
Talukdar, p. 20

Proc. of 8th European Workshop on Modeling Autonomous Agents in a Multi-Agent World,

MAAMAW’97, Ronneby, Sweden, May 1997, Springer-Verlag [http://www.ece.cmu.edu/

afs/ece/usr/talukdar/public_html/ateams.ps].

[25] K. Carley, A. Newell, “The Nature of the Social Agent,” Journal of Mathematical Sociology,

Vol. 19, No. 4, pp. 221-262, 1994.

[26] G. Bassak, “Bringing in the A-Teams,” IBM Research, No. 2, 1996

[27] S. Sachdev, “Modular Optimization,” Ph.D Proposal, Carnegie Mellon University, Feb. 1998

Talukdar, p. 19

[14] S. N. Talukdar, V.C. Ramesh, “A Parallel Global Optimization Algorithm and its Application

to the CCOPF Problem,” Proceedings of the Power Industry Computer Applications

Conference, Phoenix, May, 1993.

[15] P. Avila-Abascal and S. N. Talukdar, “Cooperative Algorithms and Abductive Causal

Networks for the Automatic Generation of Intelligent Substation Alarm Processors”,

Proceedings of ISCAS-96.

[16] S. Y. Chen, S. N. Talukdar, N. M. Sadeh, “Job-Shop-Scheduling by a Team of Asynchronous

Agents,” IJCAI-93 Workshop on Knowledge-Based Production, Scheduling and Control,

Chambery, France, 1993.

[17] J. Rachlin, F. Wu, S. Murthy, S. Talukdar, M. Sturzenbecker, R. Akkiraju, R. Fuhrer, A.

Aggarwal, J. Yeh, R. Henry and R. Jayaraman, “Forest View: A System For Integrated

Scheduling In Complex Manufacturing Domains,” IBM report, 1996.

[18] H. Lee, S. Murthy, W. Haider, D. Morse, “Primary Production Scheduling in Steelmaking

Industries,” IBM report, 1995.

[19] C. K. Tsen, “Solving Train Scheduling Problems Using A-Teams,” Ph.D. dissertation,

Electrical and Computer engineering Department, CMU, Pittsburgh, 1995.

[20] S. R. Gorti, S Humair, R. D. Sriram, S. Talukdar, S. Murthy, “Solving Constraint Satisfaction

Problems Using A-Teams,” to appear in AI-EDAM.

[21] S. N. Talukdar, L. Baerentzen, A. Gove, P. S. deSouza, “Asynchronous Teams: Cooperation

Schemes for Autonomous Agents,” to appear in the Journal of Heuristics, and visible at:

http://www.ece.cmu.edu/afs/ece/usr/talukdar/heuristics.ps.

[22] K. M. Carley, “Computational and Mathematical Organization Theory: Perspectives and

Directions,” Journal of Computational and Mathematical Organizational Theory, Vol. 1, No.

1, Oct. 1995

[23] L. Baerentzen and S.N. Talukdar, “Improving Cooperation Among Autonomous Agents in

Asynchronous Teams,” submitted to the Journal of Computational and Mathematical

Organizational Theory [http://www.ece.cmu.edu/afs/ece/usr/talukdar/public_html/

likelihood.ps].

[24] L. Baerentzen, P. Avila and S.N. Talukdar, “Learning Network Designs for Asynchronous

Teams,” in Lecture Notes in Artificial Intelligence 1237: Multi-Agent Rationality, also in

Talukdar, p. 18

accommodating hard and fairly restrictive constraints on solution-speed.

REFERENCES

[1] G.F. Oster and E.O. Wilson, “Caste and Ecology in the Social Insects,” Princeton University

Press, Princeton, NJ, 1978.

[2] A. Kerr, Jr., “Subacute Bacterial Endocardites,” Charles C. Thomas, Springfield, IL, 1955.

[3] “Handbook of Genetic Algorithms,” edited by L. Davis, Van Nostrand Reinhold, 1991

[4] H. P. Nii, “Blackboard Systems: The Blackboard Model of Problem Solving and the

Evolution of Blackboard Architectures, Parts I and II, AI Magazine, 7:2 and 7:3, 1986.

[5] S. Kirkpatrick, C.D. Gelatt, and M.P. Cecchi, “Optimization by Simulated Annealing,”

Science, Vol. 220, Number 4598, May, 1983.

[6] F. Glover, “Tabu Search-Parts I and II,” ORSA Journal of Computing, Vol. 1. No. 3, Summer

1989 and Vol. 2, No. 1, Winter 1990.

[7] S. Pugh, “Total Design,” Addison Wesley, 1990.

[8] P. S. deSouza and S.N. Talukdar, “Genetic Algorithms in Asynchronous Teams,”

Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan

Kaufmann, Los Altos, CA, 1991.

[9] S. N. Talukdar, S. S. Pyo and T. Giras, “Asynchronous Procedures for Parallel Processing,”

IEEE Trans. on PAS, Vol. PAS-102, NO 11, Nov. 1983.

[10] P. de Souza, “Asynchronous Organizations for Multi-Algorithm Problems,” Ph. D.

Dissertation, Dept. of Electrical and Computer Engineering, Carnegie Mellon University,

Pittsburgh, PA, 1993.

[11] R.W. Quadrel, “Asynchronous Design Environments: Architecture and Behavior,” Ph. D.

Dissertation, Department of Architecture, Carnegie Mellon University, Pittsburgh, PA, 1991.

[12] S. Murthy, “Synergy in Cooperating Agents: Designing Manipulators from Task

Specifications,” Ph.D. dissertation, Department of Electrical and Computer Engineering,

Carnegie Mellon University, Pittsburgh, PA, 1992.

[13] C.L. Chen, “Bayesian Nets and A-Teams for Power System Fault Diagnosis,” Ph. D.

Dissertation, Electrical and Computer Engineering Department, Carnegie Mellon University,

Pittsburgh, PA, 1992.

Talukdar, p. 17

The main obstacles to good automatic-decision-making are:

1. The context (location and view of the system) of each decision-maker is unique. Therefore,

the ideal strategy for each decision-maker is also unique.

2. The system changes with time. Therefore, the ideal strategy for each decision-maker also

changes with time.

3. Many of the rules that should be included in a strategy, such as the rules for when to switch

from the normal mode of control to an emergency mode of control, are not explicitly known.

Because of these obstacles, it is impractical to manually program the ideal strategy into each

controller. An alternative is to provide thecontrollers with the capabilities for automatic, context-

dependent and lifelong learning (by which we mean the continual transformation of experience--

actual or simulated operating data--into location-specific, strategy improvements.)

Existing learning models, such as Neural Nets, Bayesian Nets and Reinforcement Learning,

can deal with very large volumes of numerical data. But they cannot deal with data of high

dimension, such as the state information of an entire power system. Therefore, the successful

application of learning technology to a power system is contingent on decomposing the system

into much smaller subsystems, each with a much smaller state-space. This decomposition can be

either hierarchical or flat. But, as has been pointed out before, flat decompositions have profound

advantages: they tend to be much more open and fault tolerant. Realizing these advantages will

require extending the off-line technology described earlier to real-time situations, and adding

learning skills to autonomous agents. If this can be done, the mechanical decision making can be

taken over by autonomous agents. Each of these agents would collect only locally available data

on the state of the power system and make up for its lack of a global view by collaborating with its

neighbors, much as the pilots of aircraft collaborate in order to maintain a close formation. each of

the agents would continually improve its performance through automatic learning.

For quasi-repetitive problems [22], that is, different instances of essentially the same general

problem, it has been demonstrated that the autonomous agents in asynchronous teams for off-line

problems, can learn to collaborate more effectively [23], [24]. But for real-time control, these

learning techniques will have to be made more powerful and means developed for

Talukdar, p. 16

details are developed in [27].

The purpose of the grammar is to provide a means for constructing all asynchronous teams

that might be used in solving any given instance of a family of off-line problems. In other words,

the grammar constructively defines the space that must be searched if an asynchronous team that

is good at solving the given problem-instance is to be found.

The primitives of the grammar are:

• sharable memories, each dedicated to a member of the family-of-problems, and designed to

contain a population of trial-solutions to its problem.

• operators for modifying trial-solutions.

• selectors for picking trial-solutions.

• schedulers for determining when selectors and operators are to work.

Loosely speaking, the rules of the grammar are:

• Form autonomous agents by packaging an operator with a selector and a scheduler.

• Use quality-based-selection and completely parallel execution (all the agents running all the

time, or as close to all the time, as the available computer resources will allow) as the default

selection and scheduling strategies.

• Connect the agents and memories to form a strongly cyclic data flow.

• Compensate for construction deficiencies with skilled destruction.

• Mix agents as needed without regard to their complexity or phylla, that is, big and small

software agents may be combined with humans, provided only that the humans subscribe to

the communication and selection conditions prescribed for the software agents.

4. SOME RESEARCH ISSUES: REAL-TIME POWER SYSTEM
CONTROL AND LEARNING

The typical power system contains thousands of distributed, mechanical decision makers

(control devices), such as relays and voltage regulators. The restructuring of power systems that is

now underway, will undoubtedly introduce entirely new classes of control devices, such as

FACTS-controllers and automatic agents to trade in energy on behalf of customers and

independent generators. What are the best strategies for these old and new controllers to employ?

Talukdar, p. 15

long as the agent is autonomous and interacts with other agents only by modifying the trial-

solutions they produce. Therefore, complex software agents can be mixed with simple software

agents (which has been experimentally demonstrated [8]-[20]), and in principle, software agents

can be mixed with humans (experiments are now underway to examine this part of the conjecture

[27]).

2.8. Remarks

The key points made by the above analysis and arguments are:

• Construction and destruction are duals in that any effects obtained from adding construction

agents can be replicated by adding suitable destruction agents.

• As construction agents with new and useful problem-solving skills are added, construction

space contracts, that is, solutions of lesser quality draw closer to solutions of greater quality.

• If the drift is kept positive, then solutions of increasingly high quality become reachable as

construction space contracts, that is, as new construction agents are added.

• Drift is likely to be positive if quality-based selection and perfect sequential scheduling are

used.

But perfect sequential scheduling is simulated if all the agents work in parallel (which

happens automatically if the agents are autonomous and enough computers are available). Also,

solution-speed may be expected to increase as computers are added, at least to the extent that the

times required for the work cycles of the agents are reduced by these additions. Thus, the

conditions for scale-effectiveness in asynchronous teams are not overly restrictive, and one may

expect scale-effectiveness to appear in many, if not most, asynchronous teams. The experimental

evidence obtained so far [8]-[20] bears out this conclusion.

3. A GRAMMAR FOR ASYNCHRONOUS TEAMS

The preceding section provides a general description of the structure and properties of

asynchronous teams. However, in designing these teams, it is convenient to have a more compact

description. Such a description is provided by a grammar whose primitives and rules are a

distillation of definitions 1-17. The main elements of this grammar are given below; the formal

Talukdar, p. 14

Prob(αn) = 0.5 Max{Prob(γk)}Σj (qj)
2 (11)

when scheduling is perfect. Now, to determine the value of Prob(βn), note that βn can occur only

if the agent that works on Pn is a destroyer and only if s* is unique. Therefore:

Prob(βn) = Σj Prob(βn|dk) Prob (dk) (12)

and

Prob(βn|dk) < Σj Prob(µkj ∩ δj)

< Σj Prob(µkj)Prob(δj) (13)

Combining (2), (4) and (13) gives:

Prob(βn|dk) < Σj qJ+1-jqj (14)

Combining (6), (12) and (14) gives:

Prob(βn) < 0.5 Σj qjqJ+1-j (15)

λn is positive if Prob(αn), as given by (11), is larger than Prob(βn), as given by (15), completing

the proof.

Conjecture 1: Construction and destruction are duals: adept destruction agents can compensate

for inept construction agents and vice versa. In other words, all the benefits of adding construction

agents with new skills can also be obtained by adding destruction agents suitable skills.

As yet no experiments have been conducted to clearly demonstrate the validity of this

conjecture. But a strong argument for its validity is made in [21].

Conjecture 2: The mix of agents can include humans without any deleterious consequences.

By way of justification, note that he convergence conditions do not limit the type of agent, as

Talukdar, p. 13

the most capable constructor (with the largest value of Prob (γk)) refrain from scheduling

themselves.

Theorem 2 . In the simplified situation the drift, λn, is positive, if:

Max{Prob(γk)} > [Σj qjqJ+1-j]/[Σj (qj)
2] (7)

In other words, sufficient conditions for λn to be positive are that there be at least one construction

agent with a nonzero probability of being able to improve the best current solution, and

furthermore, this probability must be greater than the right hand side of (7). Note that this right

hand side can be considerably smaller than unity. For instance, with three solutions of quality

q1=0.1, q2=0.2 and q3=0.7, the right hand side of (7) is only 1/3.

Proof.

λn = Prob(αn) - Prob(βn) by definition. To determine the value of Prob(αn), note that the events c1,

c2,..., cK, d1, d2,...,dK are mutually exclusive, and αn can occur only if the agent that works on Pn

is a constructor. Therefore:

Prob(αn) = Σk Prob(αn|ck) Prob (ck) (8)

where Σk means “summation over all k.”But:

Prob(αn|ck)= Σj Prob(ηkj ∩ δj ∩ γk)

= Σj Prob(ηkj)Prob(δj)Prob(γk) (9)

Combining (2), (3) and (9) gives:

Prob(αn|ck) = Prob(γk)Σj qjqj (10)

Combining (5), (8) and (10) gives:

Talukdar, p. 12

scheduling mechanisms, “perfect sequential scheduling.”

To define these mechanisms and analyze the simplified situation, suppose there are K

constructors, K destroyers and the solutions in Pn are labelled so q1 < q2 <... < qJ. Now, consider

the transition from Pn to Pn+1 and the following events:

ck: the transition is caused by the k-th constructor.

ηkj: the k-th constructor selects the j-solution, sj.

δj: sj is s*, the best solution in terms of distance.

γk: the k-th constructor is able to improve s*.

dk: the transition is caused by the k-th destroyer.

µkj: the k-th destroyer selects and erases the j-solution, sj.

Definition 16. In quality-based selection, constructors and destroyers select randomly from the

population of solutions, such that:

Prob(ηkj) = qj (3)

Prob(µkj) = qJ+1-j (4)

Thus, constructors are more likely to select the higher quality solutions while destroyers are more

likely to select lower quality solutions (As such, quality-based selection is a symmetrical

adaptation of the solution-rejection strategy used in simulated annealing.)

Definition 17. In perfect sequential scheduling, constructors and destroyers schedule themselves

so that:

Prob(ck) = 0.5 if Prob (γk) > Prob (γi) for all i not equal to k

= 0 otherwise (5)

Prob(dk) = 0.5/K (6)

Thus, a constructor is as likely as a destroyer to cause the transition from Pn to Pn+1. And all but

Talukdar, p. 11

λn =Prob(αn) - Prob(βn) (1)

In words, the drift at any point of the population-trajectory is the difference between two

probabilities. The first is the probability that the next population will be closer to the goal, Gq, that

is, the probability of one of the constructors selecting s* and improving it. The second is the

probability that the next population will be further from Gq, that is, the probability that s* is

unique and one of the destroyers will mistakenly erase it.

Theorem 1 . If the actions of all the agents, particularly the destroyers, are reversible, if g0 is

finite and if λn is positive for all n, then the expected value of N is finite. In other words, sufficient

conditions for obtaining solutions of arbitrarily high quality are: a) one of the constructors must

be able to replace solutions erased by the destroyers, b) at least one member of the initial

population must be at a finite distance from the desired solutions, and c) the drift at all points

along the population-trajectory must be positive.

Under the reversibility condition, the population-trajectory becomes a Markov chain, and the

proof of the theorem follows directly from the properties of these chains. The details can be found

in [21].

2.7. Drift

What affects the drift, λn? Some insights are obtained by considering the following simplified

situation:

• The agents work in sequence and each agent modifies only one solution per work cycle. In

other words, Pn+1 is produced from Pn by a single agent.If this agent is a constructor, it adds

one solution to Pn, if it is a destroyer, it erases one solution from Pn.

• The quality of each solution reflects its probability of being the best (closest) solution, that is

 Prob(δj)=qj (2)

where δj is the event: sj = s*, and qj is the quality of sj, scaled so q1+q2+...+ qJ=1.

• All the agents use the same selection mechanism, “quality based selection,” and the same

Talukdar, p. 10

Definition 14. g(P(t), Gq), the separation of the set P(t) from the set Gq, is the distance of the

closest point in P(t) to Gq, that is, g(P(t), Gq) = Min {f(p, Gq)}, p ∈ P(t), where f(p, Gq), the

distance of any point p from the set Gq, is the minimum number of work-cycles by construction

agents necessary to improve the quality of p to a level of q or better; that is, to modify p till it

becomes a member of Gq.

Separation measured in this way has two noteworthy properties. First, solution-quality and

separation are not directly related; the highest quality member of P(t) is not necessarily its closest

member to Gq. Second, separation depends on the skills of the operators in C, the set of

construction agents. To illustrate, consider two peaks (maxima) in the quality surface, s1 and s2.

Suppose that the quality of s1 is only slightly lower than that of s2. Suppose that C contains only

greedy, hill-climbing operators that are unable to descend from a high point in order to reach an

even higher point. Then, there is no path from s1 to s2. In other words, the distance from s1 to s2 is

infinite. However, if C is expanded to include operators that can go down-hill, then the distance

between s1 and s2 will become finite. In general, as agents with new and useful problem-solving

capabilities are added to C, points of lesser quality draw closer to points of greater quality.

2.6. Convergence Conditions

Let:

t1, t2,... be the discrete points in time at which P(t) changes.

P0, P1,..., PN be a sequence (trajectory) of populations that reaches Gq in N steps, where Pn =

P(tn).

{s1, s2,..., sJ} be the trial-solutions contained in Pn.

s* be the solution in Pn that is closest to Gq.

gn be the distance of Pn from Gq, that is, gn = g(Pn, Gq) = f (s*, Gq)

αn be the event: gn+1 < gn.

βn be the event: gn+1 > gn.

Prob(x) be the probability of event x.

Definition 15. The drift, λn at the n-th point of a population-trajectory is:

Talukdar, p. 9

problem can be expressed as a multi-objective, constrained optimization problem, which in turn,

can be approximated by a sequence of single-objective, unconstrained optimization problems.

Let:

M be the memory of a unary data flow

(S, q) be the single-objective optimization problem associated with M, where S is a set of all

possible solutions to the problem, and q is a scalar measure of solution-quality. An optimal

solution is a member of S that maximizes q.

Gq be the subset of S that contains only solutions of quality q or better.

P(t) be the population of trial-solutions in M at time t. (The initial value of this population,

P(0), is assumed to be a randomly chosen subset of S).

C,D be the sets of construction and destruction agents that work on M, causing P to change

with time.

T(q) be the expected value of t for which P(t) and Gq first develop a non-zero intersection, that

is, the expected time for P(t) to evolve at least one member of quality q or better.

Definition 11. Gq is reachable if T(q) is finite, that is, if solutions of quality q or better will appear

in M in an amount of time whose expected value is finite.

Definition 12. The effectiveness of M is the double: {qmax, T(qmax)}, where qmax is the largest

value of q such that Gq is reachable.

 Definition 13. A unary data flow is scale-effective if adding agents increases qmax, and adding

computers decreases T(qmax). A node in a strongly cyclic data flow is scale-effective if its

equivalent unary data flow is scale-effective. An asynchronous team is scale-effective if any of its

primary nodes is scale-effective. A node is a primary node if it is dedicated to CP, the problem-to-

be-solved, instead of to one of its relatives.

2.5. Construction Space

Construction space, (S, g), is the space of solutions, S, together with an integer-valued

function, g, that measures the separation in construction-work-cycles between subsets of S. The

following definition of g is given in terms of the two subsets of principal concern: P(t) and Gq.

Talukdar, p. 8

2.3. Families of Problems

Experience with asynchronous teams suggests that there are advantages to having them work

on families of problems that include the problem-to-be-solved and some of its relatives. Perhaps

progress on the easier members in such a family catalyzes progress on the more difficult ones.

Definition 10. Two problems are related if i) good solutions to one provide parts of, bounds for, or

other clues to good solutions of the second, or ii) solutions of one influence solutions of the

second. Two or more related problems constitute a family.

In general, a family of problems is more than a hierarchical decomposition of the problem-to-

be-solved, and can include members whose only relationship is that the solutions of some

influence the solutions of others. For instance, the two problems: design a car and design a

process for manufacturing it, constitute a family, because the solution to the first influences the

solution to the second.

The obvious way to deploy an asynchronous team on a family of problems is to dedicate each

of the team’s memories to one of the problems. This is achieved by arranging for the memory to

hold a population of trial-solutions to its problem, and using a representation that is understood by

all the agents that read from or write to that memory.

2.4. Effectiveness

An asynchronous team is started by placing a population of solutions in each of its memories.

The agents then go to work on changing these populations (the constructors add new solutions

while the destroyers erase old solutions). Under what conditions will good solutions appear in a

population? To answer this question, we will model all strongly cyclic data flows by unary data

flows, and all off-line computational problems by single objective optimization problems. The

justifications are as follows. First, a node in a data flow represents several overlapping memories.

These can always be lumped into a single equivalent memory and every disjoint subgraph that

starts and ends at the node can always be lumped into a single equivalent agent, to yield a unary

data flow. Since the “lumping” involves only a change of name and no change of structure, the

dynamics of the original node are preserved by its equivalent. Second, every computational

Talukdar, p. 7

2.2. Collaboration

Definition 6. Two autonomous cyber agents are connected if an output memory of one is an input

memory of the other.

Definition 7. Two autonomous cyber agents collaborate if they are connected and they exchange

data, whether the exchange is productive or not.

 Any collaborative arrangement among two or more completely autonomous cyber agents can

be visualized as a “data flow” (Fig. 1).

Definition 8. A data flow is a directed hypergraph in which each node is a Venn diagram of

overlapping input- and output-memories, and each arc represents the operator and social skills of

an agent. A data flow is strongly cyclic if every one of its arcs is in a closed loop. A data flow is

unary if it has one and only one node representing a single memory that is shared by all the agents

in the data flow.

Definition 9. An asynchronous team is a strongly cyclic data flow, that is, a set of autonomous

cyber agents, connected so their outputs can circulate, and restricted to interacting only by

modifying one another’s outputs.

M1

M2

M3

C1

C2 C3

C4

M4

D1

D2

Figure 1. A data flow in which M1, M2, M3, M4 are
memories, C1, C2, C3, C4 are construction agents,
and D1, D2 are destruction agents. M1 holds a
population of trial solutions to the problem-to-be-
solved. M2 and M3 hold populations of trial-
solutions to related problems. M4 is the union of
M1 and M3.

Talukdar, p. 6

Note that this model captures all the operating possibilities for the software agent. But it is less

complete for humans in that it allows only for computer-mediated exchanges of information.

Definition 2. A cyber agent is autonomous if its control system is completely self-contained, that

is, if its social skills are its only controls.

As such, an autonomous cyber agent can do what it wants when it wants. In particular,

autonomous agents can choose to work in parallel all the time, if enough computers are available.

Definition 3. A cyber agent is static if it remains at the same location in its computer network,

that is, if it does not switch from one set of input or output memories to another.

Thus, there are only two tasks for the control system of a static cyber agent: selection

(choosing the objects to be read from its input-memories) and scheduling (determining when the

operator will work on the selected objects and which of the available computers it will use for this

work).

 Definition 4. The work-cycle of a cyber agent consists of the following sequence: read (copy) a

set of objects from its input-memories, modify these objects, and write the results to one or more

of its output-memories.

In some cases, the set of objects read by a cyber agent might be empty. But the work that a

cyber agent does always causes the population of objects in at least one of its output-memories to

change.

Definition 5. A cyber agent is destructive if it erases objects from the populations in its output-

memories. Otherwise, it is constructive.

The purpose of a destructive agent is to eliminate the mistakes and potential mistakes of its

constructive counterparts by erasing outputs they shouldn’t have produced and inputs they

shouldn’t consider.

Notice that all the intelligence of an autonomous destroyer is in its controls--its operator has

only to perform the trivial task of erasing those objects its selector has chosen.

Talukdar, p. 5

rules, of a grammar for asynchronous teams for off-line problems. Section-4 argues for the

extension of this grammar to on-line (real-time) problems, particularly, distributed control and

mixed initiative problems for electric power systems.

2. DEFINITIONS AND MODELS

This section develops a framework for analyzing collaborations among cyber agents, a class

of agents that includes software agents as well as humans, and argues that scale-effectiveness is

likely to occur in many asynchronous teams.

2.1. Cyber Agents

The environment of the any agent can be divided into two spaces--one that the agent perceives

or senses (its input-space), the other, that it affects (its output-space). Of course, these spaces may

overlap.

Definition 1. A cyber agent is an agent whose input- and output-spaces are maintained by

computers. (Thus, both software agents and humans who happen to be engaged in computer-

mediated work, qualify as cyber agents.)

Since a space is a set of objects, any computer maintained space can be thought of as a set of

memories for symbolic objects. Therefore, every cyber agent in any organization of cyber agents

can be modeled as:

• a set of computer-maintained memories from which the agent can read (the agent’s input

space),

• a set of computer-maintained memories to which the agent can write (the agent’s output

space),

• an operator (embodying the agent’s problem-solving skills) that can copy objects from the

input memories, transform them, and write the results to one or more of the output memories,

and

• a control system consisting of the agent’s own social skills together with any external

controls, such as reporting requirements, imposed by the organization.

Talukdar, p. 4

organizations from the primitives.

The primitives of the grammar were obtained by examining a variety of existing organizations

and extracting their better features. These primitives provide for agent autonomy (as enjoyed by

the members of some insect societies [1]), creation and destruction processes of adjustable

strengths (as in some cellular communities [2]), populations of trial-solutions (as in genetic

algorithms [3]), shared memories (as in blackboards [4]), randomized selection (as in simulated

annealing [5]), lists of elements to be avoided (as in tabu search [6]), and uninhibited creation (as

in brainstorming [7]).

The rules of the grammar ensure openness and ease of communication. Specifically, these

rules permit only completely autonomous agents that collaborate only by modifying one another’s

results. Therefore, the agents have no need for external supervision; no centralized control or

planning systems need be built, nor are there are any managerial layers to impede the addition or

removal of agents. Moreover, the needs for commonality of expression and representation are

minimal. To illustrate, consider an agent that specializes in repairing one part of the results

generated by other agents. This agent needs to know only how this part is represented. It interacts

with the other agents only through its repairs.

1.4. Demonstrations

One might think that agents that are autonomous and know virtually nothing about one

another, would tend to work at cross purposes. Nevertheless, effective asynchronous teams have

been developed for a variety of off-line problems, including nonlinear equation solving [8], [9],

traveling salesman problems [10], high-rise building design [11], reconfigurable robot design

[12], diagnosis of faults in electric networks [13], control of electric networks [14], [15], job-

shop-scheduling [16], steel and paper mill scheduling [17], [18], train-scheduling [19], and

constraint satisfaction [20]. Not only do these asynchronous teams find good solutions, but they

appear to achieve scale effectiveness through fairly simple mechanisms. The succeeding material

explains how and why. Specifically, Section-2 develops a framework for describing and analyzing

collaborative efforts among autonomous software agents. Section-3 distills the descriptive

elements of this framework into a set of primitives, and the prescriptive elements into a set of

Talukdar, p. 3

1.2. A Design Problem

Existing software agents tend to be rich in problem-solving skills but poor in social and

learning skills. Computer networks make it possible to interconnect very large numbers of

software agents, and thereby, to amass enormous pools of raw problem-solving capability. How

can all this capability be exploited? Of the many issues implied by this question, the subset that

will be considered here is as follows.

Given:

• an instance of an off-line problem, and

• a set of software agents distributed over a computer network,

Design:

• an open, scale-effective organization for solving the off-line problem.

In other words, search through the space of all possible organizations for one whose size is easily

increased and whose performance, on the given off-line problem, improves with size.

The advantages of such an organization are easy growth and fault tolerance. Costly demolition

and reengineering become unnecessary for performance improvements. Instead, the problem of

improving performance reduces to one of finding which agents and computers to add. Conversely,

the loss of agents or computers is likely to cause a gradual rather than precipitous decrease in

performance.

1.3. A Subspace Of Flat Organizations

Rather than solving the design problem above, the approach taken here is to replace it with an

easier problem. Specifically, the space of all possible organizations is replaced by a much smaller

subspace with a much higher concentration of open and scale-effective organizations. This

subspace contains only a certain type of flat organization called an asynchronous team. These

teams are always open and are often scale effective.

The subspace of asynchronous teams is defined by a constructive grammar. The two most

important components of such a grammar are a set of primitives and a set of rules for composing

Talukdar, p. 2

how it chooses to collaborate with the other information processing agents in its

environment);

• and learning skills which determine how well the agent transforms its experiences into new

skills.

Let:

• “an agent’s environment” mean the set of all the things that the agent can affect or by which it

is affected. (The environment of a software agent is mediated by a computer network and may

include other types of information-processing agents, particularly, humans);

• “an off-line problem” mean a computational problem without hard constraints on solution-

time, as is the case with many design, planning, scheduling, optimization and diagnosis

problems. (In other words, dealing with an off-line problem involves two objectives:

maximizing solution-quality and maximizing solution-speed. In contrast, dealing with an on-

line or real-time problems involves only a single objective: maximizing solution-quality, but

this must be done subject to deadlines, that is, hard constraints on solution-speed.)

• “collaboration” mean the exchange of data among information-processing agents, regardless

of whether the exchange is productive or not.

• “an organization” mean a triple whose elements are: a set of software agents, a network of

computers for the agents to use, and a prescription for the agents’ collaborations.

(Organizations can be of two types: hierarchic and non-hierarchic (flat). In a hierarchic

organization, the prescription for collaboration relies for its effectiveness on the delegation of

responsibility: the agents are arranged in layers; those in a higher layer are made responsible

for, and given supervisory authority over those in the layers below. In a flat organization, there

are no supervisors. Rather, the agents are autonomous and the effectiveness of their

collaborations are determined solely by their social skills.)

• an “open organization” mean an organization whose size can easily be changed by the

addition or removal of agents and computers.

• a “scale effective organization” mean an organization whose performance improves with

size. Specifically, solution-quality improves with the addition of agents and solution-speed

improves with the addition of computers.

Talukdar, p. 1

Collaboration Rules for Autonomous Software Agents

Sarosh N. Talukdar

Carnegie Mellon University, Dept. of Electrical and Computer Engineering, Pittsburgh, PA 15213
talukdar@ece.cmu.edu

Abstract

Is effective collaboration possible among autonomous software agents that are distributed

over a network of computers? Both empirical evidence and theory suggest that there are simple

rules for designing problem-solving organizations in which collaboration among such agents is

automatic and scale-effective (adding agents tends to improve solution-quality; adding computers

tends to improve solution-speed). This paper develops some of these rules for off-line problems,

and argues that the rules can be extended for the on-line (real-time) control of distributed systems,

such as electric power networks.

Keywords: autonomous agents, collaboration, multi-agent systems, organizations.

1. INTRODUCTION

This paper deals with the skills that unsupervised (autonomous) software agents must have if

they are to collaborate effectively. This section explains the terminology that will be used,

formulates the collaboration problem and outlines an approach to its resolution.

1.1. Terminology

Let a “software agent” be any encapsulated piece of computer code, such as a program or a

subroutine. Functionally, such an agent can be thought of as a bundle of skills [25] that can be

divided into three categories:

• problem-solving skills which determine what the agent can do (particularly, what

computational tasks it can perform);

• social or self-management skills which determine what the agent chooses to do (particularly,

The work reported here was supported in part by the National Science Foundation under Grant Number ECS-9615599, and by DARPA through
Contract Number ONR Grant Number N00014-96-1-0854.

