
ON THE CONTROL OF AUTONOMOUS
 MOBILE ROBOTS

J. Sousa, MSc, F. Pereira, PhD, A. Martins, MSc, A. Matos, MSc, J. Almeida, MSc, N. Cruz,
MSc and S. Cunha, MSc.
Instituto de Sistemas e Robótica-Porto e Faculdade de Engenharia da Universidade do Porto,
Rua dos Bragas, 4099 Porto Codex, Portugal
e-mail: flpereir@garfield.fe.up.pt

E. Pereira da Silva, MSc.
Instituto de Sistemas e Robótica-Porto e Instituto Superior de Engenharia do Porto,
R. de S. Tomé, 4200 Porto, Portugal

ABSTRACT

In this article, we describe the effort being carried out in the analysis, design and
implementation of the Vehicle and Mission Management Systems of a mobile platform for
autonomous transportation, surveillance and inspection in structured and semi-structured
industrial environments. The Vehicle and Mission Management System is based in a
hierarchical structure organized linguistically permitting the real-time parallel execution of
tasks. This architecture is composed by three levels, Organization, Coordination and
Functional, structured according to the Increasing Precision with Decreasing Intelligence
Principle.

1. INTRODUCTION

This paper describes the analysis, design and
implementation of a mobile robotic system with
increasing degrees of autonomy to operate in
semi-structured industrial environments. Design
requirements were driven by the following
major applicational goals:

Platform for research activities.

Educational platform.

Demonstration for industrial applications.

The analysis and design phases were conducted
in such a way as to explicit the main guidelines
associated with it in an attempt to extract a
systematic approach. This turned out to be a
large effort in the beginning of the project
which was targeted not to implementation but
rather to the definition of the main architectural
concepts, the main interfaces, and to the
development methodology. However, this

turned out to be a sound investiment as it not
only led to the selection of engineering systems
methodologies which were instrumental in the
success of the project, but also provided a solid
basis for future refinements. The absence of
systematic analysis, design and implementation
techniques is the first major difficulty
encountered.

Another important issue to consider is the clear
relation between human intervention and
autonomy. The full specification of autonomy
requirements leads to a structure which may
naturally accommodate human intervention at
various levels. Furthermore, an appropriate
design of human intervention plays an
important role in the success of operational
systems. This constitutes a valuable
contribution to the dissemination of the
technology and a motivation for the
development of more complex systems.

The remainder of this paper is organized as
follows: After presenting system components,

in section 3, the software implementation is
described with detail in section 4. In section 5,
the user interface is presented emphasizing the
main operating modes of the system. The paper
concludes with some remarks concerning future
work conclude the paper.

2. REQUIREMENTS AND DESIGN
OPTIONS

Now, we describe the main architectural
concepts involving Navigation, Guidance,
Dynamic Control and the Vehicle and Mission
Management Systems. These functions were
implemented in a commercially available
system consisting of a mobile platform
ROBUTER running the real-time operating
system ALBATROS [2], and a UNIX SUN
station.

The implementation of a control system for an
intelligent machine [3] involves: definition of
design requirements, decomposition of design
requirements into implementable pieces,
definition of the hardware and functional
processing so that the requirements are met,
mapping of the functional processing into the
hardware, and global verification.

Requirements

Operation in an industrial environment
represents the main motivation behind the
definition of the following design requirements
for the system:

1. Two main operating modes: teleoperation
and mission execution. While in the first
operating mode the operator directly controls
the motors of the platform, in the second, the
operator commands the execution of pre-
specified missions. Besides a high level
language [4] to support mission specification,
mission templates can be used for typical
missions.

2. Mission execution involves navigation in a
semi-structured environment and precise
docking at pre-defined locations to accomplish
given tasks.

3. Two types of users: Operator and system
administrator. While the first is responsible for

operating the vehicle, the second will be in
charge of defining and maintaining the world
model, parameter values and implicit execution
rules which constitute the system´s doctrine.

4. User interface should be supported by a
graphical environment. Simplicity of operation
is the main design issue in what concerns
operator´s interface.

The use of this platform poses additional
constraints on the system´s requirements. These
constraints are related to the decomposition of
design requirements into implementable pieces
and respective mapping of the functional
processing into the hardware. The above
mentioned requirements constitute the basis for
the main design options [4]:

Tri-level hierarchic control architecture

The control architecture is composed of three
levels: Organization, Coordination and
Functional Layer, [5]. This option corresponds
to the need to have well defined planning and
control mechanisms which are at the heart of
hierarchical approaches [7], [8]. The emergence
of reactive behaviors at the Functional Layer is
enabled or disabled by the coordination level.

Linguistic approach

The hierarchic structure will rely on the
definition of independent linguistic units for
each level [10]. Besides accomplishing parallel
and independent design and programming for
the hierarchic architecture, this approach is also
particularly suited to support the coordination
activities. Furthermore, it provides a common
framework to deal with concepts from both
control and information theories.

Mission Composition from Primitive Functions

Maximum flexibility is obtained when mission
components are designed as the composition of
elementary capabilities. The composition
mechanisms are supported by the hierarchic
encapsulation of the linguist structure which is
well suited to the incremental development of
behaviors and functionalities.

Error handling and recovery procedures

An additional hierarchy of error handling
devices is considered. A global error handler
takes care of errors which were not solved by
the corresponding module error handling
device.

Definition of basic motion primitives

These requirements led to the choice of
continuous path following and to the definition
of the path as a set of basic motion primitives.
These options are well adapted to the
implementation in a system composed of two
computers connected through a serial link. The
pilot module (at the workstation) takes the path
segment data and passes each segment in turn to
the motion controller (at the platform
computer) which converts the sparse spatial
data of the plan into detailed temporal data
([11] [12]).

Distributed processing

The software components with stringent real-
time requirements reside on the platform
computer. The remaining software components
reside at a UNIX station where special attention
is paid to real-time issues.

3. SYSTEM COMPONENTS

Figure 1 shows the main hardware components
for the system in the initial configuration.

Workstation

Graphical UNIX workstation supports the user
interface, the communication server and the
mission management system.

M

Figure 1

Mobile platform:

With a payload up to 120kg and running a real-
time operating system ALBATROS [2]

specifically designed for multi-axis control, the
platform is composed of the following:

a) Differential steering system based on two
independent motors.

b) Optical encoders for platform positioning.

c) Network of ultrasonic sensors for range
sensing.

d) Bumpers.

e) VME bus with 5 slots, 68020, 16 Mhz.

f) 9600 baud serial link.

g) Software package for developing and
downloading C application programs from a
host machine.

4. SOFTWARE IMPLEMENTATION

Initial control software implementation relies
on the interconnection of two distinct
environments whose communication is made
via a serial link. This solution is described on
the next two sub-sections. Early in the
development stages, it was clear that the
limited onboard computational capabilities and
the low communication rate between both
environments, were a serious drawback to
address any realistic application scenario. In
subsection 4.3, we describe the design effort
undertaken introduce a new onboard operating
system.

 4. 1. UNIX environment

Figure 2 describes the main software
components of the system running on the
workstation.

Communication Server

The communication server manages
interprocess communication at this level. Rapid
prototyping and dynamic routing in an Ethernet
environment represent the requirements
underlying the main implementation options.
Sockets are at the basis of communication. A
host table and a post table are used for the
purpose of routing messages. The server
supports broadcast and point to point
communication modes.

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

AAAA
AAAA
AAAA

AAAA
AAAA
AAAA

AA
AA
AA

BD

Interface

Command Shell

Coordination

Obstacle
Detection NavigationPilot

Mirror

Pathplanner

Planner

Organization

Figure 2

Communication Server

The communication server manages
interprocess communication at this level. Rapid
prototyping and dynamic routing in an Ethernet
environment represent the requirements
underlying the main implementation options. A
version permitting transparent shared memory
access is under development.

Planner

The generation of the mission plan from two
distinct sources provides a convenient
separation between the mission specification
defined in terms simple for an operator to
instruct the vehicle´s tasks and the definition of
a set of rules underlying mission execution. The
mission specification language fully supports
the definition of missions to be accomplished in
an industrial environment.

Command Shell

A user language [2] supports this command
shell. Built-in mechanisms of the language
support operation under a distributed computing
system. This shell was not only particularly
useful in the development phase since it was
built incrementally, but also allows the dynamic
augmentation of system´s functionalities. The
underlying design options address the low-cost
integration of the system in an industrial

environment either in a standalone version or
connected to another computing system.

Coordination

The coordination module is responsible for
coordinating the activities of the whole system
according to an execution guideline represented
by the mission plan. For a given execution
context, decisions represent the control actions
taken as response to sensor and logical stimuli
in order to accomplish the mission goals. By
considering a rule based coordination structure,
the coordination kernel maintains the coherence
of the plan execution so that commands or tasks
are not executed outside the respective scope.

Plan interpreter - dynamic compiler responsible
for interpreting the rules and tasks constituting
the mission and the associated doctrines. The
net of rules and tasks can be altered by this
module upon request of the mission supervisor.

Plan Supervisor - organizes, schedules and
manages the tasks required for mission
execution. It has to verify that tasks produce the
expected effects and must react in case of
discrepancy.

Task Coordinator and Refinement -
implemented via the coordination formalism,
constitute an abstraction of the coordination and
associated refinement for each single task. Task
refinement selects the best alternative, if
available, for the task execution in terms of the
current configuration. Implementation is
supported UNIX utilities LEX and YACC.

Platform Mirror

This system mirrors the activity of the platform
computer by maintaining a table representing
the current platform state. The coordination
activities are based on this state. Non-negligible
transmission delays for the serial link and non-
deterministic interprocess communication
aspects of UNIX impose the need of temporal
windows for command execution. Clock
synchronization is fundamental at this point
since all messages received from the platform
are time-stamped.

The Path Planner, Pilot, Obstacle Detection and
Navigation Modules are described in [4].

4.2. ALBATROS environment

Figure 3 describes the main software of the
system running on the ROBUTER computer
under the real-time multi-tasking ALBATROS
operating system. The real-time management of
processes are essential to get the most out of the
available computational resources. Intensive
experimentation and testing is required in order
to define the optimal combination, in terms of
the envisaged mission scenarios, of process
priorities, durations and offsets.

Communication Server

This communication server maintains two
independent buffers in order guarantee bi-
directional communication with the platform. It
is also responsible for routing messages from
the workstation.

Sonars Bumpers MotorsOdometers

Sonars
Control

Bumper
control Localization Motors

Control

Motion
Control

Protection
Envelopes

Communication
Server

Platform
state

Figure 3

Sonars and Bumpers Control

This module controls the belt of ultra-sonic
sensors. The belt is organized into a series of
nodes which group non-interfering sonars.
Every 100 ms the readings from a sonar node
are sent to the workstation for obstacle
detection and navigation purposes. Precise
sonar description of a region can be obtained by
changing the control configuration of the
sonars.

The activation of the bumpers may trigger a
safety behavior implemented at the motion
control module which consists in stopping the
platform until the obstacle is removed and a

continuation command is issued by the
operator. The behavior can be enabled or
disabled either through a menu option or by
stating this option in the mission plan.

Protection envelopes

A protection envelope defines a region where
the detection of a sonar return triggers the
emergence of a safety behavior and issues a
warning message to the operator. Presently,
there are two velocity dependent protection
envelopes. The first is used to generate a signal
to decrease the platform velocity. The second is
used to command the immediate stop of the
platform.

 Localization

The localization process runs every 50 ms. It is
basically a dead reckoning procedure based on
the readings from the encoders. The position
and angle with respect to some fixed reference
frame (x, y and θ) are calculated by integrating
an equation [4] describing the relation between
the positional increments of the platform and
the measurements from the encoders.
Localization data corresponding to the
respective sonar readings is sent to the
workstation to allow the navigation algorithm
to avoid too large dead-reckoning errors.

Platform state

Transmission delays caused by the serial link
and non-deterministic timing characteristics of
inter-process communication at the UNIX
workstation make explicit time dependencies
for command execution difficult to manage.
Motion control logic is managed by a finite
state machine which is used to filter commands
or messages from the UNIX workstation or
from other processes running at the platform
computer.

Motors control

This process runs at the same rate of the
localization process. Independent velocity PI
control algorithms are used for each motor.
Differences between the two motors are
properly taken into account by using
experimental data to tune the gains of each

control loop. Velocity feedback is obtained by
differentiating the positional measurements
from each wheel.

Motion Control

There are two basic control modes: direct drive
of the motors (in the teleoperation mode) and
execution of a motion primitive. Straight line
and arc of circle are the basic implemented
motion primitives. These motion primitives
take as input initial and end points, type of
segment and a signed velocity for that segment.
The positional and heading errors of the
platform with respect to the reference trajectory
generate a velocity reference for each motor.
The activities of this module are governed by
the control module logic (Fig. 4)

Control
Modulerequests replies

motors
control

Motion
Primitives

Acceleration/
velocity
Limitations

Emergency
Stops

Figure 4

Motion primitives are implemented as self-
contained behaviors [2] which are characterized
by sets of pre-conditions, post-conditions and
doctrine rules. These may include triggering
alarms and eventually stop whenever the
Euclidean distance from the reference
trajectory exceeds a threshold level.

4.3. Migration from ALBATROS to Vx-
Works

The replacement of the ALBATROS by real-
time, multi-task operating system Vx-Works
will overcome the limitations described at the
beginning of this section for two reasons:

Higher computational power due to increased
memory, better processor and higher clock
frequency. These increased capabilities allow to
run software in the onboard processor that was
previously installed in the workstation.

Improved communications as the serial link
will be replaced by a radio ethernet link.

These new capabilities will allow not only the
design of a more efficient computational
architecture, but also it will permit a much
faster development. This is due to the fact that,
besides being fully compatible with UNIX and
having powerful development tools, Vx-Works
makes it easier to define a configuration where
the on-board computer is integrated in a
simulation environment. This enables to
support all the simulation activities with the
code actually developed to the system, thus
decreasing development costs and time.

5. USER INTERFACE

The user interface is fully supported by a multi-
window system developed in MOTIF, Figure
5, describes the hierarchy of windows.

While the system administrator has access to
the whole hierarchy, the operator can only use
the functionalities which are related to the two
main operating modes.

Session
Manager

Operation Configuration

Execute
Missions

Preparation

Setup Teleoperate

Mission
Following

Figure 5

6. CONCLUSIONS

This paper presents the implementation aspects
of a control architecture for an industrial mobile
platform. An open system was developed so
that a basis for future developments was
established and a platform for research and
development on the design of intelligent control
systems is available.

Lessons learned include:

Cost effectiveness of a "hardware in the loop"
simulation environment.

Realistic industrial applications can not be
addressd due to the severe software and
hardware constraints of the configuration
adopted in the first phase.

Vx-Works real-time multi-tasking operating
system and its development environment seems
to fulfill the needed requirements.

ACKNOWLEDGEMENTS

Part of this work was developed in the PO-
Robot Project funded under the NATO
Science-for-Stability Programme.

REFERENCES

[1] G. Saridis, "Analytic Formulation of the
Principle of Increasing Intelligent with
Decreasing Precision for Intelligent Machines,"
Automatica, Vol. 25, nº. 3, 1989, pp.461-467.

[2] Albatros Reference Manual, Robosoft
S.A., France, 1993.

[3] J. Borges de Sousa, F. Lobo Pereira and
E. Pereira da Silva, "Software Architecture for
Autonomous Mobile Vehicles: A Survey",
Autonomous Underwater Vehicles, Kluwer
Academic, in press.

[4] E. Pereira da Silva, J. Borges de Sousa, F.
Lobo Pereira, J. Sequeira and I. Ribeiro (1994)
"On the Design of the PO-ROBOT System" to
appear in the Procs of the IEEE Intelligent
Vehicles Symp.'94, Paris, France, Oct. 1994.

[5] J. Borges de Sousa, F. Lobo Pereira and
E. Pereira da Silva, (1994) "A Dynamically
Configurable Architecture for the Control of an
AUV" to appear in the Procs. OCEANS 94
Conf., Brest, France, Sept. 1994.

[6] R. Chatila, R. Alami, Degallaix and H.
Haruelle, "Integrated Planning and Execution
Control of Autonomous Robot Actions". Procs
of the IEEE Intern. Conf. on Robotics and
Automation, Nice, France, 1992.

[7] R. Alami, R. Chatila, M.
Ghallab,"Mission Planning for an Autonomous
Mobile Robot", In Procs. of AIENG 93,
Toulouse, (France), 1993.

[8] G. Saridis, "Architecture for Intelligent
Machines", Technical Report CIRSSE-58,
Center for Intelligent Robotic Systems for
Space Exploration (CIRSSE), Rensselaer
Polytechnic Institute, 1991.

[9] A. J. Healey, R.B. McGhee, R. Christi,
F.A. Papoulias, S.H. Kwak, Y. Kanayama and
Y. Lee,"Mission Planning, Execution and Data
Analysis for the NPS AUV II Autonomous
Underwater Vehicle," Procs of 1st IARP
Workshop on Mobile Robots for Subsea
Environments, Monterey, CA, 1991, pp. 177-
186.

[10] G. Saridis and J. Graham, "Linguistic
Decision Schemata for Intelligent Robots,"
Automatica, vol. 20, nº 1, pp. 12-126, 1984.

[11] W. Nelson and I. Cox, "Local Path
Control for an Autnomous Vehicle",
Autonomous Robot Vehicles, Springer-Verlag,
pp. 38-44.

[12] T. Hongo, H. Arakawa, G. Sugimoto, K.
Tange and Y. Yamamoto, "An Automatic
Guidance System of a Self-Controlled Vehicle",
Autonomous Robot Vehicles, Springer-Verlag,
pp. 32-37.

