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Abstract

I present first results on COLUMBUS, an autonomous mobile robot. COLUMBUS
operates in initially unknown, structured environments. Its task is to explore and model
the environment efficiently while avoiding collisions with obstacles. COLUMBUS
uses an instance-based learning technique for modeling its environment. Real-world
experiences are generalized via two artificial neural networks that encode the charac-
teristics of the robot’s sensors, as well as the characteristics of typical environments
the robot is assumed to face. Once trained, these networks allow for knowledge trans-
fer across different environments the robot will face over its lifetime. COLUMBUS’
models represent both the expected reward and the confidence in these expectations.
Exploration is achieved by navigating to low confidence regions. An efficient dynamic
programming method is employed in background to find minimal-cost paths that, ex-
ecuted by the robot, maximize exploration. COLUMBUS operates in real-time. It has
been operating successfully in an office building environment for periods up to hours.

1 Introduction

I report first results on robot exploration in mobile robot domains. In contrast to many other
approaches to robot learning, I consider a robot that has no other task than maximizing its
knowledge about the initially unknown environment, while avoiding negative reward. The robot
at hand, COLUMBUS (Figure 1), is a wheeled mobile robot equipped with a proximity sensor, a
sonar sensor that allows to sense distances to objects next to the robot by emitting sonar signals, and
a motion sensor for monitoring the motion of the wheels and detecting collisions. COLUMBUS
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operates in environments such as office buildings or private homes and has to avoid negative reward
that will be received when colliding with obstacles. It operates in real-time.

COLUMBUS employs a local, instance-based learning technique to model its environment. Rather
than fitting a global monolithic model, experiences are remembered explicitly, and functions are
approximated locally with the help of artificial neural networks. Many global approaches to
function fitting (e.g., with a single monolithic neural network) in mobile robot domains either
fail in complex environments due to effects like un-/relearning, or demand many well-distributed
training examples and have often been tested in simplified simulations only [Bachrach, 1991],
[Lin, 1991], [Singh, 1992], [Thrun and Möller, 1992]. Modularized, local and instance-based
approaches to function approximation have often been reported to generalize better from fewer
or ill-distributed examples [Moore, 1990], [Nowlan, 1990], [Atkeson, 1991], [Friedmann, 1991],
[Fox et al., 1991], [Jacobs and Jordan, 1991]. Instance-based curve fitting techniques have also
been applied successfully to fairly complex robot control learning problems, including the work by
Atkeson and Moore. In COLUMBUS’ approach to model building, experiences are remembered
explicitly. They are generalized via two artificial neural networks, one for sensor interpretation
and one for confidence assessment. These networks encode the specific characteristics of the
sensors as well as those of typical environments of a mobile robot, thus capturing knowledge
independent of any particular environment the robot might face. Once trained, they provide an
efficient way of knowledge transfer from previously explored environments to new environments.
For example, based on knowledge acquired in previously explored environments COLUMBUS
was found to avoid collisions almost completely in new environments. In contrast, tabula rasa
learning methods would result in collisions in any new, unknown environment before learning to
avoid them.

COLUMBUS top-level goal is efficient exploration. The approach taken in this paper is motivated
by earlier research on exploration in the context of reinforcement learning [Thrun, 1992b]. Theo-
retical results on the efficiency of exploration indicate the importance of the exploration strategy
for the amount of knowledge gained, and for the efficiency of learning control in general. It
has been shown that for certain hard deterministic environments, that an autonomous robot can
face, exploration strategies such as random walk result in an expected learning time that scales
at least exponentially with the number of states the environment can take [Whitehead, 1991].
In contrast, more thoughtful exploration techniques, such as “go to the least explored location,”
have been shown to reduce the complexity to a small polynomial function in the size of the state
space [Thrun, 1992a], [Koenig, 1992]. While these results may be theoretically significant, their
relevance and implications for practical research in robot exploration are unclear. This is because
the best known worst-case bounds for the complexity of exploration are still too large to be of any
practical meaning, given the complexity of environments and state spaces faced by a robot acting
in the real world. Furthermore, the theoretical results ignore the ability of mobile robots to gain
knowledge by sensing its environment, which allows the robot to make predictions for neighboring
locations. Such predictions, of course, may reduce the number of exploration steps drastically.
However, the intuition behind the theoretical results carries over to mobile robot domains. An
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Figure 1: (a) COLUMBUS is a wheeled HERO-2000 robot with a manipulator and a gripper. It is equipped with a
sonar sensor on the top of the robot that can be directed by a rotating mirror to give a full 360o sweep (24 values).
Sonar sensors return approximate echo distances. Such sensors are inexpensive but very noisy. (b) COLUMBUS
explores an unknown environment. Note the obstacle in the middle of the laboratory. Our lab causes many malicious
sonar values, and is a hard testbed for sonar-based navigation. For example, some of the chairs absorb sound almost
completely, and are thus hard to detect by sonar.

efficiently exploring robot should not explore by selecting actions randomly. Instead, it should
actively maneuver to poorly explored parts of the environment, in order to maximize knowledge
gain. COLUMBUS’ exploration strategy follows this principle. Its model keeps track of how
well its environment is explored, and based on this knowledge the robot is maneuvered to poorly
explored regions.

2 Modeling the Environment

In this section, the instance-based model building technique developed for COLUMBUS is de-
scribed. Let xi denote the location (position, state)1 of the mobile robot at time step i, si denote
the vector of sensations (sonar measurements in the case of COLUMBUS) at this time, and ri

the (collision) reward received at this time. In general, an adaptive model M is a function that
generalizes from a finite set of examples (data points) fhxi; si; riiji = 1:::ng to arbitrary new
positions x in the domain:

r = M(fhxi; si; riiji = 1 : : : ng; x)

In our case, r denotes the expected reward received upon entering location x.

Different model identification procedures differ in the way in which they combine and interpolate
between points (inductive bias). The approach taken in COLUMBUS is to split the functionM
into n pieces, one for each data point. More specifically, M is realized using a pair of artificial

1Throughout this section it is assumed that there is an accurate way to estimate the location xi of the robot in some
global coordinate frame. This assumption is relaxed in section 4, where a technique for re-estimating the location of
the robot based on sensations is described.
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(a)

(b)

Figure 2: The sensor interpretation networkR and the confidence network C.

neural networks: the sensor interpretation network R and the confidence estimation network C.
These networks are trained using the backpropagation training procedure [Rumelhart et al., 1986]

to encode the specific characteristics of the sensors as well as those of typical environments of a
mobile robot.

More specifically, the sensor interpretation network (Fig. 2a)

ri = R(si; x–xi) = R(si;∆x)

maps a single experience (xi; si) to an estimation of reward at x. Here ∆x is the difference between
xi and x, makingR independent of absolute coordinate values. Fig. 3a illustrates the output ofR
in the mobile robot domain. Here the distance measurements from the sonar sensor are mapped
to expected reward (generalized occupancy). R is trained in a supervised manner: The robot
operates and takes sensor measurements in a known environment where regions which the robot
can physically not enter are labeled with negative reward.2

Instead of one estimate of expected reward r =M(x) at location x,R returns n estimates ri, one
for each data point (si; xi). There are several reasons why combining multiple interpretations ri
is necessary. First, many sensors such as sonars are noisy, and often fail to sense the environment
accurately. In addition, R models an inherently unpredictable function. For example, a sonar
sensor cannot “look through a wall.” Thus if the query point x and xi are separated by an obstacle,
ri will usually be wrong. In what follows, a scheme for combining multiple interpretations based
on estimating confidence is described.

The confidence network (Fig. 2b)

ci = C(si;∆x)

maps a single experience (xi; si) to a scalar in (0; 1), again with ∆x = x� xi. The interpretation

2Note that in the current implementation, this is done with a simulator that models sonar sensors as well as sensor
noise. Simulation is significantly cheaper and faster than real-world experimentation, and I empirically found R to
be accurate enough even if trained on simulated data. In general, training these networks can be interleaved with
exploration, allowing for cross-environment transfer of learned knowledge for model identification. Note that all
results displayed in figures are derived from real-world data.
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Figure 3: (a) Examples of sensor interpretation using theR network. Lines indicate sonar measurements (distances),
and the region darkness represents the expected collision reward for surrounding areas (dark values indicate negative
reward). Examples are: 1. hallway with human walking by, 2. hallway with open door. 3. hallway, 4. several
obstacles, 5. corner of a room with obstacle, and 6. corner of a room. (b) The corresponding confidences C in the
interpretations shown in a. The darker the color, the larger the expected error and the lower the confidence. Low
confidence regions include the boundary region between freespace and obstacles, as well as regions beyond obstacles.

network R will never generalize perfectly, i.e., its error will never approach zero. This effect is
utilized for training the confidence network. Using an independent test set for R (after training),
C is trained to estimate the expected error jR(si;∆x) � reward(x)j of R (normalized to [0; 1]).
Since C estimates the expected error of ri, the confidence in ri is low if ci is large and vice versa. It
is straightforward to use this error estimate in the integration of the ri by weighting interpretations
ri with their confidences, defined as � ln(ci).

Figure 3b illustrates confidence estimations, corresponding to the reward estimations shown in
Figure 3a. Note that predictions of freespace and walls usually have high confidence, whereas
for example the confidence in predictions behind walls is low. As can be seen from some of the
examples in this figure, the confidence network deals with noise by assigning low confidence to
potentially noisy sensations.

Finally, reward estimates ri are combined according to their confidence estimates � ln ci, using
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the formula.

M(x) =

P
i� ln ci � ri
cM(x)

with cM(x) =

X

i

� ln ci

The term cM(x) is called the cumulative confidence at x. Knowing that COLUMBUS’ sonar
sensors have a maximum range of perception (10.5 feet), i 2 f1 : : : ng sums only over those data
points that are close enough to x, i.e., for which jx–xij is smaller than the maximal sonar perception
range. In Figure 4a-c, a compiled model after 27 exploration steps is shown.

3 Anytime Planning for Exploration in Real-Time

Exploring and modeling initially unknown environments is the top-level goal of COLUMBUS.
In order to find low-cost paths to the unexplored, the model is discretized yielding a grid repre-
sentation of the environment, and dynamic programming is employed to propagate exploration
utility through this discretized model [Barto et al., 1991], [Sutton, 1990]. More specifically, this
is done in the following way: To each grid point x in the discretized model there is a real-valued
exploration utility U(x) associated. Initially, the exploration utility of x is set to the negative
cumulative confidence �cM(x). Cumulative confidence (c.f. Equation (1)) is a straightforward
measure to estimate the utility of exploring a location: The lower cM(x), the less explored is x and
the higher is the (initial) exploration utility of x, and vice versa. All grid points are then iteratively
updated according to the maximum exploration utility of their neighbors y of the grid:

U(x)  � �L(x) + max
y

U(y)

Here the expected (negative) reward by the model functions as costs3
L(x) > 0 of moving from

x to y, and is used for weighting the flow of exploration utilities. This implies that exploration
utilities are predominantly propagated through freespace, while places with negative predicted
reward such as walls and obstacles block the flow of utility. The resulting exploration utilities
represent anytime plans for arbitrary robot locations, given that the robot applies steepest ascent
therein. Figure 4 displays a model and the corresponding exploration utility landscape after some
exploration.

Since I am interested in real-time operation, actions are immediately generated once the previous
action execution is finished, regardless whether the propagation of exploration utility has converged
or not. In principle this may lead to non-optimal actions. However, since the exploration values
are propagated not only to the current location of the robot, but to all points in the discretized
model, they can be reused for later planning once the robot location has been changed. Reusing
plans was observed to result in optimal plans after surprisingly short planning times, although
plain dynamic programming is known to be slow in complex domains.4

3The actually implemented cost function is a complex monotonically decreasing function of the expected reward.
4The planning speed benefits also from the fact that the internal representation of the environment is only two-

dimensional, neglecting COLUMBUS’ rotational degree of freedom.
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Figure 4: Integration of several measurements along an exploration path: (a) Raw, noisy sensor input on an
exploration path with 27 measurements. (b) Resulting model, corresponding to the lab shown in Figure 1b (lab
doorway is toward bottom left). The path of the robot is also plotted (from right to left), demonstrating the exploration
of the initially unknown lab. (c) Cumulative confidence. (d) Exploration utilities. By local gradient descent in
exploration utility space (i.e., moving to the brightest reachable location), the robot moves to the closest unexplored
region on a minimal-cost path. In the next steps, the robot will pass the door of the lab and explore the hallway.

Since COLUMBUS’ model of the environment is continuously updated during exploration ac-
cording to new sensor information, dynamic programming has to be modified to deal efficiently
with the resulting changes in the cost function and the cumulative confidence. In general, dynamic
programming may cause long planning time if the model changes during planning. More specifi-
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cally, the problem that may occur when changing the cost function or the cumulative confidence
is the overestimation problem for exploration utilities: Assume the planner assigns high utility
to two adjacent grid points that, after updating the model based on new sensor information, will
now have low utility. Dynamic programming may take many iterations before converging to the
lower utilities. This is because each of the large exploration utilities will be updated with a large
value, justified by the observation that there is an adjacent grid point with a large utility. Only the
costs of moving from one grid point to another can cause the utilities to decay over time. This
effect was frequently observed to cause very long planning durations. In order to overcome the
overestimation problem, COLUMBUS’ planner works in three phases:

1. If a new sensation is received, the grid representation of both the model and the confidence
map is updated according to this sensor information, using the networksR and C.

2. Each overestimated utility, i.e., each utility that would have been set to a smaller value by the
next dynamic programming step, is set to �1. This step is repeated until no overestimated
utility can be identified, resulting in a strictly underestimating set of exploration utilities.

3. Finally, dynamic programming is applied to propagate exploration utilities as discussed
above.

Whenever the robot finishes the execution of an action, a simple search procedure that maximizes
exploration utility is employed to determine the next action, using the current estimate of explo-
ration utilities. This ensures that COLUMBUS operates in real-time: Even if planning is not
completed, actions are generated and executed. It should be noted that this planner can also be,
and in fact is in the current implementation, used for planning paths to goal locations specified by
the user.

4 Experimental Design and Results

In Section 2 it was assumed that the location of the robot can always be determined accurately.
However, real-world robots usually suffer from cumulative control errors caused by inaccurate
effectors. After some time of operation, location estimates based on dead-reckoning are usually
significantly wrong. COLUMBUS uses the networksR and C also for relocating itself on-the-fly
with respect to its model. This is done by building a local model (interpretation) from the most
recent sensation, sn+1, and then maximizing the match between this local model and the current
global model obtained from the previous n sensations fs1; s2; : : : ; sng. In COLUMBUS, gradient
descent search is used to estimate the location of the robot xn+1. More specifically, the squared
deviation of the global and the local model (weighted by prediction confidences) is measured over
a set of randomly drawn nearby sample points. Online position control is achieved by minimizing
this match error. Since neural networks represent differentiable functions, these error gradients can
be propagated through the sensor interpretation network, resulting in the derivatives of the match
error with respect to the input values of these networks. These gradients are used for gradient
descent search in the location space of the robot. By iteratively adjusting the internal belief of the
location of the robot, the match error is minimized. This online position control procedure was
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Figure 5: Online position control: (a) In this experiment, I invoked one severe control error by rotating the robot
manually, in addition to the normal cumulative control errors. Without correction, the resulting model is wrong and
therefore useless. (b) By maximizing the match between the global model and the interpretation of the most recent
sonar values (local model), control errors can be successfully identified and corrected. Note that in this experiment,
the robot was told to return to the lab after some exploration.

found to work successfully even in the presence of severe errors in dead-reckoning. An example
is shown in Figure 5.

Both the sensor interpretation functionR and the confidence estimation functionCwere represented
by backpropagation networks with one hidden layer and eight hidden units. Instead of processing
all 24 sonar values by these networks, only the four to a query point x nearest sonar values
were provided as an input. By ignoring most of the sensor information, the processing time was
significantly reduced when updating the discretized versions of the model, as was the number of
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training examples required for training R and C. However, omitting sensor values is only valid,
if these are independent of the expected reward at point x. This is approximately the case for
COLUMBUS. Additional speedup was obtained by ignoring COLUMBUS’ rotational degree of
freedom, as mentioned above. Henceforth the dimensionality of the model was two, and the cost
of rotations was considered to be 0. Introducing a third dimension would have had a negative
impact on memory requirements and planning times in COLUMBUS. The grid size in the planner
was 4 inches. COLUMBUS planner can deal with large areas (500 000 square feet and more),
limited only by the memory capacity of the workstation used for planning.

COLUMBUS actual implementation is modularized and distributed. Modules (map builder,
planner, position controller, central controller and graphical user interface) are connected using
the Task Control Architecture [Simmons, 1992], which allows to execute the programs on several
SUN SPARC workstations in parallel. Robot actions take usually between 3 and 12 seconds, plus
approximately 3 seconds for transmitting sensor and control information by a radio link. During
extensive experimentation I observed roughly the following timing behavior: 1.5 sec for updating
the discretized version of the model, 2 to 20 sec for complete planning from scratch, and between
0 and 4 for planning when reusing earlier plans. The position control mechanism described above
did run endlessly in the background, interrupted only by new sensor information.

5 Discussion

COLUMBUS is an autonomous mobile robot, whose goal it is to explore and model unknown
environments efficiently. It employs an instance-based approximation technique based on neural
networks for modeling the environment, and an anytime planner based on dynamic programming
for planning low-cost paths to poorly explored areas. COLUMBUS has been successfully operated
in the hallways and labs at CMU for periods up to hours.5 In order to do so in dynamic environments
such as a office buildings, the current implementation features a fast obstacle detection and
avoidance mechanism that is not described here. However, COLUMBUS’ models assumes static
environments. It seems to be feasible to extend this approach to slowly changing environments
(e.g., by decaying confidence over time).

In principle, the artificial neural networks (R and C) employed for model building and exploration
allow for knowledge transfer and thus a synergy effect across multiple environments. This
is because these network represent robot-specific knowledge that is independent of particular
environments at hand. However, in the current real-world implementation this synergy effect
has been only partially demonstrated, since the networks are pretrained in simulation. One of
the main limitations of this approach is that these networks have to be trained in a supervised
manner, requiring a known environment. Although in principle COLUMBUS is able to label its
environment autonomously by sensing collisions directly (using the motion sensors of its wheels),
I preferred simulation, since it facilitates supervised learning, and since real-world collisions will

5In fact, COLUMBUS’ approach to model building and position control has been used as part of the CMU entry
“ODYSSEUS” in the first AAAI robot competition in California, 1992.
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ultimately damage the robot.

In order to operate in real-time, COLUMBUS features an anytime planner based on dynamic
programming. I have empirically found that this planner generates appropriate actions in real-
time, even though the dynamic programming process might not have fully converged. This planner,
however, operates on a two-dimensional representation of the environment. In order to scale up to
higher dimensional environments the approach taken has to be modified.

Future research will also include comparisons to other approaches to model building and path
planning, e.g. [Elves, 1987], [Moravec, 1988].
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