global parameters that capture its (zero-th order) state in the world.
Typically, q is defined over a configuration space C' which defines the set of
admissible poses. Furthermore, an observation z is defined as the output of a
sensor and belongs to the space Z of admissible sensor readings. For example,
z might represent the rasterized set of gray-scale pixel intensity values in the
image acquired by a camera. Finally, we will define a map m in the abstract as
a method for predicting observations based on the pose of the robot.! A map
will typically be coupled with a set of prior observations.

Tarantola’s definitive work provides our foundation for inverse problem the-
ory [45]. Inverse problem theory concerns the problem of inference based on
observation. We proceed using the example of robot localization. The image z
that the robot encounters from position q can be expressed by the relationship

z=F(q) 1)
The localization problem is then that of inverting Equation 1:
q=F"'(2) (2)

and thus inferring q from z. The problem is ill-posed in the sense of
Hadamard, however, since there are no guarantees that F(-) is one-to-one. That
is, more than one pose can observe the same sensor image.

Inverse problem theory comes to the rescue by taking the principle of least
commitment. Where F'(-) is not one-to-one, several different poses may be likely
for a given image. Therefore, we represent the pose of the robot as a probability
density function over C, given the input image z and a map m: P(q|z, m).

The question of how to compute P(q|z, m) analytically is not clear. However,
if enough of the important parameters of the world are known (for example,
lighting conditions, surface geometry and reflectance properties, etc), then we

1Consider the notion that a road map provides us with a method for predicting upcoming
intersections, or a topographical map allows us to predict the slope of the trail ahead. The
utility of a (human-readable) map as a localizer is rooted in our remarkable ability to rapidly
search for places whose predictions match our observations.



can develop a theory that predicts our observation given the pose of the robot,
P(z|q,m). Clearly, the map m embodies those properties of the world which
enable us to predict z given q. For this reason, Bayesians usually parameterize
m as m and refer to it as a model. In fact, the pose q represents a subset of
these parameters. The reader should be aware, however, that parameterizing
m implies that a particular computational framework has been selected. By
referring to m in the abstract, we refer to a member of the universe of all
computational methods for computing z from q, without explicitly selecting,
for example, explicit object models, regularization of observations in n-space
or spline interpolation. The issue of choosing between computational models is
addressed by MacKay [26]. Callari and Ferrie also deal with this issue in the
context of object recognition, since the objects themselves represent a set of
abstract classes[5].

How can we use P(z|q,m) to infer pose? Simple application of Bayes’ Law

reveals that P(z| )P(q|m)
z|q, m)E(qm
P(z|m) ¥

where P(q|m) refers to the a priori probability density function for q (i.e. where
the robot thinks it is prior to taking the observation), and P(z|m) is referred to
as the evidence for the map. The latter term is often assumed to be uniformly
distributed and is treated as a normalizing constant. Note that if the prior and
the evidence are uniformly distributed then the most likely pose of the robot,
given the observation, is that which maximizes the likelihood of the observation
z itself.

Computationally, the solution of Equation 3 for the maximum-likelihood
pose of the robot may be difficult— the underlying probability density function
may be multi-modal, complicating simple gradient-ascent methods. Further-
more, it is often necessary or desirable to compute a compact representation for
the PDF. There are a variety of computational tools that can be employed to
represent a probability density function. Two of the more common tools are
mixture models and Monte Carlo simulation.

Mixture models represent a probability density function as a finite sum of
elementary PDF’s (for example, a Gaussian function)[19, 13]:

P(qlz,m) =

P(z) = lei > wiPi(z) (4)

where each w; represents a weighting term to be applied to elementary PDF
P;(z). Such an approach is useful for representing multi-modal data. However,
mixture models often require a priori knowledge of the number of modes of the
data.

Monte Carlo simulation is a computational approach wherein the probabil-
ity density function is represented implicitly by the set of outcomes of repeated
stochastic simulation. For example, the PDF for the pose of a robot can be rep-
resented by a set of weighted particles, each of which is located at a particular
point in the configuration space and weighted by the likelihood that the robot
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Figure 3: Monte Carlo simulation of a robot undergoing an uncertain motion.
Uncertainty in the robot’s heading yields a distinctly non-Gaussian distribution.
Figure courtesy Ioannis Rekleitis

is located at that particular point. Figure 3.3 depicts a Monte Carlo simula-
tion of the resulting pose of a robot undergoing an uncertain forward motion.
Note that uncertainty in the robot’s heading leads to a distinctly non-Gaussian
pose distribution. In the limit, as the number of particles goes to infinity, the
distribution of particles exactly represents the PDF of the robot’s pose. The
advantage of Monte Carlo simulation is that no a priori requirements are im-
posed on the structure of the PDF. The disadvantage is that the number of
particles required to adequately represent the PDF increases exponentially with
the dimensionality of the parameter space. Furthermore, faithfully simulating
the stochastics of a physical system is a difficult problem in and of itself. Nev-
ertheless, Monte Carlo simulation has been applied successfully to the problems
of robot localization and visual tracking[10, 18].

Armed with Bayes Law, and the useful related tools, we now turn our atten-
tion to the task of constructing a map of the environment. Note that we are not
yet discussing the problem of data acquisition or ezploration, but considering
what to do once the data has arrived.

3.4 Map-Construction in the Presence of Uncertainty

As a robot constructs a map of its environment, it must execute actions and take
sensor readings. Each of these tasks involves a certain measure of uncertainty
which can corrupt the resulting map, and since the uncertainty of the robot’s
actions compounds with each successive execution, the map eventually becomes
useless (not to mention that the robot becomes hopelessly lost).

While it may seem like a classic chicken-and-egg problem, it is still possible
to construct a useful map by posing the problem in a probabilistic framework.
In this context, the problem of representing the world becomes one of selecting
the representation which is most probable.

The most straightforward approach to probabilistic map construction is that
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of employing a Kalman Filter (KF) to update both the robot position and po-
sitions of landmarks (see, for example, [23] and [17]). While the concepts are
straightforward, the difficulty posed by the Kalman Filter is that all uncer-
tainties are embodied as Gaussian distributions, whereas the evolution of the
actual uncertainty of the pose of the robot may be non-Gaussian. In addition
to Gaussian assumptions, the Kalman Filter assumes that the problem is linear.
The Extended Kalman Filter (EKF) accommodates non-linear formulations by
first linearizing in the neighbourhood of the maximum-likelihood estimate via a
Taylor series expansion. The difficulty with this approach is that linearization
can cause the filter to diverge from the correct solution.

In order to avoid the problems encountered due to assumptions of linearity
and Gaussian uncertainty, we turn to a more general framework for posing the
map-building problem, as suggested by Thrun et al [47], (see also [48, 49]).
Thrun’s work takes advantage of a Markov assumption and Bayes’ law [45]
to show that, given a sequence of actions and observations as input data, the
most probable map is that which maximizes the likelihood of the data. The
method for producing the most probable map (and simultaneously the most
probable set of robot motions) is based on the Ezpectation Mazimization or
EM-algorithm[12].

The EM-algorithm is an iterative hill-climbing strategy in likelihood space
which operates in two phases, an Fxpectation phase, and a Maximization phase.
Thrun’s rendition of the EM-algorithm poses the E-step as that of computing
the most likely set of robot actions assuming the current estimate of the map
is correct. The M-step then computes the maximum likelihood map from the
robot’s observations, assuming the pose estimates from the E step are correct.
The process continues iteratively until the map converges to a local maximum.

In more recent work, Thrun suggests an incremental method which adjusts
the map as data arrives in real-time [50]. The method exploits a Monte Carlo
representation of the pose of the robot and distributes the computed error in
robot pose backwards in time over the prior observations. Such an approach
maintains a set of good starting points for gradient ascent in likelihood space,
which can be computed rapidly, foregoing the cost of searching the entire space
of maps for the maximum likelihood estimate.

The EM approach has also been exploited by Dellaert in the context of
computing Structure from Motion (SFM) using a camera [11]. This work is
significant in that it can be exploited as an alternative to the map representa-
tion we will employ in Section 5.2. It should be noted that both the Kalman
Filter and Markov-based approaches to map-building are motivated by previous
successes in robot localization [22, 42, 16, 10].

The algorithm for map construction presented by Thrun is satisfying in that
no specific representation of the underlying uncertainties is required. However,
this approach assumes that the robot has already performed the task of explo-
ration— the collection of observations from which to build the map. It makes no
attempt to instruct the robot about where to next collect an observation. We
will consider this task in the next section.

11



3.5 Exploration

Having considered the tasks of localization and map construction, we turn at
last to the problem of exploration.

The majority of exploration approaches apply heuristics to incrementally
discover unexplored space [4]. The difficulty with these methods is exactly that
they are heuristics— no consideration is given to the quality of the results, and
the results themselves are impossible to validate or evaluate.

This problem has been addressed by several authors in the context of Taran-
tola’s inverse problem theory and Fedorov’s theory of optimal experiments [45,
15]. MacKay'’s series of papers addresses the problem of Bayesian interpolation—
interpolating a function from sample observations in the presence of observa-
tional uncertainty [26, 27]. MacKay exploits Shannon’s entropy [36] to show
that the optimal place from which to obtain the next sample is that where the
prediction of an observation is least certain. In other words, one should take
observations at the places where the “error-bars” on the interpolating function
are largest. While the application of MacKay’s work is only to 1-d functions,
the fundamental theory behind his derivation will be preserved when we derive
our own objective function for data selection.

Whaite and Ferrie employ MacKay’s framework in their work on active ex-
ploration for the purposes of obtaining object models [51, 52]. They show that
the best location from which to take an observation is that which maximizes the
prediction variance, based on the covariance matrix of the set of model param-
eters describing the object. They formulate a decision process which is based
only on a local measure of the model uncertainty, directing the agent to take
sensor readings as it climbs (and simultaneously suppresses) the uncertainty
gradient.

Arbel and Ferrie exploit this same idea in solving the object recognition
problem, directing the sensor to places which will maximize the expected reduc-
tion in entropy of the probability distribution over possible object classes [3, 2].
In this case the authors benefit from the fact that the “entropy map” can be
constructed in advance, given the known universe of objects.

Finally, the information theoretic approach has also been applied to the
problem of robot navigation. Roy and Thrun define an objective function for
navigating to a goal position in a known world that simultaneously aims to
minimize the entropy of the probability density function defining the pose of
the robot and to reach the goal along a reasonable path [34]. The resulting
path planning method is referred to as “coastal navigation” for its tendency to
direct the robot along the boundaries of obstacles, where the certainty of the
robot’s pose can be improved.

The approaches taken by MacKay and Whaite rely on several important as-
sumptions and approximations. First, it is assumed that the pose of the robot
is known exactly. No indication is given as to how to deal with the uncertain
outcomes of the robot’s actions. Second, it is assumed that the distribution of
the model parameters is Gaussian, which facilitates an analytic solution for the
best observation site. As Whaite only applies the Gaussian assumption in order
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to approximate the local gradient in the uncertainty space and make a local de-
cision about where to move next, this assumption seems reasonable. However,
the more critical assumption imposed by the theory is that the model, or repre-
sentation, can exactly model the real-world phenomena that give rise to data. If
this assumption is incorrect, then the agent can be directed to repeatedly collect
samples from sites that the model cannot represent, leading to a sub-optimal
improvement in the representation. Alternatively, over-confidence in the model
can lead the robot to ignore regions which are poorly represented. MacKay
refers to this issue as the “Achilles’ Heel” of the approach. One of the goals
of this work is to develop a framework for accommodating a representation’s
inability to completely capture the data.

4 Developing a Theory of Exploration

Having considered extensively the prior work on the topic of exploration and en-
vironment representation, we will proceed to develop the theory that motivates
our proposed approach. We will employ an information-theoretic approach to
the problem, also taking into account any task-specific requirements and ac-
counting for uncertainty in the pose of the robot.

4.1 A Bayesian Approach

Given a map m, and a sensor reading z, Equation 3 computed the probability

of the pose q of the robot using Bayes’ Law:

P(z|q,m)P(q|m) 5)
P(z|m)

P(qlz,m) =

where P(z|q,m) represents our predictive model or theory that allows us
to measure the likelihood of an observation based on what we know about the
world.

In the context of exploration, a naive approach to data collection might be
to move to places or select actions such that the uncertainty in the pose of the
robot is maximized. This would amount to selecting the pose that maximizes
the expected posteriori entropy H of P(q|z,m):

H=- P(q|z,m) log P(q|z,m)dz (6)
zEZ

It is interesting to contrast this idea with the navigational approach of Roy
and Thrun, who move toward a goal in the known world by minimizing the
entropy of the posteriori pose distribution. In fact, maximizing H is incorrect for
exploration because it depends on fixed properties of the environment— different
places in the world may look alike and no matter how many observations we
take our uncertainty about being in one place versus another identical place
should remain fixed.

13



Instead, we are more interested in the likelihood of our map given our current
observation: Pz \P(m|a)

z|q,m)P(m|q

Equation 7 relates the likelihood of the map in the face of an observation
taken from a particular pose to the likelihood of the observation and our a priori
measure of the probability of the map. Note that P(z|q) is independent of q in
the absence of a map.

The information theoretic approach to exploration is to find the pose q which
maximizes the expected reduction in entropy of the probability distribution
P(m|q,z). We state the expected change in entropy in terms of what MacKay
defines as cross-entropy G:

G= —/ ur P(m|q,z)log %dm (8)

and
E[G] = Gdd 9)
dez
where P(m) represents the prior for m before the arrival of the datum z; it may
depend, however, on a set of previously collected data.

Evaluating Equation 8 requires an integration over the space of possible
maps. This poses a difficulty. In contrast to methods which construct para-
metric models based on the data [51], we have not yet instantiated our maps
in terms of an explicit set of parameters. In fact, we have consciously avoided
any such instantiation in order to allow for generality— the parameters may be
implicitly encoded by an inaccessible black-box or may be embodied solely in
the set of prior observations.

At this juncture, we arrive at a crossroads for continued investigation. On
the one hand, we can insist that our maps be parameterized. This leads to the
formulations proposed by MacKay and Whaite et al, which are simplified by
computing the first-order Taylor series expansion about the maximum-likelihood
map m and assuming that the likelihood space is normally distributed in the
neighbourhood of m. One possible avenue for consideration is the explicit pa-
rameterization of m as the actual set of observations. This yields a parameter-
ization m € Z X Z X ... X Z where the observation space is crossed with itself
once for each datum. The author is currently investigating whether Equation 8
can be simplified in this context.

Alternatively, we can work with the text of MacKay’s observation that we
should collect data “at the point where the error bars on the interpolant are
currently largest”. The implication is that at these points the ability of the map
to predict the data is weakest. Mathematically, however, the author has been
unable to derive an explicit relationship between the change in entropy of the
model and the entropy, or uncertainty, of the predicted observation. In fact, the
nearest derivation suggests quite the opposite— it is more informative to take a
low-noise observation than one that is noisy. This apparent contradiction stems

14



from the fact that the model may be quite certain that the prediction arises
from a noisy process, whereas it may be highly uncertain in predicting a datum
for a process which is known to be relatively noiseless. The conclusion that we
are forced to draw is that this second line of attack is theoretically unsound.

Finally, we must consider the uncertain pose of the robot. In this case, we
cannot select the best pose to navigate to. We should instead select an action
a to be executed by the robot so as to maximize the expectation of E[G] given
a over the configuration space C:

() = FIE(Gll) = | P(ala)E(Glda (10)

Let us assume for the moment that the configuration space of the robot
is discretized onto a finite grid. If we restrict the possible actions to a small,
discrete set (such as, move forward 10cm, or turn left 10°), then it should be
possible to formulate the task as a reinforcement learning problem [43]. In
this context, the task is to compute a policy 7 that selects actions in order
to maximize the expected reward, or certainty, accrued to the robot over the
long-term. The principal difficulty with this approach is that tractability also
requires a discretization of the robot’s state of knowledge, which may not be
straightforward. This is a question for future research.

4.2 Adding an Action-Cost Measure

The formulation, as presented, directs the robot to the place (or to execute
an action) which is globally optimal for data collection. However, the globally
optimal action may in fact require the robot to travel a significant distance, or
put itself at risk due to environmental hazards. This fact has two effects— first,
the physical cost of executing the optimum action may be too high, and second,
the robot may become hopelessly lost in traveling to its goal. To accommodate
this difficulty, we present a new objective function

F(a) =AXH(a) + (1 — A)c(a) (11)

where c(a) represents the cost of executing action a and A is a parameter deter-
mining the desired relative weight between the expected change in entropy H
and c. It is not clear at this juncture whether H(a) sufficiently penalizes highly
uncertain actions. This is also a question for future investigation.

5 Preliminary Results

5.1 Simulation

In this section we consider the state of the work to date. Our first instantiation
of the exploration method simulates a robot in a polygon-shaped environment
(Figure 4(a)).

15



Figure 4: Simulation results. a) the robot’s environment. b) the termination of
exploration.

We model the environment as an occupancy grid, where each grid point (z, y)
holds the value poec(,y), the probability that position (z,y) is intersected by
an edge of the polygon. The occupancy grid is initialized to 0.5 everywhere, in-
dicating the state of no information, and the robot is initialized to pose (30, 30),
in the lower left corner of the map.

Exploration is performed by first identifying a set of candidate poses which
are eligible for exploration (those which are known to be reachable based on the
current state of the occupancy grid), and using the occupancy grid to simulate
the PDF of a simulated sonar scan at each position. The pose whose sonar PDF
has highest entropy is selected as the optimal pose from which to take the next
scan. Figure 4(b) shows the state of the occupancy grid after 30 iterations of
the algorithm. Unfortunately, at this stage, the model repeatedly selects the
same position from which to scan and the algorithm terminates. The reasons
for termination are various— we concluded in Section 4.1 that the heuristic is
incorrect. Furthermore, MacKay’s argument that insufficient models lead to
suboptimal behaviour also applies, since we have modeled the sonar scanner
heuristically.

While the simulated exploration of Figures 4(a) and 4(b) demonstrate some
of the important issues faced by information-theoretic exploration, each of which
must be addressed in the course of this work, it is of significant interest to pursue
a richer sensing model. We now turn our attention to the task of modeling the
probability density function of a vision sensor in a real world setting.
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Figure 5: Original scene and synthesized landmarks.

5.2 An instantiation of P(z|q,m)

Ultimately, our goal is to automate the acquisition of training inputs for a map-
learning mechanism, such as the one discussed in Section 3.4. Fundamental to
this mechanism is the development of the theory, that is, the ability to compute
P(z|q,m). We will discuss here our prior work in the domain of landmark
learning and introduce an instantiation of P(z|q,m) which can be applied in
a Bayesian context to robot localization[38, 39, 40]. It should be noted that
the prior work cited does not employ a Bayesian framework— the formulation
presented here is, as yet, unpublished.

Our goal is to compute the probability density function of a camera image z,
given the pose q of the robot, and a map m. Our approach makes two simplifying
assumptions— first, rather than generate the entire image z, we concentrate only
on generating the image in the neighbourhood of a set L = {l;,1s,...,1,} of
visible salient points or landmarks[37]. Second, the probability density function
of an observed landmark is normally distributed about a maximum likelihood
observation 1; which is computed explicitly from q and m.

The function that generates 1; is based on an unsupervised learning mecha-
nism which constructs the most likely image position and appearance of a land-
mark from a set of prior observations (obtained in the process of exploration).
Furthermore, a cross-validation scheme is used to infer the covariance matrix
of the distribution. Therefore, the covariance captures at once the stochastic
nature of the sensor and the inadequacies of the model. Figure 5(a) depicts
a scene whose landmarks were learned by uniform sampling of the pose space.
Figure 5(b) depicts a synthesized image from a nearby pose in the pose space—
only the image in the neighbourhood of each landmark has been reconstructed.

Given a method for computing 1;, we can formulate P(z|q, m) as a mixture
of Gaussian PDF’s, each corresponding to a landmark in the image :

Plala,m) = - Y Pllam) (12)
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where P(l;|q,m;) corresponds to the Gaussian probability density function of
landmark /;, given the pose and the learned predictor for that landmark m;.

One further point of justification must be made for our choice of a mixture
model in Equation 12. Whereas a correct formulation would be to compute
a joint distribution multiplicatively, we have not considered the possibility of
outliers in the landmark recognition phase, which can obliterate the results
due to limited machine precision. While a summation model prevents such
catastrophes at the cost of higher uncertainty in the PDF, it also imposes the
incorrect assumption that the landmark observations are disjoint.

Figure 6(b) depicts P(q|z) over a 2m by 2m pose space in the laboratory
setting depicted in Figure 6(a). The mode of the distribution predicts the pose
of the robot to be at position (131, 29) whereas the actual robot position was
(130, 22).

6 Future Directions

We have established a framework for autonomous information discovery in the
context of robotic exploration. There are a wide variety of issues that require
further discussion.

e The most significant issue is that of tractability. The integrals that must
be solved in order to compute the entropy function require simplification.
It is likely that we can exploit the mixture model formulation we have
proposed in order to derive an analytic solution.

e The lack of explicit models is a handicap to the derivation and must be
addressed. The question of model parameterization remains complicated,
given the computational model that we have presented.

e The model we have proposed for modeling P(z|q, m) in the image domain
requires further investigation, particularly for more complicated configu-
ration spaces.

e More work is required in the context of evaluating the expected entropy
given the uncertainty in the robot’s pose. This is necessary for evaluating
a set of actions, as opposed to choosing a single vantage point from which
to obtain a sensor reading. The question of whether the reinforcement
learning paradigm can be applied will be considered.

e We have not yet addressed the inference of geometric constraints in the
context of navigating through the world— presumably these can be added
to the cost function. However, just as we are aiming to reconstruct the
image function, it should be possible to reconstruct the sonar function.

e A separate, yet equally interesting issue for future work has to do with
the natural topology of the environment which is expressed by the set
of landmarks that are currently in view. That is, different regions of
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Figure 6: Laboratory scene and probability density function of robot pose. The
area depicted corresponds to the 2 — D configuration space of the robot. Darker
regions correspond to more likely poses, given the image.
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space give rise to a different set of visible landmarks. Clearly, there are
opportunities for path planning and inference based on navigating between
the sets of visible landmarks. This approach lies very much in the domain
of a hybrid representation between a set of topological places and local
metric maps.

7 Conclusions

One of the most significant gaps in the domain of robotics research is that of
autonomous exploration. Whereas the domain of machine learning has studied
how to make sense of the data, very few researchers have considered the task
of actually acquiring the data that optimally facilitates the task at hand. Our
work aims to fill this gap in a way that is at once theoretically sound and prac-
tically feasible. We have proposed a theory of exploration which is derived from
information theory. Specifically, the robot is directed to acquire sensor readings
from places where its ability to model the world is weakest. We have estab-
lished preliminary results which validate in part the feasibility of our goals and
highlight some of the important difficulties that must be overcome. Our future
work will continue to seek a marriage between a robust theory of exploration
and the practical issues of implementation.
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