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Abstract. To operate successfully in indoor environments, mobile robots must be able to localize themselves.
Most current localization algorithmslack flexibility, autonomy, and often optimality, since they rely on ahumanto
determine what aspects of the sensor datato usein localization (e.g., what landmarksto use). This paper describes
a learning agorithm, called Bal.L, that enables mobile robots to learn what features/landmarks are best suited
for localization, and also to train artificial neural networks for extracting them from the sensor data. A rigorous
Bayesian analysis of probabilistic localization is presented, which produces a rational argument for evaluating
features, for selecting them optimally, and for training the networks that approximate the optimal solution. In a
systematic experimental study, Bal L outperformstwo other recent approachesto mobile robot localization.
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1. Introduction

To operate autonomously, mobile robots must know where they are. Mobile robot localiza-
tion, that isthe process of determining and tracking the position (location) of a mobile robot
relativeto itsenvironment, has received considerabl e attention over the past few years. Accu-
rate localization is a key prerequisite for successful navigation in large-scale environments,
particularly when global models are used, such as maps, drawings, topological descriptions,
and CAD models (Kortenkamp, Bonassi, & Murphy, in press). As demonstrated by a recent
survey of localization methods by Borenstein, Everett, and Feng (1996), the number of ex-
isting approachesisdiverse. Cox (1991) noted that “ Using sensory informationto locate the
robot in its environment is the most fundamental problem to providing a mobile robot with
autonomous capabilities.”

Virtualy all existing localization algorithmsextract asmall set of featuresfrom therobot’s
sensor measurements.  Landmark-based approaches, which have become very popular in
recent years, scan sensor readings for the presence or absence of landmarks to infer a
robot’sposition. Other techniques, such as most model matching approaches, extract certain
geometric features such as walls or obstacle configurations from the sensor readings, which
arethen matched to model sof therobot’ senvironment. Therangeof featuresused by different
approaches to maobile robot localization is quite broad. They range from artificial markers
such as barcodes and more natural objects such as ceiling lights and doors to geometric
features such as straight wall segments and corners. This raises the question as to what
features might be the best onesto extract, in the sense that they produce the best localization
results. Assuming that features correspond to landmarks! in the robot’s environment, the
guestions addressed in this paper are: What landmarks are best suited for mobile robot
localization? Can a robot learn its own sets of features, can it define its own landmarks for



localization, and can it learn optimal features? The problem of learning the right landmarks
has been recognized as a significant scientific problem in robotics (Borenstein, Everett, &
Feng, 1996), artificial intelligence (Greiner & Isukapalli, 1994), and in cognitive science
(Chown, Kaplan, & Kortenkamp, 1995).

Few localization algorithmsenable arobot to learn features or to define its own landmarks.
Instead, they rely on static, hand-coded sets of features for localization, which has three
principle disadvantages:

1. Lack of flexibility. The usefulness of a specific feature depends on the particular
environment the robot operates in and al so often hinges on the availability of a particular
type of sensors. For example, the landmark “ceiling light”—which has been used
successfully in several mobile robot applications—isusel ess when the environment does
not possess ceiling lights, or when the robot is not equipped with the appropriate sensor
(such as a camera). If the features are static and pre-determined, the robot can localize
itself only in environments where those features are meaningful, and with sensors that
carry enough information for extracting them.

2. Lack of optimality. Even if afeature is generaly applicable, it is usually unclear how
good it is or what the optimal landmark would be. Of course, the goodness of features
depends, among other things, on the environment the robot operates in and the type of
uncertainty it faces. Existing approaches usually do not strive for optimality, which can
lead to brittle behavior.

3. Lack of autonomy. For a human expert to select appropriate features, he/she has to
be knowledgeable about the characteristics of the robot’s sensors and its environment.
Consequently, it is often not straightforward to adjust an existing localization approach
to new sensors or to new environments. Additionally, humans might be fooled by
introspection. Since the human sensory apparatus differs from that of mobile robots,
features that appear appropriate for human orientation are not necessarily appropriate
for robots.

These principal deficiencies are shared by most existing localization approaches (Borenstein,
Everett, & Feng, 1996).

This paper presents an algorithm, called BalLL (short for Bayesian landmark learning),
that lets a robot learn such features, along with routines for extracting them from sensory
data. Features are computed by artificial neural networks that map sensor data to a lower-
dimensional feature space. A rigorous Bayesian analysis of probabilistic mobile robot
localization quantifies the average posterior error arobot isexpected to make, which depends
on the features extracted from the sensor data. By training the networks so as to minimize
this error, the robot learns features that directly minimize the quantity of interest in mobile
robot localization (see also Greiner & Isukapalli, 1994).

We conjecture that the learning approach proposed here is more flexible than static ap-
proaches to mobile robot localization, since BaL L can automatically adapt to the particular
environment, the robot, and its sensors. We also conjecturethat Bal L will often yield better
results than static approaches, sinceit directly chooses features by optimizing their utility for
localization. Finally, BalLL increases the autonomy of arobot, since it requires no human to
choose the appropriate features; instead, the robot does this by itself. The first and the third
conjecture follow from the generality of the learning approach. The second conjecture is



backed with experimental resultswhichillustratethat Bal L yields significantly better results
than two other approaches to localization.

Section 2 introducesthe basi c probabilisticlocalization algorithm, which hasin large parts
been adopted from various successful mobile robot control systems. Section 3 formally
derives the posterior error in localization and Section 4 derives a neural network learning
algorithm for minimizing it. An empirical evaluation and comparison with two other ap-
proaches is described in Section 5, followed by a more general discussion of related work
in Section 6. Section 7 discusses the implications of this work and points out interesting
directionsfor future research.

2. A probabilistic model of mobilerobot localization

This section laysthe groundwork for the learning approach presented in Section 3, providing
a rigorous probabilistic account on mobile robot localization. In a nutshell, probabilistic
localization aternates two steps:

1. Sensing. Atregular intervals, the robot queriesits sensors. The results of these queries
are used to refine the robot’ sinternal belief astowhereintheworlditislocated. Sensing
usually decreases the robot’s uncertainty.

2. Acting. When the robot executes an action command, its internal belief is updated
accordingly. Since robot motion is inaccurate due to slippage and drift, it increases the
robot’s uncertainty.

The derivation of the probabilistic model relies on the assumption that the robot operates in
a partially observable Markov environment (Chung, 1960) in which the only “state” is the
location of the robot. In other words, the Markov assumption states that noise in perception
and control is independent of noise at previous pointsin time. Various other researchers,
however, have demonstrated empirically that the probabilistic approach works well even in
dynamic and populated environments, due to the robustness of the underlying probabilistic
representation (Burgard et al., 1996a; Kaelbling, Cassandra, & Kurien, 1996; Leonard,
Durrant-Whyte, & Cox, 1992; Koenig & Simmons, 1996; Kortenkamp & Weymouth, 1994;
Nourbakhsh, Powers, & Birchfield, 1995; Simmons & Koenig, 1995; Smith & Cheeseman,
1985; Smith, Self, & Cheeseman, 1990; Thrun, 1996).

2.1. Robot motion

Bal L employs a probabilistic model of robot motion. Let ¢ denote the location of the robot
within a global reference frame. Throughout this paper, the term location will be used to
refer tothree variables: therobot’sz and y coordinatesand its heading directiond. Although
physically a robot always has a unique location ¢ at any point in time, internally it only has
abelief astowhereitislocated. BalL L describes thisbelief by a probability density over all
locationsé € =, denoted by

Bel(¢) 1)

where = denotesthe space of all locations. Occasionally we will distinguishthe belief before
taking a sensor snapshot, denoted by Belyior (&), and the belief after incorporating sensor



information, denoted by Belposierior (). The problem of localization is to approximate as
closely as possible the “true” distribution of the robot location, which has a single peak at
the robot’slocation and is zero elsewhere.

Each motion command (e.g., trandation, rotation) changes the location of the robot.
Expressed in probabilistic terms, the effect of a motion command « € A, where A isthe
space of all motion commands, is described by a transition density

P(E € a), )

which specifies the probability that the robot’slocation is ¢, given that it was previously at £
and that it just executed action a. In practice it usually suffices to know a pessimistic approx-
imation of P(£|¢, a), which can easily be derived from the robot’ s kinematics/dynamics.

If the robot would not use its sensors, it would gradually lose information as to whereit is
due to slippage and drift (i.e., the entropy of Bel(¢) would increase). Incorporating sensor
readings counteracts this effect, since sensor measurements convey information about the
robot’s location.

2.2. Sensing

Let S denote the space of all sensor measurements (sensations) and let s € S denoteasingle
sensation, where sensations depend on the location ¢ of the robot. Let

P(s]¢) ©)
denote the probability that s is observed at location . In practice, computing meaningful
estimates of P(s|¢) is difficult in most robotic applications. For example, if the robot’s
sensorsincludeacamera, P(s|¢)wouldbeahigh-dimensional density capableof determining
the probability of every possible cameraimage that could potentially be taken at any location
&. Even if a full-blown model of the environment is available, computing P(s|¢) will be
a complex, real-time problem in computer graphics. Moreover, the current work does not
assume that amodel of theenvironmentisgiventotherobot; hence, P(s|¢) must beestimated
from data.

To overcome this problem, it is common practice to extract (filter) a lower-dimensional
feature vector from the sensor measurements. For example, landmark-based approaches scan
the sensor input for the presence or absence of landmarks, neglecting all other information
contained therein. Model-matching approaches extract partial models such as geometric
maps from the sensor measurements, which are then compared to an existing model of the
environment. Only theresult of thiscomparison (typically asinglevalue) isthen considered
further.

To formally model the extraction of features from sensor data, let us assume sensor data
are projected into a smaller space F', and the robot is given afunction

o5 — I, (4)
which maps sensations s € S into features f € F'. Borrowing terms from the signa
processing literature, o will be called a filter, and the result of filtering a sensor reading

f = o(s) will be called afeature vector. Instead of having to know P(s|¢), it now suffices
to know

P 1€), ()



where P(f|¢) relatesthe sensory features f = o (s) todifferent |ocationsof the environment,
for which reason it is often called a map of the environment. The mgjority of localization
approaches described in the literature assumes that the map is given (Borenstein, Everett, &
Feng, 1996). The probability P(f]¢) can aso be learned from examples. P(f|¢) is often
represented by a piecewise constant function (Buhmann et al. 1995; Burgard et al. 19964,
Burgard, et al., 1996b; Kaelbling, Cassandra, & Kurien, 1996; Koenig & Simmons, 1996;
Moravec & Martin, 1994; Nourbakhsh, Powers, & Birchfield, 1995; Simmons & Koenig,
1995), or a parameterized density such as a Gaussian or a mixture of Gaussians (Gelb, 1974,
Rencken, 1995; Smith & Cheeseman, 1985; Smith, Self, & Cheeseman, 1990). Below, inour
experimental comparison, a k-nearest neighbor agorithm will be used to represent P(f|¢).

Inlandmark-based localization, for example, ¢ filtersout informationby recording only the
presence and absence of individual landmarks, and P ( f|¢) modelsthelikelihood of observing
alandmeark at thevariouslocationsé. P(f|¢) canbeestimatedfromdata. Themathematically
inclined reader may noticethat theuseof o (s) instead of s ismathematically justified only if o
isasufficient statistic (Vapnik, 1982) for estimating location—otherwise, all approachesthat
filter sensor data may yield sub-optimal results (by ignoring important sensor information).
In practice, the sub-optimality is tolerated, since P(f|¢), or an approximate version of
P(f]€), isusualy much easier to obtain than P(s|¢), and often is a good approximation to
this probability.

2.3. Robot localization

For reasons of simplicity, let us assume that at any point in time ¢, the robot queries its
sensors and then executes an action command that terminates at time ¢ + 1. In response to
the sensor query, the robot receives a sensor reading s(*), from which it extracts a feature
vector (), Let fU 2 = o(s(V), ¢(s?), ... denotethe sequence of feature vectors,
and let «l 4@ ... denote the sequence of actions. Furthermore, let £9 ¢ denote
the sequence of robot locations. Occasionally, locations will annotated by a * to distinguish
them from variables used for integration.

Initialy, at time ¢ = 0O, the robot has a prior belief as to what its location might be; this
prior belief is denoted Belprior (& (0)) and reflects the robot’sinitial uncertainty. If the robot
knows its initial location and the goa of localization is to compensate slippage and drift,
Belyi (€19 is a point-centered distribution that has a peak at the correct location. The
corresponding localization problem is called position tracking. Conversely, if the robot has
no initial knowledge about its position, Bel yior(€(?) is a uniform distribution. Here the
corresponding localization problem is called self localization, global localization, or the
“kidnapped robot problem” (Engelson, 1994), atask that is significantly more difficult than
position tracking.

Sensor queries and actions change the robot’sinternal belief. Expressed probabilisticaly,
the robot’s belief after executing the¢—1th actionis

Belprior(g(t)) = P(g(t”f(l)a a(l)a f(Z)a a(Z)a cety f(t_l)a a(t_l)) (6)
and after taking the ¢-th sensor measurement itis
Belposterior(g(t)) = P(g(t) |f(l)a a(l)a f(Z)a a(Z)a R a(t_l)a f(t)) . (7)

We will treat these two cases separately, starting with the second one.



23.1. Sensing

According to Bayes' rule,
Belposterior(g(t)) = P(g(t”f(l)a ) a(t—l)’ f(t))

PO, fD, <t-1> PEDFD, . alt-D)
. 8
< O, al0) ®

TheMarkov assumption statesthat sensor readingsare condltl onallyindependent of previous
sensor readings and actions given knowledge of the exact location:

P(sDIey = P(sOfe) 5D M qt=Dy). 9
Since f(t) = O’(S(t)), it follows that
P(sVED) = P(rOEY, f,a® a7, (10

It is important to notice that the Markov assumption does not specify the independence of
different sensor readingsif therobot’slocation isunknown; neither does it make assumptions
on the extent to which £(*) is known during localization. In mobile robot localization, the
location is usualy unknown—otherwise there would not be a localization problem—, and
subsequent sensor readings and actions usually depend on each other. See Chung (1960),
Howard (1960), Mine and Osaki (1970), and Pearl (1988) for more thorough treatments of
conditional independence and Markov chains.

The Markov assumption simplifies (8), which leads to the important formula (Moravec,
1988; Pearl, 1988):

P(fD1EM) PEWD, ... al™)
P(fO]f@ . ,,a(t—l))
( t |€ ) Belprlor( ))
P(fOIFD,. )
The denominator on the right hand side of (11) isanormalizer which ensures that the belief
Belposerior (€*)) integratesto 1. It is calculated as:

PO =0y = [ pp®e®y pe® L gt=Dy ge®
(O, D) = [ PrOEO) PEW D, al D) de

Belposterior(g(t)) =

(11)

- / PUFOIED) Belpion(€©) dg) (12)

To summarize, the posterior belief Belyogerior (€ (t)) after observing the ¢-th feature vector
f) isproportional to the prior belief Bel yior (¢(*)) multiplied by thelikelihood P (£ ()]¢(*))
of observing f(*) at £(*)

2.3.2. Acting

Actions change the location of the robot and thus its belief. Recall that the belief after
executing the ¢-th action is given by

Belpior(€1+Y) = P(e@HD @0 40y (13)



Table 1. The incremental |ocalization algorithm.

1. Initialization: Bel(¢) «— Belprior(¢(9)
2. For each observed feature vector f = o(s) do:
Bel(£) «— P(f|¢) Bel(¢) 17

-1
Bel(¢) +— Bel(¢) [ / Bel(£) dg”] (normalization) (19

3. For each action command « do:

Bel(e) — / P o) Bel(d) d )

which can be rewritten using the theorem of total probability as

/ p(g(t+l)|g(t)’ FLC AN A ON a(t)) p(g(t)|f(l)’ o fO, a(t)) de®. (14)

Since ¢(*) does not depend on the action () executed there, (14) is equivalent to

/ P(EHDIE®, O 0 a) PEOI®, L F) de, (15)
By virtueof theMarkov assumption, whichif ¢ () isknown renders conditional independence
of ¢+ from f oM F® (but not from a(®)), Belyi (¢(+)) can be expressed as

/ Pt oy pe®)p® ] pt)y gelt)

or [ PECHVIED, ) Belpoanion ) dE . (16)

Put verbally, the probability of being at ¢ ‘1) at time t+1 is the result of multiplying the
probability of previously having been at & () with the probability that action « () carries the
robot tolocation¢ (+1) | integrated over all potential locationsé (). The transition probability
P+ ¢()) has been defined in (2) in Section 2.1.

24. Theincremental localization algorithm

Beliefscan beupdated incrementally. Thisfollowsfromthefact that thebelief Belposerior(¢ ")
is obtained from the belief Belpyior(€)) just before sensing, using (11), and the belief

Belyior (€11 is computed from the belief Belposerior(¢*)) just before executing an action
command, using (16). The incrementa nature of (11) and (16) lets us state the compact
algorithm for probabilistic localization shown in Table 1. As can be seen in the table, to
update Bel(¢) three probabilitiesmust be known: Bel yior (€(?), theinitial estimate (uncer-
tainty); P(£|€, a), the transition probability that describes the effect of the robot's actions;

and P(f|¢), the map of the environment.

Figure 1 provides a graphical example that illustrates the localization algorithm. Initially,
the location of the robot is unknown except for its orientation. Thus, Bel(¢) is uniformly



Figure 1. Probabilistic locaization—an illustrative example. (a) Initialy, the robot does not know where it is,
hence Bel(&) isuniformly distributed. (b) The robot observesadoor next to it, and changesits belief accordingly.
(c) Therobot movesa meter forward; as aresult, the belief is shifted and flattened. (d) The repeated observation of
adoor promptsthe robot to modify its belief, which now approximatesthe “true” location well.

distributed over al locations shown in Figure 1(a). The robot queries its sensors and finds
out that it is next to a door. This information alone does not suffice to determine its
position uniquely—partially because of the existence of multiple doors in the environment
and partially because the feature extractor might err. As aresult, Bel(¢) is large for door
locationsand small everywhere else, asshownin Figure 1(b). Next, therobot moves forward,
in response to which its density Bel(&) is shifted and slightly flattened out, reflecting the
uncertainty P(£|¢, «) introduced by robot motion, as in Figure 1(c). The robot now queries
its sensors once more and finds out that again it is next to a door. The resulting density,
in Figure 1(d) now has a single peak and is fairly accurate. The robot “knows’ with high
accuracy whereitis.

Noticethat the algorithmderived in thispaper isageneral instance of an updating algorithm
for a partially observable Markov chain. For example, it subsumes Kaman filters (Kaman,
1960) when applied mobile robot localization (Smith, Self, & Cheeseman, 1990; Leonard,
Durrant-Whyte, & Cox, 1992). It also subsumes hidden Markov models (Rabiner, 1989) if
robot locationis the only state in the environment, as assumed here and elsewhere. Duetoits
generality, our algorithm subsumes various probabilistic algorithms published in the recent



literature on mobile robot localization and navigation (see Burgard et al., 1996a; Kaelbling,
Cassandra, & Kurien, 1996; Koenig & Simmons, 1996; Kortenkamp & Weymouth, 1994;
Nourbakhsh, Powers, & Birchfield, 1995; Simmons, & Koenig, 1995; Smith, Self, &
Cheeseman, 1990).

3. TheBayesian localization error

This section and the following one present BaL L, a method for learning ¢. The input to the
Bal L algorithmisaset of sensor snapshots|abeled by thelocation at which they were taken:

X = {<8k,€k>|k’zl,...,[(}, (20)

where K denotes the number of training examples.

Localizationisaspecific form of state estimation. Asitiscommon practiceinthe statistical
literature on state estimation (Vapnik, 1982; Casella & Berger, 1990), the effectiveness of
an estimator will be judged by measuring the expected deviation between estimated and true
locations. BalLL learns o by minimizing this deviation.?

3.1. Theposterior error Epogerior

The key to learning ¢ is to minimize the localization error. To analyze this error, let us
examine the update rule (17) in Table 1. This update rule transforms a prior belief to a
refined, posterior belief, which is usually more accurate. Obviously, the posterior belief and
thus the error depend on o, which determines the information extracted from sensor data s.

Let £&* denote the true location of the rabot (throughout the derivation, we will omit the
time index to simplify the notation), and let e(£*, £) denote an error function for measuring
the error between the true position £* and an arbitrary other position . The concrete nature
of e is inessentia to the basic agorithm; for example, ¢ might be the Kullback-Leibler
divergence or a metric distance.

The Bayesian localization error at £*, denoted by F(£*), is obtained by integrating the
error e over al belief positions ¢, weighted by the likelihood Bel(£) that the robot assigns
to &, giving

Be) = [ o€ Bete) de. 1)

If thiserror is computed prior to taking a sensor snapshot, that is, if Bel(&) = Bel yior(§), it
is caled the prior Bayesian error at £* with respect to the next sensor reading and will be
denoted Eyyior. The prior localization error isafunction of Bel,,; (&).

We are now ready to derive the Bayesian error after taking a sensor snapshot. Recall that
£* denotesthe true location of the robot. By definition, the robot will sense a feature vector
£ with probability P(f|¢*). Inresponse, it will update its belief according to Equation (17).
The posterior Bayesian error at £&*, which is the error the robot is expected to make at &*
after sensing, is obtained by applying the update rule (17) to the error (21), giving

Eposterior(g*) = / 6(€*a€) Belposterior(g) dg
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— /Ee(g*’g)/FP(ﬂg)P?;iprior(g)P(ﬂg*) df de (22)

where Epogerior 1S averaged over al possible sensor feature vectors f weighted by their
likelihood P(f]£*). The normalizer P(f) iscomputed just as in equations (12) or (18).

Thusfar, the posterior error Eyoserior COrrespondsto asinglepositioné ™ only. By averaging
over all possible positions £*, weighted by their likelihood of occurrence P(£*), we obtain
the average posterior error

FEposterior = /:Eposterior(g*) P(¢&r) de*

Since f = o(s), expression (23) can be rewritten as

( ( )|€) BelP“Of(g) * * *
Fpussion = [ [ efe€) [ SRR pia(s)len) P(E) ds de de” (24

where P(o(s)) = [ Plo(s)Ié) Belyn(d) dE 29

The error Eposterior 1S the exact localization error after sensing.

3.2.  Approximating Eposerior

While Eposterior Measures the “true” Bayesian localization error, it cannot be computed in
any but the most trivial situations (since solving the various integrals in (24) is usually
mathematically impossible). However, Epogerior Can be approximated using the data. Recall
that to learn ¢, the robot is given a set of A examples

X = {<8k,€k>|k’zl,...,[(}, (26)

where X consistsof K sensor measurements s;, that are labeled by the location &, at which
they were taken. X is used to approximate Lposerior With the expression

P = ¥ 3 el DA b)) pie), @
(€"s")EX (£,3)€X

where P(o(s)) = Y P(o(s)[€) Belpior(€) . (28)
(6.5)ex

Equation (27) follows directly from equation (24). The integration variables ¢ € = and
s € S, whichare independent in (24), are collapsed into asingle summation over al training
patterns (¢, s) € X in (27). Eposterior IS @ stochastic approximation of Epegenior, based on
data, that converges uniformly to Eposter.or asthe size of the dataset X' goesto infinity.

Leaving problems of small sample sizes aside, Eposter.or lets the robot compare different o
with each other: the smaller Epogenior, the better o for the purpose of localization. Thisalone
isan important result, as it lets one compare two filtersto each other.
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The error Eposterio, is a function of the prior uncertainty Bel,,;(¢) aswell. As a result,
a specific o that is optimal under one prior uncertainty can perform poorly under another.
This observation matches our intuition: when the robot is globally uncertain, it is usually
advantageous to consider different features than when it knows its location within a small
margin of uncertainty.

4. TheBaLL algorithm

Bal L learnsthefilter o by minimizing Eposterio, through search in the space of filters o, that
is, by computing

o = argmin Eposterio,(&) , (29)
GEX
where X is a class of functions from which ¢ is chosen. This section presents a specific
search space X, for which it derives a gradient descent agorithm.

4.1. Neural network filters

Bal L redizes o by a collection of n backpropagation-style feed-forward artificial neural
networks (Rumelhart, Hinton, & Williams, 1986). Each network, denoted by ¢; with
i=1,...,n, mapsthe sensor data s to afeaturevaluein (0, 1). More formally, we have

g = (glagZa"'agn) 5 (30)

wherefordli=1,...,n,
gi 15— (0,1) (3D

isrealized by an artificial neural network. The ¢-th network corresponds to the i-th feature,
where n isthe dimension of the feature vector f.

Neural networks can approximate a large class of functions (Hornik, Stinchcombe, &
White, 1989). Thus, there are many features that a neura network can potentially extract.
To the extent that neural networks are capable of recognizing landmarks, our approach lets
arobot automatically select its own and learn routines for their recognition.

4.2. Stochasticfilters

At first glance, it might seem appropriate to define f = (g1(s), g2, (s), . . ., gn(s)), making
the feature vector f be the concatenated »-dimensional output of the n neural networks.
Unfortunately, such adefinitionwouldimply 7' = (0, 1)”, which contains an infinite number
of feature vectors f (since neural networks produce real-valued outputs). If the sensor
readings are noisy and distributed continuously, as is the case for most sensors used in
today’s robots, the chance is zero that two different sensations taken at the same location
will generate the same feature vector f. In other words, if f = (g1(s), g2, (s), - .-, gn(5)),
" would be too large for the robot to ever recognize a previous location—a problem that
specifically occurs when using real-val ued function approximators as feature detectors.
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Fortunately, there exists an aternative representation that has several nice properties. In
the BaLL algorithm F' = {0,1}" and |FF| = 2" (which isfinite). Each neura network is
interpreted as astochastic feature extractor, which generatesthevalue f; = 1 with probability
¢i(s) and the value f; = O with probability 1 — g;(s), giving

P(fi=1]s) = gi(s)
P(fi=0ls) = 1-g(s) . (32)

We assume that the joint probability P(f|s) is given by the product of the marginal proba-
bilities P( fi|s):

P(fle) = TP @)

The stochastic setting lets o express confidence in its result by assigning probabilitiesto the
different f € F'—ageneraly desirable property for afilter.

The stochastic representation has another advantage, which isimportant for the efficiency
of the learning algorithm. As we show below, Epgeior is differentiable in the output of
the function approximator and hence in the weights and biases of the neural networks.
Differentiability is a necessary property for training neural networks with gradient descent.

4.3. Theneural network learning algorithm

The new, stochastic interpretation of o requires that Epoy and its approximation Eposterior be
modified to reflect the fact that o generates a probability distribution over F' instead of a
single f € F. Following the theorem of total probability and using (23) as a starting point,
FEoost 1S given by

Epsrir = / / e (34)

7=(0,...,0)
f P(f]s)P ( |€) Belprior(g) ds
(f)

/ P(f1s)P(sl€") P(€7) ds de de™,

where P(f / / (fls) P(sl€) Belpior(€) ds dé. (35)
The approximation of thisterm is governed by
1=(@,...,1)
~ P Bel rior * *
Epogerior = Z Z 6(€*a€) (f|5)P(;)p (g)P(ﬂS )P(f )
(€*5"YeX (£,5)EX 7=(0,...,0)
1=(1,...,0)
P
SX 3 A€ P Pl e, @
(€,s)€X 7=(0,...,0)
where P(f) = > P15 Belpi(€). (37)
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The mathematically inclined reader should noticethat (24) and (27) are special cases of (34)
and (36). They are equivalent if one assumes that P(f|s) isdeterministic, that is, if P(f|s)
iscentered on asingle f for each s.

Armed with an appropriate definition of Eposterior, we are now ready to derive the gradient
descent learning algorithm for training the neural network feature recognizers to minimize
Eposter.or This is done by iteratively adjusting the weights and biases of the :-th neural
network, denoted by w; ..., in the direction of the negative gradients of Eposter.or

n agjposterlor ) (38)
wzuu

Here n > 0 isalearning rate, which is commonly used in gradient descent to control the
magnitude of the updates. Computing the gradient inthe right hand side of (38) isatechnical
matter, as both Epogerior and neural networks are differentiable:

Wiy — Wipy —

agjpoisterior _ Z 3§pf>ztir)ior gﬂi (5) . (39)
wzuu (E_,g)EX gils wzuu

The second gradient on the right hand side of (39) isthe regular output-weight gradient used
in the backpropagation algorithm, whose derivation we omit (see Hertz, Krogh, & Palmer,
1991; Rumelhart, Hinton, & Williams, 1986; Wasserman, 1989). The first gradient in (39)
can be computed as

OF osterior 11 1
o = IRV I () Belgiar©) 3503

X (§s)eX f1=0/2=0  f.=0

a n
ag (5) (Hp(fl|5*) P(fl|5) P(f)_l (40)
1 1 1
= ) Belprlor(g) Z Z .. Z P(f]|8*) P(f]|5)
(€7,57)€X ({5)EX £1=0f2=0  f.=0 j#i

Jer gPUIs) + 8 P UA") _
2
> Irww
(£5ex j=1 /! Z HP (731%)

Here 6, , denotes the Kronecker symbol, whichis1if ¢ = y and 0 if © # y. P(f;|s*) is
computed according to Equation (32).

Table 2 describes the BaLL agorithm and summarizes the main formulas derived in
this and the previous section. Bal L’s input is the data set X and a specific prior belief
Belyi(€). Below, we will train networksfor different prior beliefs characterized by different
entropies (i.e., degrees of uncertainty). The gradient descent update is repeated until one
reaches a termination criterion (e.g., early stopping using a cross-validation set or pseudo-
convergence of Epogerior), S in regular backpropagation (Hertz, Krogh, & Palmer, 1991)3

(204, 1—1) .
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Table 2. Bal L, the algorithm for learning neura network filters o.

Input: Dataset X = {(sx, &) |k =1,..., K}, prior belief Belyior(€).
Output: Optimized parameters (weights and biases) w;,... for the n networks g, . . ., gn.

Algorithm:
1. Initialize the parameters w; ... of every network with small random values.
2. lterate until convergencecriterion is fulfilled:
21 Foradl (¢, s) € X, computethe conditional probabilities
‘ _ gi(s) iffi=1
Plrle) = {1—gi(s) if f; = 0 (“D

where g;(s) is the output of the :-th network for input s (cf. (32)).
2.2 Computethe error Epogerior (Cf. (36))
1

Fooseior = > Y e(€",€) P(¢") Belpa(€ ZZZ

(£*,s*)EX (§,5)€X f1=0 f2=0 fn=0
-1
(HP (£ils™) P )) > (HP(fAé)) Belpin(€) | (42)
(£5ex \i=1
2.3 For al network parameters w; ,,,.,, compute
O Fposei dgi(s
o S G Y Y e P B
(&, ")eX (6% ,s*)EX (g,s)€X

ZZ Z LI P1s) P(£ils) (267,0-1) (43)

f1=0 f,=0 fn=0 j#i

(fl|5 HP f] g) Belpnor( )
S ¢ P(fils) +0¢¢ P(fils™) I
n 2
> I[P u _
P

Eorex 1w 2. 1Irum

L (¢9ex g=1 i
The gradients gw(_) are obtained with backpropagation (cf. (39) and (40)).
2.4 For al network parametersm,w, update (cf. (38))
Wipp S Wiuw — N % (44)
wzpu

Bal L differs from conventional backpropagation (supervised learning) in that no target
values are generated for the outputs of the neural networks. Instead, the quantity of interest,
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Eposterior, 1S minimized directly. The output characteristics of the individual networks and,
hence, the features they extract, emerge as a side effect of minimizing Epos.

The output of the BaL L algorithmisaset of filters specified by a set of weightsand biases
for the different networks. As noted above, Eposerior 8Nd the resulting filter o depend on
the uncertainty Belpior(&). Below, when presenting experimental results, we will show that,
in cases in which the uncertainty is small (the entropy of Belyior(€) islow), quite different
features are extracted than when the uncertainty is large. However, athough the networks
must be trained for a particular Belpyior(§), they can be used to estimate the location for
arbitrary uncertainties Belyi (€), but with degraded performance. It istherefore helpful, but
not necessary, to train different networksfor different prior uncertainties.

4.4. Algorithmic complexity

The complexity of the learning and the performance methods must be analyzed separately.
The localization algorithm described in Table 1 must be executed in real time, while the
robot is in operation, whereas the learning al gorithm described in Table 2 can be run offline.
Our primary concern in the analysisistime complexity.

44.1. Localization

The complexity of probabilistic localization (Table 1) depends on the representation of
P(f]€) and Bel(£). Intheworst case, processing a single sensor reading requires O(Kn +
nW) time, where K isthetraining set size, n isthe number of networksand W isthe number
of weights and biases in each neural network. Processing an action requires O(K?n) time.
Various researchers have implemented versions of the probabilistic localization algorithm
that work in real time (Burgard et al., 1996a; Burgard, Fox, & Thrun, 1997; Kaelbling,
Cassandra, & Kurien, 1996; Koenig & Simmons, 1996; Nourbakhsh, Powers, & Birchfield,
1995; Simmons & Koenig, 1995; Thrunet a., 1996; Thrun, 1996). Giventherelatively small
computational overhead of the existing implementations, scaling to larger environments is
not problematic.

4.4.2. Learning

BalL L requires O(N2" K3 + N KnW) time, where n, K, and I are the same as above,
and where NV isthe number of gradient descent iterations. If the number of training patterns
is greater than both the number of inputs and the number of hidden unitsin each network,
which is a reasonable assumption since otherwise the number of free parameters exceeds
the number of training patterns by a huge margin, then O(N 2" K3) dominates O(N KnW).
Thus, under normal conditions, the training the networks requires O(N2" K3) time. The
constant factor is small (cf. Table 2). Most existing localization algorithms use only one or
two features (e.g., one or two landmarks), indicating that even small values for » work well
in practice.
There are several ways to reduce the complexity of learning:
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1

Instead of training al networks in parallel, they can aso be trained one after another,
similar to theway unitsare trained one after another in the cascade correlation algorithm
(Fahiman & Lebiere, 1989). Sequential training would reduce worst-case exponential to
linear complexity, since networksaretrained one after another, which requires O (N n K3)
time.

Compact representationsfor P(f|¢) and Bel(&) can reduce the complexity significantly.
For example, in Burgard et a. (1996a), Koenig and Simmons (1996), and Simmons
and Koenig (1995), the number of grid cells used to represent P(f|¢) and Bel(£) is
independent of the training set size. Using their representations, our learning algorithm
would scale quadratically in the size of the environment and linearly in the size of the
training set. In addition, coarse-grained representations such as the one reported by
Koenig and Simmons (1996) and Simmons and Koenig (1995) can reduce the constant
factor even further.

Thelearning algorithmin Table 2 interleaves one computation of Eposterio, and itsderiva-
tives with one update of the weights and biases. Since the bulk of processing time is
spent computing Eposterio, and its derivatives, the overall complexity can be reduced by
modifying the training agorithm so that multiple updates of the networks' parameters
are interleaved with a single computation of Epegerior @Nd its derivatives. The necessary
stepsinclude:

The network outputs ¢;(s) are computed for each training example (s, &) € X.

2. The gradients of Eposterior with respect to the network outputs ¢;(s) are computed
(cf. (40)).

3. For each training example (s, &) € X, “pseudo-patterns’ are generated using the
current network output in conjunction with the corresponding gradients, giving

Eposterior >
s, gi(s) — 222X 45
(50 (s - T (45)
4. These patterns are fitted using multiple epochs of regular backpropagation.

Thisalgorithm approximates gradient descent, but it reduces the complexity by a constant
factor.

In addition, modifications such as online learning, stochastic gradient descent, or higher-
order methods such as momentum or conjugate gradient methods (Hertz, Krogh, & Palmer,
1991) yield further speedup. Littleis currently known about principal complexity bounds
that would apply here.

As noted above, learning o can be done offline and is only done once. With the modifi-

cations proposed here, the complexity of training is low-order polynomia (mostly linear) in
K,n, N,and W. In thelight of the modifications discussed here, scaling up our approach
to larger environments, larger training sets, and more neural networks does not appear to be
problematic.

In our implementation (see bel ow), training the networks required between 30 minutes and

12 hours on a 200M hz Pentium Pro.
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Figure2. (a) The Real World Interface B21 robot used in our research. (b) The testing environment.

5. Empirical evaluation and comparison

This section presents some empirical results obtained with Bal L, using data obtained from a
mobile robot equipped with a color camera and an array of sonar sensors, as shown in Figure
2(a). To compare our approach with other state-of-the-art methods, we reimplemented two
previously published approaches.

1. Localizationusingdoors. A team of researchers at our university hasrecently devel oped
a similar probabilistic localization method that uses doors as its primary landmark (see
Koenig & Simmons, 1996; Simmons& Koenig, 1995). Thisgroupisinterestedinreliable
long-term mobilerobot operation, for which reason it has operated an autonomous mobile
robot almost on a daily basis over the last two years, in which the robot moved more
than 110 km in more than 130 hours. Since we are located in the same building as this
group, we had the unique opportunity to conduct comparisons in the same environment
using the same sensor configuration.

2. Localization with ceiling lights. Various research teams have successfully used ceiling
lights as landmarks, including HelpMate Robotics, which has built alandmark commer-
cial service robot application that has been deployed in hospitals world wide (King &
Weiman, 1990). HelpMate's navigation system is extremely reliable. In our building,
ceiling lights are easy to recognize, stationary, and rarely blocked by obstacles, making
them prime candidate landmarks for mobile robot localization.

Our previously best localization agorithm (Thrun, in press, Thrun et a., 1996), which is
based on model matching* and which is now distributed commercially by a mobile robot
manufacturer (Real World Interface, Inc.), was not included in the comparison, because
this approach is incapable of localizing the robot under global uncertainty. In fact, most
approaches in the literature are restricted to position tracking, i.e., localization under the
assumption that the initial position is known. Of the few approaches to global localiza-
tion, most require that a single sensor snapshot suffices to disambiguate the position—an
assumption which rarely holdstruein practice.
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5.1. Testbed and implementation

This section describes the robot, its environment, the data, and the specific implementation
used throughout our experiments.

5.1.1. Environment

Figure 2(b) shows a hand-drawn map of our testing environment, of which we used an 89
meter-long corridor segment. The environment contains two windows (at both corners),
various doors, an elevator, three to four trash bins, and a hallway. The environment was also
dynamic. Whilethe datawasrecorded, the corridorswere populated, the status of some of the
doors changed, and the natural daylight had a strong effect on camera images taken close to
the windows. Strictly speaking, such dynamics violate the Markov assumption (cf. Section
2.3), but as documented here and elsewhere (Burgard et al., 1996a; Burgard et al., 1996b;
Kaelbling, Cassandra, & Kurien, 1996; Leonard, Durrant-Whyte, & Cox, 1992; Koenig,
& Simmons, 1996; Nourbakhsh, Powers, & Birchfield, 1995; Smith, Self, & Cheeseman,
1990), the probabilistic approach isfairly robust to such dynamics.

5.1.2. Datacollection

During data collection, the robot moved autonomously at approximately 15 cm/sec, con-
trolled by our local obstacle avoidance and navigation routines (Fox, Burgard, & Thrun,
1996). In 12 separate runs, a total of 9,815 sensor snapshots were collected (228 MB raw
data). The datawas recorded using three different pointing directionsfor the robot’scamera:

1. Dataset D-1: In 3,232 snapshots, the camera was pointed towards the outer side of the
corridor, so that doors were clearly visible when the robot passed by them.

2. Data set D-2: In 3,110 snapshots, the camera was pointed towards the interior of the
building. Here the total number of doorsis much smaller, and doors are wider.

3. Dataset D-3: Finaly, in 3,473 data points, the camera was pointed towards the ceiling.
This data set was used to compare with landmark-based localization using ceiling lights.

The illumination between the different runs varied dlightly, as the data was recorded at
different times of day. In each individua run, approximately three quarters of the data
was used for training, and one quarter for testing (with different partitioningsof the datain
different runs). When partitioning the data, items collected in the same run were always part
of the same partition.

Unless otherwise noted, the robot started at a specific location in each run, from where it
moved autonomously through the 89 meter-long segment of corridor. Thus, the principal
heading directions in all data are the same; however, to avoid collisions with humans, the
obstacl e avoidance routines sometimes substantially changed the heading of the robot. Most
of our data was collected close to the center of the corridor. Consequently, the networks
o and the map P(f|¢) are specialized to our navigation agorithms (Thrun et al., 1996).
Thisis similar to work by others (Kuipers & Byun, 1988; Kuipers & Byun, 1991; Mataric,
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1990), whose definition of alandmark also reguires that the robot use a particular navigation
algorithm that makes it stay at a certain proximity to obstacles. Although the robot travels
the corridor in both directionsin everyday operation, we felt that for the purpose of scientific
evaluation, using data obtained for asingle travel direction was sufficient.>

Location £ was modeled by a three-dimensional variable (x, y, 6). Instead of measuring
the exact locations of the robot by hand, which would not have been feasible given the
large number of positions, we used the robot’s odometry and the position tracking algorithm
described by Thrun (in press) to derive the position labels. The error of these automatically
derived position labels was significantly lower than the tolerance threshold of our existing
navigation software (Thrun et al., 1996).

5.1.3. Preprocessing

In al our runs, images were preprocessed to eliminate some of the daytime- and view-
dependent variations and to reduce the dimensionality of the data. First, the pixel mean and
variance were normalized in each image. Subseguently, each image was subdivided into
ten equally-sized rows and independently into ten equally-sized columns. For each row and
column, seven characteristic image features were computed:

aver age brightness,

average color (one for each of the three color channels), and

texture information: the average absolute difference of the RGB values of any two
adjacent pixels (in a subsampled image of size 60 by 64, computed separately for each
color channel).

In addition, 24 sonar measurements were collected, resulting in a total of 7 x 20+24=164
sensory values per sensor snapshot. During the course of this research, we tried a variety of
different image encodings, none of which appeared to have a significantimpact on the quality
of the results. The features are somewhat specific to domains that possess brightness, color,
or texture cues, which we believe to be applicable to a wide range of environments. The
basic learning algorithm, however, does not depend on the specific choice of the features,
and it does not require any preprocessing for reasons other than computational efficiency.

5.1.4. Neural networks

Inal our experiments, multi-layer perceptrons with sigmoidal activation functions (Rumel-

hart, Hinton, & Williams, 1986) were used to filter the (preprocessed) sensor measurements.
These networks contained 164 input units, six hidden units, and one output unit. Runs
using different network structures (e.g., two hidden layers) gave similar resultsaslong asthe
number of hidden unitsper layer was not smaller than four. To decrease thetrainingtime, we
used the pseudo-pattern training method described in item 3 of Section 4.4.2, interleaving
100 steps of backpropagation training with one computation of Epogerior and its derivatives.
Networks were trained using a learning rate of 0.0001, a momentum of 0.9, and a version
of conjugate gradient descent (Hertz, Krogh, & Palmer, 1991). These modifications of the
basic algorithm were exclusively adopted to reduce the overall training time, but an initial

comparison using the unmodified algorithm (see Table 2) gave statistically indistinguishable
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results. As noted above, learning required between 30 minutes and 12 hours on a 200Mhz
Pentium Pro.

5.1.5. Error function

In our implementation, the error e(£*, &) measures the distance the robot must travel to move
from &£* to £. Thus, the further the robot must travel when erroneously believingto be at ¢,
the larger itserror.

5.1.6. Map

Nearest neighbor (Franke, 1982; Stanfill, & Waltz, 1986) was used to compute P(f;|¢).
More specifically, in our experiments the entire training set X was memorized. For each
query locationé, aset of k values g(s1), g(s2), - . ., g(sx) was computed for the & data points
in X nearestto&. Nearnesswas calculated using Euclidean distance. Thedesired probability
P(f;|¢) was assumed to be the average k=1 Zle g(si). Thisapproach was found to work
reasonably well in practice. The issue of how to best approximate P( f|£) from finite sample
sizesisorthogonal tothe research described here and was therefore not investigated in depth;
for example, see Burgard et al. (1996a), Gelb (1974), Nourbakhsh, Powers, and Birchfield
(1995), Simmons and Koenig (1995), and Smith, Self, and Cheeseman (1990) for further
literature on thistopic.

5.1.7. Testing Conditions

We were particularly interested in measuring performance under different uncertainties—
from local to global. Such comparisons are motivated by the observation that the utility
of a feature depends crucialy on uncertainty (cf. Section 3.2). In most of our runs, the
uncertainty Belyior(€) Was uniformly distributed and centered around the true (unknown)
position. In particular, the distributions used here had the widths: [—1m, 1m], [—2m, 2m],
[-5m, 5m], [—10m, 10m]|, [—50m, 50m], and [—89m, 89m]|. The range of uncertainties
captures situations with global uncertainty as well as situations where the robot knows its
position within a small margin. An uncertainty of [—89m, 89m| corresponded to global
uncertainty, since the environment was 89m long. We will refer to uncertainties at the other
end of the spectrum ([—1m, 1m], [-2m,2m]) as local. An uncertainty of [—1m, 1m] is
generaly sufficient for our autonomous navigation routines, so no smaller uncertainty was
used. If Belyior isused in training, we refer to it as training uncertainty. If it is used in
testing, we call it testing uncertainty. When evaluating Bal.L, sometimes different prior
uncertainties are used in training and testing to investigate the robustness of the approach.

5.1.8. Dependent measures

The absolute error Eposterio, depends on the prior uncertainty Belyior(€), henceitis difficult
to compare for different prior uncertainties. We therefore chose to measure instead the error
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reduction, defined as

1 _ Loseior (46)
Eprior

Like the posterior error Eposterior, the prior error Eprior denotes the approximation of Eprior
based on the data X. For example, if the prior error Eyior is four times as large as the
posterior error Eposterio, after taking a sensor snapshot, the error reduction is 75%. The larger
the error reduction, the more useful the information extracted from the sensor measurement
for localization. In our experiments, theinitial error of a globally uncertain robot is 42.2m;
thus, to lower theerror to 1m, it must reduceitserror by 97.6%. The advantage of plottingthe
error reduction instead of the absolute error isthat all results are in the same scal e regardless
of the prior uncertainty, which facilitates their comparison.

5.2. Reaults

The central hypothesisunderlying our research isthat filterslearned by Bal L can outperform
human-selected landmarks. Thus, the primary purpose of our experiments was to compare
the performance of BalLL to that the other two approaches. Performance was measured in
terms of localization error. The secondary purpose of our experiments was to understand
what features Bal.L uses for localization. Would the features used by Bal L be similar to
those chosen by humans, or would they be radically different?

Inafirst set of experiments, we evaluated the error reduction for BaLL and compared it
to the two other approaches, under different experimental conditions. The error reduction
directly measures the usefulness of afilter o or aparticular type of landmark for localization.
Thus, it lets us judge empirically how efficient each approach is in estimating a robot’s
location. Different experiments were conducted for different uncertainties (from local to
global), and different numbers of networks .

5.2.1. Oneneural network and same uncertainty in training and testing

In the first experiment, BaLL was used to train a single neura network, which was then
compared to the other two approaches. While the different approaches were evaluated under
the different uncertainties, in each experiment the testing uncertainty was the same as the
training uncertainty. Consequently, the results obtained here represent the best case for
Bal L, since o was trained for the specific uncertainty that was also used in testing.

Figure 3 shows the error reduction obtained for the three different data sets D-1, D-2, and
D-3. Ineach of these diagrams, the solid lineindicatesthe error reduction obtained for Bal L,
whereas the dashed line depicts the error reduction for the other two approaches (landmark-
based localization using doorsin Figures 3(a) and 3(b), and ceiling lightsin Figure 3(c)). In
all graphs, 95% confidence intervals are also shown.

Ascan beseeninall three diagrams, BaL L significantly outperformsthe other approaches.
For example, as the results obtained with data set D-1 indicate (Figure 3(a)), doors appear
to be best suited for +=2m uncertainty. If the robot knows its location within =2m, doors,
when used as landmarks, reduce the uncertainty by an average of 8.31%. Bal L identifies
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a filter that reduces the error by an average of 14.9%. This comparison demonstrates that
Bal L extracts more useful features from the sensor data. The advantage of our approach
is even larger for increasing uncertainties. For example, if the robot’s uncertainty is 50m,
Bal L reduces the error by 36.9% (data set D-1), whereas doors reduce the error by aslittle
as 5.02%.

Similar results occur for the other two data sets. For example, in data set D-2, where the
camera is pointed towards the inside wall, the door-based approach reduces the error by a
maximum average of 9.78% (Figure 3(b)). In this environment, doors appear to be best
suited for 5m uncertainty (and not for +2m), basically because doors on the interior side
of the testing corridor are wider and there are fewer of them. Here, too, BaLL outperforms
the door-based approach. It successfully identifies a feature that reduces the uncertainty by
15.6% under otherwise equal conditions. In Figure 3(b), thelargest relative advantage of our
approach over the door-based approach occurs when the robot is globally uncertain about its
position. Here Bal L reduces the error by 27.5%, whereas the door-based approach yields
no noticeabl e reduction (0.00%).

The results obtained for data set D-3, where the camera is pointed upward, are generally
similar. If the prior uncertainty is=+2m, ceiling lights manage to reduce the error by as much
as 15.6%, indicating that they are significantly better suited for this type of uncertainty than
doors. We attributethisfinding to the fact that most of our ceiling lightsare spaced inregular
intervals of about 5 meters. BalL outperforms localization based on ceiling lights in all
cases, as can be seen in Figure 3(c). For example, it reduces the error by 21.0% for £2m
prior uncertainty and by 39.5% for +50m uncertainty. All these results are significant at the
95% confidence level.

5.2.2. Multipleneural networks and same uncertainty in training and testing

In a second experiment, we held uncertainty constant but varied the number of networksand
hence the dimensionality of the feature vector (from oneto four). Asdescribed in Section 4,
Bal L can simultaneously train multiple networks.

The primary result of this study was that, as the number of networks increases, BalLL's
advantage over the aternative approaches increases. Table 3 shows the average error reduc-
tion (and 95% confidence interval) obtained for =2m uncertainty and for the three different
data sets. For n = 4, the difference between Bal L and both other approaches is huge. Our
approach finds features that reduce the error on average by 41.7% (data set D-1), 36.7%
(D-2), and 42.9% (D-3), whereas the other approaches reduce the error only by 8.3%, 1.4%,
and 15.6%, respectively. According to these numbers, Bal L isbetween 2.75 and 26.2 times
as data efficient as the alternatives.

To understand the performance improvement over the single network case, itisimportantto
notice that multiple networkstend to extract different features. If all networksrecognized the
same features, their output would be redundant and the result would be the same asif n = 1.
If their outputs differ, however, the networks will generally extract more information from
the sensors, which will usually lead to improved results, as demonstrated by the performance
results. Thus, the observation that the different networkstend to select different featuresisa
result of minimizing the posterior error £ poserior- AS We have shownin an earlier version of



24

Table 3. Comparison of BaLL with the other two approaches (£+2m uncertainty). Here . specifiesthe dimension
of the feature vector f (i.e., the number of networks), and the numbersin the table give the average error reduction
and their 95% confidenceinterval. The resultsin thefirst two rows can also befoundin Figure 3 at +2m.

Data set D-1 D-2 D-3
doors 8.3%+1.1% 1.4%+1.5% -
ceiling lights - - 15.6%+1.4%

BaLL,n =1 | 14.9%+1.3% | 14.2%+1.6% | 21.0%+1.7%
BalLlL,n =2 | 33.5%+1.9% | 36.7%+1.9% | 34.5%+2.0%
BalLlL,n =3 | 39.7%+2.0% | 36.3%+2.3% | 41.5%+1.8%
BalLlL,n =4 | 4L.7%+25% | 36.7%+1.9% | 42.9%+1.6%

thisarticle (Thrun, 1996), the output of the networksislargely uncorrelated, demonstrating
that different, non-redundant features are extracted by the different networks.

5.2.3. Multipleneural networks and different uncertainty in training and testing

In a third experiment, we investigated Bal L's performance when trained for one particular
uncertainty but tested under another. These experiments have practical importance, since in
our current implementation the slowness of the learning procedure prohibits training new
networks every time the uncertainty changes. We conducted a series of runs in which net-
workswere trained for +=2m uncertainty and tested under the various different uncertainties.
In the extreme case, the testing uncertainty was +89m, whereas the training uncertainty was
+2m.

Figure 4 shows the results obtained for » = 4 networks using the three different data
sets.  As expected, the networks perform best when the training uncertainty equals the
testing uncertainty. The primary results are that the performance degrades gracefully, in
that even if the training uncertainty differs drastically from the testing uncertainty, the
networks extract useful informationfor localization. Bal L still outperformsboth alternative
approaches or produces statistically indistinguishableresults. These results suggest that, in
our environment, a single set of filters might still be sufficient for localization, athough the
results might not be as good as they would be for multiple sets of filters.

5.2.4. Global localization

In afinal experiment, BaLL was applied to the problem of global localization, in which the
robot does not know its initial location. We model this by assuming its initial uncertainty
is uniformly distributed. As the robot moves, the internal belief is refined based on sensor
readings. In our environment, a single sensor snapshot is usually insufficient to determine
the position of the robot uniquely. Thus, multiple sensor readings must be integrated over
time.

We conducted 35 global localization runs comparing the door-based localization approach
with BaLL. In each run, the robot started at a random position in the corridor. Sensor



25

50%

@ 45%
40%
- 35%
o
‘5 30%
=]
B 25%
S 20%
S 159
10%
5%
0%
testing uncertainty
50%
(b) as%
40%
- 35%
o
‘5 30%
=]
B 25%
S 20%
S 159
10%
5%
0%
testing uncertainty
50%
(©) 45%
40%
- 35%
o
‘5 30%
=]
B 25%
S 20%
S 159
10%
N\
0,
%t -
0%
im 2m 5m 10m 50m global

testing uncertainty

Figure 4. Even under different uncertainties, the learned filters reduce the error significantly more than those that
recognizedoors. Thisfigure showsresults obtained whenrn = 4 networksaretrained for £2m uncertainty. BaLL's
error reductionis plotted by the solid line, whereas the dashed line depicts the error reduction when doors are used
aslandmarks. The figure shows results for data set (a) D-1, (b) D-2, and (c) D-3.
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Figure5. Anexampleof global localization with BaLL. Each curve representsthe belief Bel(¢) of therobot at a
different time. Initialy (top curve), the robot’s position isin the center of the rectangle. Itsinitial belief Bel(¢) is
uniformly distributed. Asthe robot sensesand movesforward, Bel(¢) isrefined. After four sensor measurements,
Bel(€) is centered on the correct position. The numbers on the right side depict the error E pogterior at the different
stages of the experiment.

snapshots were taken every 0.5 meter and incorporated into the internal belief using the
probabilistic algorithm described in Table 1. Both approaches—the door-based approach
and Bal L, used the same data; thus, any performance difference was exclusively due to the
different information extracted from the sensor readings. BalLL used n = 4 networks, which
were trained for -£2m uncertainty prior to robot operation and held constant while the robot
localized itself.

Figure 5 depicts an example run with BaL L. This figure shows the belief Bel(£) and the
error at different stages of the localization. Each row in Figure 5 gives the belief Bel(¢)
at a different time, with time progressing from the top to the bottom. In each row, the true
position of the robot is marked by the square. As can be seen in Figure 5, the features
extracted by BalL L reduce the overal uncertainty fairly effectively, and after four sensor
readings (2 meters of robot motion) the robot “knows whereit is.”

Figure 6 summarizes the result of the comparison between BalLL and the door-based
approach (dashed line). This shows the average error (in cm) as a function of the distance
traveled, averaged over 35 different runswith randomly chosen starting positions, along with
95% confidence intervals. The results demonstrate the relative advantage of learning the
features. After 30m of robot travel, the average error of the door-based approach is 7.46m.
In contrast, Bal L attains the same accuracy after only 4m, making it approximately 7.5
times as data efficient. After 9.5m, BalLL yields an average error that is smaller than 1m.
The differences are al statistically significant at the 95% level.

As noted above, when applied in larger environments or in the bidirectional case, the
number of sensor readings required for global localization increases. To quantify this
increase, it is useful to consider the problem of localization from an information-theoretic
viewpoint. Reducing the uncertainty from 89m to 1m log,(89m/1m) = 6.48 independent
bitsof information. Thisisbecause it takes 6.48 bitsto code asymbol using an alphabet of 89
symbols. Of course, consecutive sensor readings are not independent, reducing the amount of
information they convey. Empirically, BaLL requires on average 19 sensor readings (9.5m)
to reduce the error to 1m. These numbers suggest that, on average, it needs 3.5 = 19/5.4
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Figure 6. Absolute error in cm as a function of meters traveled, averaged over 35 different runs with different
starting points. Every 0.5 meters, the robot takes a sensor snapshot. The dashed lineindicates the error when doors
are used as landmarks and the solid line correspondsto Bal_L, which gives superior results.

sensor readingsfor one bit of independent position information. Consequently, in a corridor
twice the size of the one considered here (or in the bidirectional case), 23 sensor readings
should be sufficient to obtain an average localization error of 1m (since 23 > 19+ 3.5).

5.3. What features do the neural networ ks extract?

Analyzing the trained neura networks led to some interesting findings. In general, the
networks use a mixture of different features for localization, such as doors, dark spots, wall
color, hallways, and blackboards. In several runs, the networks became sensitive to a spot
in our corridor whose physical appearance did not, to us, differ from other places. Closer
investigation of this spot revealed that, due to an irregular pattern of the ceiling lights, the
wall is dightly darker than the rest of the corridor. This illumination difference is barely
visible to human eyes, since they compensate for the total level of illumination. However,
our camera is very sensitive to the total level of illumination, which explains why the robot
repeatedly selected this spot for use inlocalization.

We also investigated the effect of different training uncertainties on the filter . As the
above results suggest, different filters are learned for different uncertainties, so the question
arises as to what type of features are used under these different conditions.

Using data set D-1 as an example, Figure 7 depicts example outputs of trained networks
for £2m, +10m, and £89m training uncertainty. Each curve plots the output value for
the corresponding network, which were evaluated in the 89m-long corridor. Obviously, the
features extracted by the different networksdiffer substantially. Whereas the network trained
for small uncertainty is sensitive to local features such as doors, hallways, and dark spots,
the network trained for large uncertainty is exclusively sensitive to the color of the walls.
Roughly a quarter of our corridor is orange and three quarters are light brown. If the robot
is globally ignorant about its position, wall color is vastly superior to any other feature, as
illustrated by the performance results described in the previous section. If the robot isonly
dightly uncertain, however, wall color is a poor feature.
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Figure 7. Example output characteristics of afilter, plotted over data obtained in one of the runs. The filters were
trained for (a) +2m, (b) £10m, and (c) +89m (global) uncertainty.

Figure 8 depictsthe output of n = 4 networks, simultaneously trained for local uncertainty
(£2m). Asdiscussed above, thedifferent networksspecializeto different perceptual features.
More examples and a more detailed discussion of the different features learned under the
various experimental conditions can be found in Thrun (1996).

6. Related work

Mobile robot localization has frequently been recognized as a key problem in roboticswith
significant practical importance. Cox (1991) considerslocalizationto be afundamental prob-
lem to providing a mobile robot with autonomous capabilities. A recent book by Borenstein,
Everett, and Feng (1996) provides an excellent overview of the state-of-the-art in localiza-
tion. Localization—and in particular localization based on landmarks—plays a key rolein
various successful mobile robot architectures.® While some localization approaches, such as
Horswill (1994); Koenig and Simmons (1996), Kortenkamp and Weymouth (1994), Matari¢
(1990), and Simmons and Koenig (1995), localize the robot relative to some landmarksin a
topological map, BalL L localizes the robot in a metric space, as in the approach by Burgard
et a. (1996a, 1996h).

However, few localization approaches can localize a robot globally; they are used mainly
to track the position of arobot. Recently, several authors have proposed probabilistic repre-
sentationsfor localization. Kalman filters, which are used by Gelb (1974), Rencken (1995),
Smith and Cheeseman (1985), and Smith, Self, and Cheeseman (1990), represent the location
of a robot by a Gaussian distribution; however, they only can represent unimodal distribu-
tions, and so they are usually unable to localize a robot globally. It is feasible to represent
densities using mixtures of Kalman filters, as in the approach to map building reported by
Cox (1994), which would remedy the limitation of conventional Kalman filters. The proba-
bilistic approaches described by Burgard et al. (1996a, 1996b), Kaelbling, Cassandra, and
Kurien (1996), Koenig and Simmons (1996), Nourbakhsh, Powers, and Birchfield (1995),
and Simmons and Koenig (1995) employ mixture models or discrete approximations of
densitiesthat can represent multi-modal distributions. Some of these approaches are capable
of localizing a robot globally. The probabilistic localization algorithm described in Section



Figure 8. Example output characteristics of n = 4 filters, optimized for +2m uncertainty.

2 borrows from this literature but generalizes all these approaches. It smoothly blends both
position tracking and global optimization, using only a single update equation.

M ost existing approachesto mobilerobot |ocalization extract static features from the sensor
readings, usually using hand-crafted filter routines. The most popular class of approaches
to mobile robot localization, localization based on landmarks, scan sensor readings for the
presenceor absenceof landmarks. A diversevariety of objectsand spatial configurationshave
been used as landmarks. For example, many of the landmark-based approaches reviewed in
Borenstein, Everett, and Feng (1996) require artificial landmarks such as bar-code reflectors
(Everett et a., 1994), reflecting tape, ultrasonic beacons, or visual patterns that are easy
to recognize, such as black rectangles with white dots (Borenstein, 1987). Some recent
approaches use more natural landmarksthat do not reguire modifications of the environment.
For example, the approaches of Kortenkamp and Weymouth (1994) and Matari¢ (1990) use
certain gateways, doors, walls, and other vertical objects to determine the robot’s position,
and the Helpmate robot uses ceiling lights to position itself (King & Weiman, 1990). The
approaches reported in Collet and Cartwright (1985) and Wolfart, Fisher, and Walker (1995)
use dark/bright regions and vertical edges as landmarks. These are just afew representative
examples of many different landmarks used for localization.

Map matching, which comprises a second, not quite as popular family of approaches to
localization, converts sensor data to metric maps of the surrounding environment, such as
occupancy grids (Moravec, 1988) or maps of geometric features such as lines. The sensor
map is then matched to a global map, which might have been learned or provided by hand
(Cox, 1991; Rencken, 1993; Schidle & Crowley, 1994; Thrun, 1993; Thrun, in press,
Yamauchi & Beer, 1996; Yamauchi & Langley, 1997). Map-matching approaches filter
sensor data to obtain a map, and then use only the map in localization.

These approaches have in common the fact that the features extracted from the sensor
readings are predetermined. By hand selecting a particular set of landmarks, the robot
ignores al other information in the sensor readings which, as our experiments demonstrate,
might carry some additional information. By mapping sensor readings to metric mapsin a
fixed, precoded way, the robot ignores other potentially relevant information in the sensor
readings. The current work lets the robot determine by itself what features to extract for
localization, based on their utility for localization. As shown by our empirical comparison,
enabling arobot to extract its own features (and learning its own landmarks) has a noticeable
impact on the quality of the results.

Probably the most related research isthat by Greiner and | sukapalli (1994). Their approach
can select a set of landmarks from a larger, predefined set of landmarks, using an error
measure that bears close resemblance to the one used in Bal L. The selection is driven by
the localization error after sensing, which is determined empirically from training data. In
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that regard, both approaches exploit the same basic objective function in learning filters.
Greiner and Isukapalli’s approach differs from BaLL primarily in three respects. Firdt, it
assumes that the exact location of each landmark is known before learning. The robot does
not defineitsown landmarks; rather, it startswith aset of human-defined landmarksand rules
out those that are not suited for localization. Second, it is tailored towards correcting small

localization errors and cannot perform global localization. Third, the class of landmarks that
Bal L can learn is much broader. The filters used by Greiner and Isukapalli are functions of
three parameters (distance, angle, and type of landmark); in contrast, BaL L employs neural
networksthat have many more degrees of freedom.

7. Conclusion

This paper has presented a Bayesian approach to mobile robot localization. The approach
relies on a probabilistic representation and uses Bayes' rule to incorporate sensor data into
internal beliefs and to model robot motion. The key novelty is a method, called Bal L,
for training neural networks to extract a low-dimensional feature representation from high-
dimensional sensor data. A rigorous Bayesian analysisof probabilistic localization provided
arational objectivefor training the neural networksso asto directly minimize the quantity of
interest in mobilerobot localization: thelocalization error. Asaresult, thefeatures extracted
from the sensor data emerge as a side effect of the optimization.

An empirical comparison with two other localization algorithms under various conditions
demonstrated the advantages of BalLL. We compared BalLL with an existing method by
Koenig and Simmons (1996), which use doors as landmark in localization, and with King
and Weiman's (1990) method, which uses ceiling lights. In this experiment, our approach
identified features that led to superior localization results. In some cases, the performance
differences were large, particularly for localization under global uncertainty.

Bal L'sability tolearnitsown featuresand thusto discover its own landmarks hasimportant
consequences for mobile robot navigation. In particular, the probabilistic paradigm has four
principal advantages when compared to conventional approaches to this problem:

1. Autonomy. Bal L obviates the need for manually determining the features to extract
from the sensor data. |n most previous approaches to localization, a human designer
had to manually specify the features to extract. For example, most landmark-based
approaches rely on predetermined landmarks, chosen by human expert, which requires
expertise about the robot, its sensors, and the environment. BaL L replaces the need for
selecting the right features by automated learning.

2. Optimality. In BalLL, filters are learned by attempting to optimize the accuracy of the
localization routinesthat employsthem. Asymptotically, minimizing the Bayesian error
should yield optimal filters. Of course, BaL L might fail to find an optimal set of filters
for three reasons. Bal L istrained using finite sample sets; backpropagation networks
might not be sufficient to represent optimal filters; and the gradient descent training
procedure might converge to aloca minimum.

3. Environmental flexibility. Our method can also customize itself to different environ-
ments. Any routine that relies on static, built-in landmarks should fail in environments
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that do not possess such landmarks. For example, although ceiling lights might be ap-
propriate landmarks in some environments, they are inappropriate in environments that
do not possess them. By providing a method that supports the automatic customization
of robots to their environments, we hope to achieve a level of flexibility that facilitates
the design of future service robot applications (e.g., service robots operated in private
homes, whose design varies greatly from home to home).

4. Sensor flexibility. The current approach does not hinge on a specific sensor technol ogy.
In contrast, most existing localization approaches are closely tied to a particular type of
sensor. For example, routinesthat rely on visual cues require that the robot be equipped
with a camera. Bal L is more flexible in that it automatically adapts to the particular
type sensor.  We conjecture that it will also scale better to high-dimensional sensor
spaces that arise if alarge number of sensors are used simultaneously. Exploiting the
information in high-dimensional sensor spaces has proven to be extremely difficult for
human engineers; for this reason we believe that data-driven learning approaches such
as the one proposed in this paper will ultimately make a lasting contribution to the field
of robotics.

A key limitation of the current approach is that it does not learn the location of landmarks
(in 2-y coordinates). Instead, it learns to associate sensor readings with robot locations. If
the robot knew the location of the landmarks, it could apply projective geometry to predict
a landmark’s appearance from different, nearby locations. In the current approach, thisis
not possible and we suspect that this limitation causes an increased need for training data.
A second limitation arises from the fact that, after the initial training phase, learning is
discontinued. If the environment changes, it is desirable that the localization routines adapt
to the changes, and it appears feasible to extend BaLL accordingly. As the robot knows
roughly where it is, BaLL can use its position estimates to label sensor data automatically,
and use this self-labeled data for further training. The effectiveness of such an extension in
practice remains to be seen.

Althoughwe have applied BalL L only to one specific problem in mobile robot |ocalization,
the mathematical framework presented here is more general and can be applied to a whole
range of decision problems arising in the context of mobile robotics. These include:

1. Active sensing. As shown in Thrun (1996), the mathematical framework yields a
rational incentive for pointing sensors so as to best localize a robot. Empirical results
have demonstrated that by actively controlling the pointing direction of therobot’' scamera
so as to minimize the future expected localization error, the efficiency and robustness of
localization can be improved further.

2. Sensor selection. The approach can also be used to determine what sensors to include
on mobile robots. Previously, robot designers lacked a formal method for determining
the sensors best suited for localization. By comparing the Bayesian localization error for
different type sensors, our analysis provides a rationa criterion for determining which
sensors work best and where to mount them.

3. Navigation for localization. The approach can be used to determine where to move so
as to best localize the robot, a problem that has previously been studied by Kaelbling,
Cassandra, and Kurien (1996). The mathematical details are discussed in Thrun (1996),
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whileasimilar approach with empirical results can be found in Burgard, Fox, and Thrun
(1997).

The Bayesian method presented here is an instance of agenera approach for the estimation
of hidden state and the integration of high-dimensional sensor data over time. Put in this
light, a limiting assumption of the current approach is the requirement that, during training,

the hidden state must be accessible. Thisis obvioudly a reasonable assumption to make in
some situations(such asthe one studied here), but it isunreasonablein many other situations.

Thus, an open research issue is the extension of the current methods for the estimation of
hidden state when it is not accessible. Preliminary results carried out in our lab in the
context of intelligent building control have led to an extension to situations where only a

low-dimensional projection of the hidden stateis accessible during training. We suspect that
the general paradigm of Bayesian analysis has the potential for a new class of more capable
learning algorithms, with the current work being just an initial example.
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Notes

1. Asnoted by Matari¢ (1990), “Although intuitively clear, the concept [of alandmark] isdifficult to define” We
adopt Matari¢’'s and Presson & Montello’s (1988) definition, who define alandmark as “ any element (object
or feature) which can serve as a point reference.” The reader may notice that some authors, such as Chown,
Kaplan, and Kortenkamp (1995) or Kuipersand Levitt (1988), propose more specific definitions, such as that
landmarksmust be unique, they must correspondto physical objects, or they must bevisiblefrom everywhere.

2. Other error measures, such as measuresrelated to the efficiency of robot motion, are not considered, since our
work focuses on the problem of state estimation, and our current approach does not addressrobot control.

3. Inour experiments, we did not observe an overfitting effect, as experimentsreported in Thrun (1996) demon-
strate. Thus, we simply trained the networksfor alarge number of iterations (such as 10000).

4. Seeaso Chatilaand Laumond (1985), Rencken (1993), Schiele and Crowley (1994), and Yamauchi and Beer
(1996)

5. Asfar astracking the position of the robot is concerned, the results obtained here should directly transfer to
the bidirectional case, since the robot never turns an unnoticed 180 °. Global localization in the bidirectional
case is generally more difficult for any approach, due to the increased number of possible locations. The
main point of this paper is to provide ways for learning features (landmarks) for localization, and we have
no reason to believe that the qualitative results obtained here do not transfer to the bidirectiona case (as they
should not change when one goesfrom a89m to a 178m corridor). Section 5.2.4 quantifiesthe effect of larger
environments, or the general bidirectional case.
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6. Examplescan be found in Betke and Gurvits (1993), Cox (1991), Cox (1994), Horswill (1994), Fukuda et
d., (1993), Hinkel and K nieriemen (1988), Koenig and Simmons (1996), Kortenkamp and Weymouth (1994),
Leonard and Durrant-Whyte (1992), Leonard, Durrant-Whyte, and Cox (1992), Matari¢ (1990), Neven and
and Schoner (1995), Nourbakhsh, Powers, and Birchfield (1995), Peterset al., (1994), Rencken (1993), Schiele
and Crowley (1994), Simmons and Koenig (1995), Thrun et al., (1996), Weil3, Wetzler, and von Puttkamer
(1994), and various chaptersin Kortenkamp, Bonassi, and Murphy (in press).
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