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Abstract

Distributed Artificial Intelligence (DAI) has existed as a subfield of Al for less than two decades. DAl is
concerned with systemsthat consist of multipleindependent entitiesthat interact inadomain. Traditionally,
DA has been divided into two sub-disciplines: Distributed Problem Solving (DPS) focusses on the infor-
mation management aspects of systems with several branches working together towards a common goal;
Multiagent Systems (MAS) deals with behavior management in collections of several independent entities,
or agents. This survey of MAS isintended to serve as an introduction to the field and as an organizational
framework. A seriesof increasingly complex general multiagent scenarios are presented. For each scenario,
the issuesthat arise are described along with a sampling of the techniquesthat exist to deal with them. The
presented techniques are not exhaustive, but they highlight how multiagent systems can be and have been
used to build complex systems. When options exist, the techniques presented are biased towards machine
learning approaches. Additional opportunities for applying machine learning to MAS are highlighted and
robotic soccer is presented as an appropriate testbed for MAS.
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1 Introduction

Extending the realm of the social world to include autonomous computer systems has always been an
awesome, if not frightening, prospect. However it is now becoming both possible and necessary through
advances in the field of Artificial Intelligence (Al). In the past severa years, Al techniques have become
more and more robust and complex. To mention just one of the many exciting successes, a car recently
steered itself more than 95% of the way across the United States using the ALVINN system [60]. By
meeting thisand other such daunting challenges, Al researchers have earned the right to start examining the
implications of multiple autonomous “agents” interacting in the real world. In fact, they have rendered this
examination indispensable. If there is one self-steering car, there will surely be more. And although each
may be able to drive individually, if several autonomous vehicles meet on the highway, we must know how
their behaviors interact.

Multiagent Systems (MAS) is the emerging subfield of Al that aims to provide both principles for
construction of complex systemsinvolving multipleagents and mechanismsfor coordination of independent
agents' behaviors. Whilethereisno generally accepted definition of “agent” in Al [68], for the purposes of
this article, we consider an agent to be an entity with goals, actions, and domain knowledge, situated in an
environment. The way it actsis called its “behavior.” (Thisis not intended as a general theory of agency.)
Although the ability to consider coordinating behaviors of autonomous agents is a new one, the field is
advancing quickly by building upon pre-existing work in the field of Distributed Artificial Intelligence
(DAI).

DAI has existed as a subfield of Al for less than two decades. Traditionally, DAI is broken into two
sub-disciplines: Distributed Problem Solving (DPS) and MAS[10]. The main topics considered in DPS
are information management issues such as task decomposition and solution synthesis. For example, a
constraint satisfaction problem can often be decomposed into severa not entirely independent subproblems
that can be solved on different processors. Then these solutions can be synthesized into a solution of the
original problem.

MAS alows the subproblems of a constraint satisfaction problem to be subcontracted to different
problem solving agentswith their own interests and goals. Furthermore, domains with multiple agents of
any type, including autonomous vehicles and even some human agents, are beginning to be studied.

Thissurvey of MAS isintended as an introduction to the field. The reader should come away with an
appreciation for the typesof systemsthat are possibleto build using MAS aswell asaconceptual framework
with which to organize the different types of possible systems.

The article is organized as a series of increasingly complex general multiagent scenarios. For each
scenario, the issues that arise are described along with a sampling of the techniques that exist to deal with
them. The techniques presented are not exhaustive, but they highlight how multiagent systems can be and
have been used to build complex systems.

Because of theinherent complexity of MAS, thereis much interest in using machinelearning techniques
to help deal with thiscomplexity [95, 2]. When several different systemsexist that could illustrate the same
or similar MASS techniques, the systems presented here are biased towards those that use machine learning
(ML) approaches. Furthermore, every effort is made to highlight additional opportunitiesfor applying ML
to MAS.

Although there are many possible ways to divide MAS, the survey is organized aong two main
dimensions: agent heterogeneity and amount of communication among agents. Beginning with the simplest
multiagent scenario, homogeneous non-communi cating agents, thefull range of possiblemultiagent systems,
through highly heterogeneous communicating agents, is considered. Centralized, single-agent systems are
shown to belong at the complex end of this spectrum. As illustrated in Figure 1, the heterogeneity
dimension is varied first, followed by the communication dimension. The result is a steady increase
in system complexity. When appropriate, systems with low agent heterogeneity and high inter-agent
communication are also mentioned. However by first increasing heterogeneity and then communication, al
of the important issues and techniquesin MAS are encountered.

For each multiagent scenario presented, asingle example domain is presented in an appropriate instan-
tiation for the purpose of illustration. In this extensively-studied domain, the Predator/Prey or “Pursuit”
domain [9], many MAS issues arise. Nevertheless, it isa“toy” domain. At the end of the article, a much
more complex domain—robotic soccer—is presented in order to illustrate the full power of MAS.
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The article is organized as follows. Section 2 introduces the field of MAS, listing severa of its strong
points and presenting a taxonomy. The body of the article, Sections 3 — 6, presents the various multiagent
scenarios, illustrates them using the pursuit domain, and describes existing work in thefield. A domain that
facilitates the study of most multiagent issuesis advocated as a testbed in Section 7. Section 8 concludes.

2 Multiagent Systems

Two obvious questions about any type of technology are:

e What advantages does it offer over the alternatives?
e Inwhat circumstancesisit useful ?

It would be foolish to claim that MAS should be used when designing all complex systems. Likeany useful
approach, there are some situations for which it is particularly appropriate, and others for which it is not.
The goal of this section isto underscore the need for and usefulness of MAS while giving characteristics of
typical domainsthat can benefit from it. For a more extensive discussion, see [10].

The most important reason to use MAS when designing a system is that some domains require it.
In particular, if there are different people or organizations with different (possibly conflicting) goals and
proprietary information, then a multiagent system is needed to handle their interactions. Even if each
organization wantsto model itsinternal affairswith asingle system, the organizationswill not give authority
to any single person to build a system that represents them al: the different organizations will need their
own systemstthat reflect their capabilities and priorities.

For example, consider a manufacturing scenario in which company X produces tires, but subcontracts
the production of lug-nuts to company Y. In order to build a single system to automate (certain aspects
of) the production process, the internals of both companies X and Y must be modeled. However, neither
company is likely to want to relinquish information and/or control to a system designer representing the
other company. Perhaps with just two companiesinvolved, an agreement could be reached, but with several
companies involved, MAS is necessary. The only feasible solution is to allow the various companies to
create their own agentsthat accurately represent their goals and interests. They must then be combined into
amultiagent system with the aid of some of the techniques described in thisarticle.

Another example of adomain that requiresMASishospital scheduling aspresentedin [20]. Thisdomain
from an actual case study requires different agents to represent the interests of different people within the
hospital. Hospital employees have different interests, from nurses who want to minimize the patient's time
in the hospital, to x-ray operators who want to maximize the throughput on their machines. Since different
people evaluate candidate schedules with different criteria, they must be represented by separate agents if
their interests are to be justly considered.

Even in domains that could conceivably use systemsthat are not distributed, there are several possible
reasonsto use MAS. Having multiple agents could speed up a system’s operation by providing amethod for
parallel computation. For instance, a domain that is easily broken into components—several independent
tasks that can be handled by separate agents—could benefit from MAS. Furthermore, the parallelism of
MAS can help deal with limitationsimposed by time-bounded reasoning requirements.

While parallelism is achieved by assigning different tasks or abilities to different agents, robustnessis
a benefit of multiagent systems that have redundant agents. If control and responsibilities are sufficiently
shared among different agents, the system can tolerate failures by one or more of the agents. Domains
that must degrade gracefully are in particular need of this feature of MAS: if a single entity—processor
or agent—controls everything, then the entire system could crash if there is a single failure. Although
a multiagent system need not be implemented on multiple processors, to provide full robustness against
failure, its agents should be distributed across several machines.

Another benefit of multiagent systems is their scalability. Since they are inherently modular, it should
be easier to add new agentsto amultiagent system than it isto add new capabilities to amonolithic system.
Systemswhose capabilities and parameters are likely to need to change over time or across agents can also
benefit from this advantage of MAS.

From a programmer’s perspective the modularity of multiagent systems can lead to simpler program-
ming. Rather than tackling the whole task with a centralized agent, programmers can identify subtasks and
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assign control of those subtasks to different agents. The difficult problem of splitting a single agent’s time
among different parts of atask solvesitself. Thus, when the choice is between using a multiagent system
or asingle-agent system, MAS s often the simpler option. Of course there are some domainsthat are more
naturally approached from an omniscient perspective—because a global view is given—or with centralized
control—because no parallel actions are possible and there is no action uncertainty [19]. Single-agent
systems should be used in such cases.

Finally, multiagent systems can be useful for their illucidation of intelligence [16]. As Gerhard Weil3
put it: “Intelligence is deeply and inevitably coupled with interaction” [94]. In fact, it has been proposed
that the best way to devel op intelligent machines at all might be to start by creating “social” machines[15].
This theory is based on the socio-biologica theory that primate intelligence first evolved because of the
need to deal with social interactions. Reasons presented above to use MAS are summarized in Table 1.

Table 1: Reasonsto use Multiagent Systems

o Some domainsrequireit o Scalahility
o Paralelism e Simpler programming
e Robustness e To study intelligence

2.1 Taxonomy

Several taxonomies have been presented previously for therelated field of Distributed Artificial Intelligence
(DAL). For example, Decker presents four dimensionsof DAI [16]:

1. Agent granularity (coarse vs. fine);

2. Heterogeneity of agent knowledge (redundant vs. specialized);

3. Methods of distributing control (benevolent vs. competitive, team vs. hierarchical, static vs. shifting

roles);

4. and Communication possibilities (blackboard vs. messages, low-level vs. high-level, content).
Along dimensions 1 and 4, multiagent systems have coarse agent granularity and high-level communication.
Along the other dimensions, they can vary across the whole ranges. In fact, the remaining dimensionsare
very prominent in this article: degree of heterogeneity is a mgjor MAS dimension and all the methods of
distributing control appear here as major issues.

More recently, Parunak has presented a taxonomy of MAS from an application perspective [58]. From

this perspective, the important characteristics of MAS are:

e System function;

o Agent architecture (degree of heterogeneity, reactive vs. deliberative);

o System architecture (communication, protocols, human involvement).

A useful contribution is that the dimensions are divided into agent and system characteristics. Other
overviews of DAl and/or MAS include [47, 23, 25, 10]. This article contributes a taxonomy specifically
focussed on MAS along with a detailed chronicle of existing systems asthey fit in to this taxonomy.

The taxonomy presented in this article is organized aong the most important aspects of agents (as
opposed to domains): degree of heterogeneity and degree of communication. Communication is presented
asan agent aspect because it isthe degree to which the agents communicate (or whetherthey communicate),
not the communication protocols that are available to them, that is considered. All the other aspects of
agents in MAS are touched upon within the heterogeneity/communication framework. For example, the
degree to which different agents play different roles is certainly an important MAS issue, but here it is
framed within the scenario of heterogeneous non-communicating agents (it arisesin the other two scenarios
aswell). Domain issues are discussed separately in Section 3.2.

The three combinations of heterogeneity and communication considered in this article (homogeneous
non-communicating agents; heterogeneous non-communicating agents; and heterogeneous communicating
agents) are presented in order of increasing complexity and power (see Figure 1). Many of the issues that
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MAS Agent Type
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1
Centralization / Heterogeneous
Communicating

Communication

Heterogeneity Homogeneous
Non-communicating
Figure 1: The major categories of the intrafield taxonomy and how they relate to the major dimensions.
With full communication of internal state, a centralized systeminvolving asingle complex agent may result.

Even though there are still multiple entities, they send their sensory perceptions and receive their actions
from a central location: asingle agent controls them all.

ariseintheearlier scenariosalso apply inthelater scenarios. Nevertheless, they are only mentioned againin
the later scenarios to the degree that they differ or become more complex. Notice that single-agent systems
are presented as being more complex than multiagent systems. The intuition behind this presentation will
become clear in Section 2.2.

The multiagent scenarios along with the issues that arise therein are summarized in Table 2. The
techniques that currently exist to address these issues are described in detail in Sections 4 — 6.

Homogeneous Non-communicating Agents Heter ogeneous Non-communicating Agents

o Reactive vs. deliberative agents o Benevolence vs. competitiveness
e Local or global perspective e Evolving agents (arms race, credit/blame)
e Modeling of other agents’ states « Modeling of others' goals, actions, and knowledge
o How to affect others o Resource management (interdependent actions)
e Social conventions
« Roles

Heterogeneous Communicating Agents

e Understanding each other

¢ Planning communicative acts

e Benevolence vs. competitiveness

e Resource management (schedule coordination)
« Commitment/decommitment

e Truthin communication

Table 2: Issues arising in the various scenarios as reflected in the literature.



2.2 Single-Agent vs. Multiagent Systems

Before studying and categorizing MAS, we must first consider their most obvious alternative: centralized,
single-agent systems. Centralized systems have a single agent which makes all the decisions, while the
others act as remote slaves. For the purposes of this survey, a“single-agent system” should be thought of
asacomplex, centralized system in a domain which also allows for a multiagent approach.

A single-agent system might still have multiple entities — several actuators, or even several robots.
However, if each entity sends its perceptions to and receives its actions from a single central process, then
there is only a single agent: the central process. The central agent models al of the entities as a single
“self.” This section compares the single-agent and multiagent approaches.

221 Single-Agent Systems

Although it might seem that single-agent systems should be simpler than multiagent systems, when dealing
with afixed, complex task, the oppositeis often the case (see Figure 1). Distributing control among multiple
agentsallows each agent to be simpler. No one agent hasto be able to completeagiventask onitsown. Thus
centralized, single-agent systems belong at the end of the progression from simple to complex multiagent
systemsin Sections 4 — 6. They are described here first because to many people single-agent (centralized)
approaches are more intuitive than multiagent (distributed) ones.

In general, the agent in a single-agent system modelsitself, the environment, and their interactions. Of
course the agent isitself part of the environment, but for the purposes of thisarticle, agentsare considered to
have extra-environmental componentsaswell. They are independent entities with their own goals, actions,
and knowledge. In a single-agent system, no other such entities are recognized by the agent. Thus, even
if there are indeed other agents in the world, they are not modeled as having goals, etc.: they are just
considered part of the environment. The point being emphasized is that although agents are alsoa part of
the environment, they are explicitly modeled as having their own goals, actions, and domain knowledge
(see Figure 2).

Environment

® Actions
* Domain
knowledge

Figure2: A genera single-agent framework. Theagent modelsitself, theenvironment, and their interactions.
If other agents exist, they are considered part of the environment.

2.2.2 Multiagent Systems

Multiagent systems differ from single-agent systemsin that several agents exist which model each other’'s
goals and actions. In the fully general multiagent scenario, there may be direct interaction among agents
(communication). Although this interaction could be viewed as environmental stimuli, we present inter-
agent communication as being separate from the environment.

From anindividual agent’s perspective, multiagent systemsdiffer from single-agent systemsmost signif-
icantly in that the environment’s dynamics can be determined by other agents. In addition to the uncertainty

that may be inherent in the domain, other agents intentionally affect the environment in unpredictable ways.
Thus, all multiagent systems can be viewed as having dynamic environments.

Figure 3 illustrates the view that each agent is both part of the environment and modeled as a separate
entity. There may be any number of agents, with different degrees of heterogeneity and with or without the
ability to communicate directly. From the fully general case depicted here, we begin by eliminating both
the communication and the heterogeneity to present homogeneous non-communicating MAS (Section 4).
Then, in Section 5 the possibility of agent heterogeneity is added back in. Finally, in Section 6, we arrive
back at the fully general case by considering agents that can interact directly.

Environment

® Actions
* Domain
knowledge

knowledge

Figure 3: The fully general multiagent scenario. Agents model each other’s goals and actions; they may
aso interact directly (communicate).

3 Organization of Existing Work

The following sections present many different MA'S techniques that have been previously published. They
present an extensive, but not exhaustive, list of work in the field. Despite the youth of the field, space does
not permit exhaustive coverage. Instead, the work mentioned is intended to illustrate the techniques that
exist to deal with the issues that arise in the various multiagent scenarios. When possible, ML approaches
are emphasized.

In increasing order of complexity, the three multiagent scenarios considered are: homogeneous non-
communicating agents, heterogeneous non-communicating agents, and heterogeneous communicating
agents. For each of these scenarios, the research issues that arise, the techniques that deal with them,
and additional ML opportunities are presented. The issues may appear across scenarios, but they are
presented and discussed in the least complex scenario to which they apply.

In additionto theexisting learning approaches described in the sectionsentitled “ I ssues and Techniques’,
there are several previously unexplored learning opportunitiesthat apply in each of the multiagent scenarios.
For each scenario, afew promising opportunitiesfor ML researchers are presented.

Many existing ML techniques can be directly applied in multiagent scenarios by delimiting a part of the
domain that only involves a single agent. However multiagent learnings more concerned with learning
issues that arise because of the multiagent aspect of a given domain. As described by Weif3, multiagent
learningis“learning that isdone by several agents and that becomes possibleonly because several agentsare
present” [93]. Thistype of learning isemphasized in the sectionsentitled “ Further Learning Opportunities.”

For the purpose of illustration, each scenario is accompanied by a suitable instantiation of the Preda
tor/Prey or “Pursuit” domain.



3.1 ThePredator/Prey (“Pursuit”) Domain

The Predator/Prey, or “Pursuit” domain (hereafter referred to as the “pursuit domain™), is an appropriate
one for illustration of MAS because it has been studied using a wide variety of approaches and because
it has many different instantiations that can be used to illustrate different multiagent scenarios. It is not
presented as a complex real-world domain, but rather as atoy domain that helps concretize many concepts.
For discussion of adomainthat hasthe full range of complexities characteristic of more rea-world domains,
see Section 7.

The pursuit domain wasintroduced by Bendaet al. [9]. Over the years, researchers have studied several
variations of its origina formulation. In this section, a single instantiation of the domain is presented.
However, care istaken to point out the parameters that can be varied.

The pursuit domain is usualy studied with four predatorsand one prey. Traditionally, the predators
are blue and the prey isred (black and grey respectively in Figure 4). The domain can be varied by using
different numbers of predators and prey.

*?'r»

Capture

ol ®
e0®
D

® Predators see each other

.@» ® Predators can communicate
e Prey moves randomly

e Prey stays put 10% of time

e Simultaneous movements

T

Orthogonal Game in a Toroidal World

Figure 4: A particular instantiation of the pursuit domain. Predators are black and the prey isgrey. The
arrows on top of two of the predatorsindicate possible moves.

Thegoal of the predatorsisto “capture” the prey, or surround it so that it cannot move to an unoccupied
position. A capture position is shown in Figure 4. If the world has edges, fewer than four predators can
capture the prey by trapping it against an edge or in acorner. Another possiblecriterion for captureisthat a
predator occupies the same position as the prey. Typically, however, no two players are allowed to occupy
the same position.

As depicted in Figure 4, the predators and prey move around in a discrete, grid-like world with square
spaces. They can move to any adjacent square on a given turn. Possible variations include grids with other
shapes as spaces (for instance hexagons) or continuous worlds. Within the square game, players may be
alowed to move diagonally instead of just horizontally. The size of theworld may also vary from aninfinite
plane to a small, finite board with edges. The world pictured in Figure 4 is a toroidal world: the predators
and prey can move off one end of the board and come back on the other end. Other parameters of the game
that must be specified are whether the players move simultaneously or in turns; how much of the world the
predators can see; and whether and how the predators can communicate.

Finally, in the origina formulation of the domain, and in most subsequent studies, the prey moves
randomly: on each turn it moves in a random direction, staying still with a certain probability in order to
simulate being slower than the predators. However, it is aso possible to alow the prey to actively try to
escape capture. Asisdiscussed in Section 5, there has been some research done to this effect, but there is
still much room for improvement. The parameters that can be varied in the pursuit domain are summarized
inTable 3.

Table 3: Variable parametersin the pursuit domain

o Definition of capture o Visible objects and range
e Size and shape of the world e Predator communication
e Lega moves e Prey movement

e Simultaneous or sequential movement

The pursuit domain is agood one for the purposes of illustration because it is simple to understand and
because it is flexible enough to illustrate a variety of scenarios. The possible actions of the predators and
prey are limited and the goa is well-defined. In terms of the reasons to use MAS as presented in Table 1,
the pursuit domain does not necessarily require MAS. But in certain instantiations it can make use of the
parallelism, robustness, and simpler programming offered by MAS.

In the pursuit domain, a single-agent approach is possible: the agent can observe the positions of all
four predators and decide how each of them should move. Since the prey moves randomly rather than
intentionally, it is not associated with any agent. Instead it is considered part of the environment as shown
in Figure 5. It isalso possible to consider DPS approaches to the pursuit domain by breaking the task into
subproblems to be solved by each predator. However, most of the approaches described here model the
predators as independent agents with a common goal. Thus, they comprise a multiagent system.

Agent
(@)

REEERN

Figure 5: The pursuit domain with just a single agent. One agent controls all predators and the prey is
considered part of the environment.

For each of the multiagent scenarios presented below, a new instantiation of the pursuit domain is
defined. Their purpose istoillustrate the different scenarios within a concrete framework.

3.2 Domain Issues

Throughout this survey, the focus is upon agent capabilities. However, from the point of view of the system
designer, the characteristics of the domain are at least as important. Before moving on to the agent-based
categorization of thefield, arange of domain characteristics is considered.

Relevant domain characteristics include: the number of agents; the amount of time pressure (is it a
real-time domain?); whether or not new goals arrive dynamically; the cost of communication; the cost
of failure; user involvement; and environmental uncertainty. The first severa of these characteristics are
self-explanatory and do not need further mention.

With respect to cost of failure, an example of adomainwith high cost of failureisair-traffic control [63].
On the other hand, the directed improvisation domain considered by Hayes-Roth et al. has a very low cost
of failure [35]. In thisdomain, entertainment agents accept all improvisation suggestions from each other.
The idea is that the agents should not be afraid to make mistakes, but rather should “just let the words
flow” [35].

Several multiagent systemsinclude humans as one or more of the agents. In thiscase, the designer must
consider the issue of communication between the human and computer agents [71]. Another example of
user involvement is user feedback in an information filtering domain [27].
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Decker distinguishes three different sources of uncertainty in a domain [17]. The transitions in the
domain itself might be non-deterministic; agents might not know the actions of other agents; and agents
might not know the outcomes of their own actions. Thisand theother domain characteristicsare summarized
inTable 4.

Table 4: Domain characteristics that are important when designing MAS

¢ Number of agents e User involvement

o Amount of time pressure (real time?) o Environmental uncertainty: Decker[17]

¢ Dynamically arriving goals? — agpriori inthe domain

e Cost of communication — intheactions of other agents

e Cost of failure — inoutcomes of an agent’s own actions

4 Homogeneous Non-Communicating M ultiagent Systems

The simplest multiagent scenario involves homogeneous non-communicating agents. In thisscenario, all of
the agents have the same internal structure including goals, domain knowledge, and possibleactions. They
aso have the same procedure for selecting among their actions. The only differences among agents are
their sensory inputs and the actual actions they take: they are situated differently in the world.

4.1 Homogeneous Non-Communicating M ultiagent Pur suit

In the homogeneous non-communicating version of the pursuit domain, rather than having one agent
controlling all four predators, there is one identicalagent per predator. Although the agents have identical
capabilities and decision procedures, they may have limited information about each other’s internal state
and sensory inputs. Thus they may not be able to predict each other's actions. The pursuit domain with
homogeneous agentsisillustrated in Figure 6.

=

// [

= (] o Agent
.
O

Figure 6: The pursuit domain with homogeneous agents. There is one identical agent per predator. Agents
may have (the same amount of) limited information about other agents’ internal states.

Within this framework, Stephens and Merx propose a simple heuristic behavior for each agent that is
based on local information [81]. They define capture positionss the four positions adjacent to the prey.
They then propose a“local” strategy whereby each predator agent determines the capture position to which
it is closest and moves towards that position. The predators cannot see each other, so they cannot aim
at different capture positions. Of course a problem with this heuristic is that two or more predators may
move towards the same capture position, blocking each other as they approach. This strategy is not very
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successful, but it serves as a basis for comparison with two other control strategies—"distributed” and
“central”—that are discussed in Section 6.

Since the predators are identical, they can easily predict each other’s actions given knowledge of each
other’s sensory input. Such prediction can be useful when the agents move simultaneously and would liketo
base their actions on where the other predators will be at the next time step. Vidal and Durfee analyze such
a situation using the Recursive Modeling Method (RMM) [90]. RMM is discussed in more detail below,
but the basic idea is that predator A bases its move on the predicted move of predator B and vice versa.
Since the resulting reasoning can recurse indefinitely, it isimportant for the agents to bound the amount of
reasoning they use either in terms of time or in terms of levels of recursion. Vidal and Durfee’s Limited
Rationality RMM agorithm is designed to take such considerationsinto account [90].

Levy and Rosenschein use a game theoretical approach to the pursuit domain [48]. They use a payoff
function that allows selfish agentsto cooperate. A requirement for their model isthat each predator hasfull
information about the location of other predators. Their game model mixes game-theoretical cooperative
and non-cooperative games.

Korf also takes the approach that each agent should try to greedily maximizeits own local utility [46].
He introduces apolicy for each predator based on an attractive force to the prey and a repulsive force from
the other predators. Thus the predators tend to approach the prey from different sides. Thispolicy isvery
successful, especially in the diagonal (agents can move diagonally as well as orthogonally) and hexagonal
(hexagonal grid) games. Korf draws the conclusion that explicit cooperation is rarely necessary or useful,
at least in the pursuit domain and perhaps more broadly:

We view thiswork as additional support for the theory that much coordination and cooperation
in both natural and man-made systems can be viewed as an emergent property of theinteraction
of greedy agents maximizing their particular utility functionsin the presence of environmental
constraints.

Richard Korf[46]

However, whether or not altruism occurs in nature, there is certainly some use for benevolent agentsin
MAS, as shown below. More pressingly, if Korf’s claim that the pursuit domain is easily solved with local
greedy heuristicswere true, there would be no point in studying the pursuit domain any further. Fortunately,
Haynes and Sen show that Korf’s heuristics do not work for certain instantiations of the domain [36] (see
Section 5).

4.2 General Homogeneous MAS

The general multiagent scenario with homogeneous agents is illustrated in Figure 7. There are several
different agents with identical structure (sensors, effectors, domain knowledge, and decision functions),
but they have different sensor input and effector output. That is to say, they are situated differently in the
environment and they make their own decisions regarding which actions to take. Having different effector
output is a necessary condition for MAS: if the agents all act as a unit, then they are essentially a single
agent. In order to realize this difference in output, homogeneous agents must have different sensor input
as well. Otherwise they will act identically. For this scenario, in which we consider non-communicating
agents, assume that the agents cannot communicate directly.

4.3 Issuesand Techniques

Even in this simplest of multiagent scenarios, there are several issues with which to deal. The techniques
provided here are representative examples of ways to dea with the presented issues. The issues and
techniques, as well as the learning opportunities discussed later, are summarized in Table 5.

431 Reactivevs. Deliberative agents

When designing any agent-based system, it isimportant to determine how sophisticated the agents’ reasoning
will be. Reactive agentssimply retrieve pre-set behaviorssimilar to reflexes without maintaining any internal
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® Goals

® Actions

® Domain
knowledge

® Goals
® Actions
® Domain
e Goals knowledge
® Actions
® Domain
knowledge

Figure 72 MAS with homogeneous agents. Only the sensor input and effector output of agents differ, as
represented by the different arrow styles. The agents' goals, actions, and/or domain knowledge are all
identical asindicated by the identical fonts.

| Homogeneous Non-Communicating

I'ssues

o Reactive vs. deliberative agents L earning opportunities

e Local or global perspective .

« Modeling of other agents’ states o Enable others’ actions

e How to affect others e Sensor data — Other agent’s sensor data
Techniques

« Reactive Behaviors for Formation maintenance. Balch[7]
o Local knowledge sometimes better. Roychowdhury67]

o (limited) Recursive Modeling Method (RMM). Durfee[24]

e Don't model others—just pay attention to reward. Schmidhubef77]
o Stigmergy. Holland/Goldman and Rosensch¢B®, 31]

e Q-learning for behaviorslike foraging, homing, etc. Mataric [52]

Table 5: The issues, techniques, and learning opportunities for homogeneous MAS as reflected in the
literature.

state. On the other hand, deliberative agents behave more like they are thinking, by searching through a
space of behaviors, maintaining internal state, and predicting the effects of actions. Although the line
between reactive and deliberative agents can be somewhat blurry, an agent with no internal stateis certainly
reactive, and one which bases its actions on the predicted actions of other agents is deliberative. Here we
describe one system at each extreme as well as two others that mix reactive and deliberative reasoning.

Balch and Arkin use homogeneous, reactive, non-communicating agentsto study formation maintenance
in autonomous robots [7]. The robots' goal isto move together in a military formation such as a diamond,
column, or wedge. They periodically come across obstacles which prevent one or more of the robots from
movinginastraight line. After passing the obstacle, all robotsmust adjust in order to regain their formation.
The agentsreactively convert their sensory data (which includes the positionsof the other robots) to motion
vectors for avoiding obstacles, avoiding robots, moving to agoal location, and formation maintenance. The
actual robot motion is a simple weighted sum of these vectors.

At the other extreme isthe pursuit domain work by Levy and Rosenschein that is mentioned above [48].
Their agents assume that each will act in service of its own goals. They use game theoretic techniques to
find equilibrium points and thus to decide how to act [48]. These agents are clearly deliberative, as they
search for actionsrather than simply retrieving them.

Thereare also several existing systemsand techniquesthat mix reactive and deliberative behaviors. One
example is Rao and Georgeff’s OA SIS system (see Section 6) which reasons about when to be reactive and
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when to follow goal-directed plans[63]. Another example is Sahota's reactive deliberatiortechnique [69].
As the name implies it mixes reactive and deliberative behavior: an agent reasons about which reactive
behavior tofollow under theconstraint that it must choose actionsat arateof 60 Hz. Reactivedeliberationwas
not explicitly designed for MAS, but because it was designed for real-time control in dynamic environments,
itislikely to be extendible to multiagent scenarios.

4.3.2 Local or global perspective

Another issue to consider when building a multiagent system is how much sensor information should be
available to the agents. Even if it is feasible within the domain to give the agents a global perspectives of
the world, it may be more effective to limit themto local views.

Roychowdhury et al. consider a case of multiple agents sharing a set of identical resources in which
they have to learn (adapt) their resource usage policies [67]. Since the agents are identical and do not
communicate, if they all have aglobal view of the current resource usage, they will all move simultaneously
to the most under-used resource. However, if they each see a partial picture of the world, then different
agents gravitate towards different resources: a preferable effect. Better performance by agents with less
knowledge is occasionally summarized by the cliche “Ignorance is Bliss.”

4.3.3 Modeling of other agents states

Durfee gives another example of “Blissful Ignorance,” mentioning it explicitly in the title of his paper:
“Blissful Ignorance: Knowing Just Enough to Coordinate Well” [24]. Now rather than referring to resource
usage, the saying applies to the limited Recursive Modeling Method (RMM). As mentioned above in the
context of the pursuit domain, RMM could recurse indefinitely. Even if further information can be obtained
by reasoning about what agent A thinks agent B thinks agent A thinks. . ., endless reasoning can lead to
inaction. Durfee contends that for coordination to be possible, some potentia knowledge must be ignored.
Aswell asillustrating this concept in the pursuit domain [90], Durfee goesinto more detail and offers more
generally applicable methodology in [24].

Thepoint of theRMM isto model theinternal state of another agent in order to predict itsactions. Even
though the agents know each other’s goals and structure (they are homogeneous), they may not know each
other’s future actions. The missing pieces of information are the internal states (for deliberative agents) and
sensory inputs of the other agents. How and whether to model other agentsisa ubiquitousissuein MAS. In
the more complex multiagent scenarios presented in the next sections, agents may have to model not only
theinternal states of other agents, but also their goals, actions, and abilities.

Although it may be useful to build models of other agents in the environment, agent modeling is not
done universally. Schmidhuber advocates a form of multiagent reinforcement learning (RL) with which
agents do not model each other as agents [77]. Instead they consider each other as parts of the environment
and affect each other’s policies only as sensed objects. The agents pay attention to the reward they receive
using agiven policy and checkpoint their policies so they can return to successful ones. Schmidhuber shows
that the agents can learn to cooperate without modeling each other.

4.3.4 How to affect others

When no communication is possible, system designers must decide how the agents will affect one another.
Since they exist in the same environment, the agents can affect each other in several ways. Actively, they
can be sensed by other agents, or they may be able to change the state of another agent by, for example,
pushing it. More indirectly, agents can affect other agents by one of two types of stigmergy[39]. First,
active stigmergyccurs when an agent aters the environment so as to affect the sensory input of another
agent. For example, a robotic agent might leave a marker behind it for other agents to observe. Goldman
and Rosenschein demonstrate an effective form of active stigmergy in which agents heuristically alter the
environment in order to facilitate future unknown plans of other agents [31]. Second, passive stigmergy
involves altering the environment so that the effects of another agent’s actions change. For example, if one
agent turns off the main water valve to a building, the effect of another agent turning on the kitchen faucet
isaltered.
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Hollandillustratesthe concept of passive stigmergy with arobotic system designed to model the behavior
of an ant colony confronted with many dead ants around its nest [39]. An ant from such a colony tends
to periodically pick up a dead ant, carry it for a short distance, and then drop it. Although the behavior
appears to berandom, after several hours, the dead ants are clustered in asmall number of heaps. Over time,
there are fewer and fewer large piles until al the dead ants end up in one pile. Although the ants behave
homogeneously and, at least in this case, we have no evidence that they communicate explicitly, the ants
manage to cooperate in achieving a task.

Holland modelsthis situation with anumber of identical robotsin asmall area scattered with pucks[39].
The robots are programmed reactively to move straight (turning at walls) until they are pushing three or
more pucks. At that point, the robots back up and turn away, leaving the three pucksin a cluster. Although
the robots do not communicate at al, they are able to collect the pucks into a single pile over time. This
effect occurs because when a robot approaches an existing pile directly, it adds the pucks it was already
carrying to the pile and turns away. Of course a robot approaching an existing pile obliquely might take
apuck away from the pile, but over time the desired result is accomplished. Like the ants, the robots use
passive stigmergy to affect each other’s behavior.

A similar scenario with more deliberative robots is explored by Mataric. In this case, the robots use
Q-learning to learn behaviors including foraging for pucks as well as homing and following [52]. The
robots learn independent policies, dealing with the high-dimensional state space with the aid of progress
estimatorghat give intermediate rewards, and with the aid of boolean value predicates that condense many
states into one. Mataric's robots actively affect each other through observation: arobot learning to follow
another robot can base its action on the relative location of the other robot.

4.4 Further Learning Opportunities

In addition to the existing learning approaches described above, there are several previously unexplored
learning opportunitiesthat apply to homogeneous non-communicating systems (see Table 5).

Oneunexploredlearning opportunity that could apply in domainswith homogeneous non-communicating
agentsislearning to enable others’ actions. Inspired by the concept of stigmergy, an agent may try to learn
to take actions that will not directly help it in its current situation, but that may allow other similar agents
to be more effective in the future. Typical RL situations with delayed reward encourage agents to learn to
achievetheir goalsdirectly by propagating local reinforcement back to past statesand actions[42]. However
if an action leadsto areward by another agent, the acting agent may have no way of reinforcing that action.
Techniques to deal with such a problem would be useful for building multiagent systems.

Intermsof modeling other agents, thereismuch room for improvement in the situation that agiven agent
does not know the internal state or sensory inputsof another agent. When such informationisknown, RMM
can be used to determine future actions of agents. However, if the information is not directly available, it
would be useful for an agent to learn it. The function from agent X's sensor data (which might include a
restricted view of agent Y) to agent Y’s sensor dataisauseful functiontolearn. If effectively learned, agent
X can then use (limited) RMM to predict agent Y’s future actions.

5 Heterogeneous Non-Communicating Multiagent Systems

Tothispoint, wehaveonly considered agentsthat are homogeneous. Adding the possibility of heterogeneous
agentsin amultiagent domain adds agreat deal of potential power at the price of added complexity. Agents
might be heterogeneousin any of anumber of ways, from having different goals to having different domain
models and actions. An important subdimension of heterogeneous agent systems is whether agents are
benevolent or competitive. Even if they have different goals, they may be friendly to each other’s goals or
they may actively try to inhibit each other. Thisaspect of heterogeneous systems, along with several others,
is described below.
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5.1 Heterogeneous Non-Communicating M ultiagent Pur suit

Before exploring the general multiagent scenario involving heterogeneous non-communicating agents,
consider how this scenario can be instantiated in the pursuit domain. As in the previous scenario, the
predators are controlled by separate agents. But they are no longer necessarily identical agents: their goals,
actions and domain knowledge may differ. In addition, the prey, which inherently has goals different from
those of the predators, can now be modeled as an agent. The pursuit domain with heterogeneous agentsis

shownin Figure 8.
Agent Agent
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Figure 8: The pursuit domain with heterogeneous agents. Goals and actions may differ among agents. Now
the prey may also be modeled as an agent.

Haynes and colleagues have done various studies with heterogeneous agents in the pursuit domain.
They have evolved teams of predators, equipped predators with case bases, and competitively evolved the
predators and the prey.

First, Haynes et al. use genetic programming (GP) to evolve teams of four predators [38]. Rather
than evolving predator agents in a single evolutionary pool and then combining them into teams to test
performance, each individual in the populationis actually ateam of four agents aready specifically assigned
to different predators. Thus the predators can evolve to cooperate. This co-evolution of teammates is one
possibleway around the absence of communicationinadomain. In place of communicating planned actions
to each other, the predators can evolve to know or at least act as if knowing, each other’s future actions.

In a separate study, Haynes et a. use case-based reasoning to allow predators to learn to cooperate [36].
They begin with identical agents controlling each of the predators. The predators move simultaneously
to their closest capture positions. But because predators that try to occupy the same position al remain
stationary, cases of deadlock arise. When deadlock occurs, the agents store the negative case so as to avoid
it in the future, and they try different actions. Keeping track of which agents act in which way for given
deadlock situations, the predators build up different case basesand thus become heterogeneous agents. Over
time, the predators learn to stay out of each other’s way while approaching the prey.

Finally, Haynes and Sen explore the possibility of evolving both the predators and the prey so that they
al try to improve their behaviors [37]. Working in a toroidal world and starting with predator behaviors
such as Korf’s greedy heuristic and their own evolved GP predators, they then evolve the prey to behave
more effectively than randomly. Although one might think that continuing this process would lead to
repeated improvement of the predator and prey behaviors with no convergence, a prey behavior emerges
that always succeeds. the prey simply movesin a constant straight line. Even when allowed to re-adjust to
the “linear” prey behavior, the predators are unable to reliably capture the prey. Haynes and Sen conclude
that Korf’s greedy solutionto the pursuit domain relies on random prey movement which guarantees |ocality
of movement. Althoughthere may yet be greedy sol utionsthat can deal with different typesof prey behavior,
they have not yet been discovered. Thus the predator domain retains value for researchersin MAS.

Although Haynes and Sen convince the reader that the pursuit domain is still worth studying [37],
the co-evolutionary results are less than satisfying. As mentioned above, one would intuitively expect the
predatorsto be able to adapt to thelinearly moving prey. For example, sincethey operatein atoroidal world,
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asingle predator could place itself in the prey’s line of movement and remain still. Then the remaining
predators could surround the prey at their leisure. The fact that the predators are unable to re-evolve to
find such a solution suggests that either the predator evolution is not performed optimally, or slightly more
“capable” agents (i.e. agents able to reason more about past world states) would lead to a more interesting
study. Nevertheless, the study of competitive co-evolution in the pursuit domain started by Haynes and Sen
isan intriguing open issue.

5.2 General HeterogeneousMAS

The general multiagent scenario with heterogeneous non-communicating agents is depicted in Figure 9.
As in the homogeneous case (see Figure 7), the agents are situated differently in the environment which
causes them to have different sensory inputs and necessitates their taking different actions. However in
this scenario, the agents have much more significant differences. They may have different goals, actions,
and/or domain knowledge. Thiscondition of heterogeneity among agents adds agreat deal of power for the
system designer. In order to focus on the benefits (and complexity) of heterogeneity, the assumption of no
communication isretained for this section.

o Goals
® Actions
o Domain

knowledge ® Goals
® Actions

® Domain
* Goals knowledge
© Actions

© Domain
knowledge

Figure 9: The general heterogeneous MAS scenario. Now agents’ goals, actions, and/or domain knowledge
may differ asindicated by the different fonts. The assumption of no direct interaction remains.

5.3 Issuesand Techniques

Even without communication, numerous issues that were not present in the homogeneous agent scenario
(Section 4) arisein this scenario. Some have already been touched upon above in the context of the pursuit
domain. These issues and existing techniques to deal with them, along with further learning opportunities,
are described below and summarized in Table 6.

5.3.1 Benevolencevs. competitiveness

One of the most important issues to consider when designing a multiagent system is whether the different
agents will be benevolent or competitive. Even if they have different goals, the agents can be benevolent if
they are willing to help each other achieve their respective goals [31]. On the other hand, the agents may
be selfish and only consider their own goals when acting. In the extreme, the agents may be involved in a
zero-sum situation so that they must actively oppose other agents' goalsin order to achieve their own.
Some peopleonly consider using selfish agents, claiming that they are both more effective when building
real systemsand more biologically plausible. Of course if agents have the same goals, they will help each
other, but people rarely consider agents that help each other achieve different goals for no apparent reason:
when agents cooperate, they usually do so because it is in their own best interest. As we have already
seen in the pursuit domain, Korf advocates using greedy agents that minimize their own distance to the
prey [46], and similarly, Levy and Rosenschein use Game Theory to study how the predators can cooperate
despite maximizing their own utilities [48]. Some advocates of selfish agents point to nature for their
justification, claiming that animalsare not atruistic, but rather act alwaysin their own self-interest [46]. On
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I'ssues

Benevolence vs. competitiveness L earning opportunities

Stable vs. evolving agents (arms race, credit/blame)

Modeling of others goals, actions, and knowledge o Credit/blamein competitive scenarios
Resource management (interdependent actions) e Behaviorsthat blend well with team
Socia conventions o Prediction of others' actions

Roles e Dynamic role assumption

Techniques

Game theory, iterative play. Mor and Rosenschein/Sandholm and Cr&5 75]
Minimax-Q. Littman[49]

Competitive co-evolution. Haynes and Sen/Grefenstette and Daley/Rosin and B8k\82, 66]
Deduce intentionsthrough observation. Huber and Durfeg40]

Autoepistemic reasoning (ignorance). Permpoontanalarps9]

Model as ateam (individual — role). Tambe[85, 86]

Social reasoning: depend on othersfor goal (# game theory). Sichman and Demazet9)]
GAsto deal with Braes' paradox (more resource — worse). Arora and Serj4]

Multiagent RL for adaptive Load Balancing. Schaerf, Shoham, and Tennenh{ig

Focal points/Emergent conventions. Fenster et al./Walker and Woolrid§26, 91]

Design agents play different roles. Prasad et al[62]

Table 6: The issues, techniques, and learning opportunities for heterogeneous MAS as reflected in the
literature.

the other hand, Ridley provides a detailed chronicle and explanation of apparent altruismin nature (usually
explainable as kin selection) and cooperation in human societies [64].

Whether or not altruism exists, in some situations it may be in an animal’s (or agent’s) interest to
cooperate with other agents. Mor and Rosenschein illustrate this possibility in the context of the prisoner’s
dilemma [55]. In the prisoner’s dilemma, two agents try to act so as to maximize their own individual
rewards. They are not actively out to thwart each other since it is not a zero-sum game, yet they place
no inherent value on the other receiving reward. The prisoner’s dilemmais constructed so that each agent
is given two choices: defect or cooperate. No matter what the other agent does, a given agent receives a
higher reward if it defects. Yet if both agents cooperate, they are better off than if they both defect. In any
given play, an agent isbetter off defecting. Nevertheless, Mor and Rosenschein show that if the same agents
come up against each other repeatedly (iterated prisoner’s dilemma), cooperative behavior can emerge. In
effect, an agent can serve its own self-interest by establishing a reputationfor being cooperative. Then
when coming up against ancther cooperative agent, the two can benefit from a sense of trust for each other:
they both cooperate rather than both defecting. Only with repeated play can cooperation emerge among the
selfish agents in the prisoner’s dilemma.

Inthe prisoner’sdilemma, the agents are selfish but not inherently competitive: in specific circumstances,
they are willingto act benevolently. However, when the agentsare actually competitive (such asin zero-sum
games), cooperation is no longer sensible. For instance, Littman considers a zero-sum game in which two
players try to reach opposite ends of a small discrete world. The players can block each other by trying to
move to the same space. Littman introduces a variant of Q-learning called Minimax-Q which is designed
to work on Markov games as opposed to Markov Decision Processes [49]. The competitive agents learn
probabilistic policies since any deterministic policy can be completely counteracted by the opponent.

The issue of benevolence (willingness to cooperate) vs. competitiveness comes up repeatedly in the
systems described below. Were athird dimension to be added to the categorization of MAS (in addition to
degrees of heterogeneity and communication), thisissue would be it.
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5.3.2 Stablevs. evolving agents

Another important characteristic to consider when designing multiagent systems is whether the agents are
stable or evolving. Of course evolving agents can be useful in dynamic environments. But particularly
when using competitive agents, allowing them to evolve can lead to complications. Such systemsthat use
competitive evolving agents are said to use a technique called competitive co-evolutiorSystemsthat evolve
benevolent agents are said to use cooperative co-evolutiorThe evolution of both predator and prey agents
by Haynes and Sen [37] qualifies as competitive co-evolution.

Grefenstette and Daley conduct a preliminary study of competitive and cooperative co-evolution in
adomain that is loosely related to the pursuit domain [32]. Their domain has two robots that can move
continuously and one morsel of (stationary) food that appearsrandomly intheworld. Inthe cooperativetask,
both robots must be at the food in order to “capture” it. Since the robots can run out of energy if they move
too much, they learn to move towards food only when both of them are near enough to reach it. Evolving
populations of decision rules using Genetic Algorithms (GAs), Grefenstette and Daley consider different
methods of fitness evaluation. Fitness evaluation—the evaluation of relative “fitness’ of individualsin a
population so that the most fit can be retained and recombined—is an important component of evolutionary
learning techniques. Grefenstette and Daley find that an effective method for cooperative co-evolution in
their domain is to use separate GAs to evolve rules for the two agents, evaluating individuals against a
“champion” (individual with highest fitness) from a random generation of the other GA.

Inacompetitivetask in the same domain, agentstry to bethefirst to reach thefood [32]. Again, different
GA evaluation methods are considered for usein evolving rule sets to control the agents.

One problem to contend with in competitive rather than cooperative co-evolution is the possibility of an
escalating “arms race” with no end. Competing agents might continually adapt to each other in more and
more specialized ways, never stabilizing at agood behavior. Of coursein adynamic environment, it may not
be feasible or even desirable to evolve a stable behavior. Applying RL to the iterated prisoner’s dilemma,
Sandholm and Crites find that a learning agent is able to perform optimally against a fixed opponent [75].
But when both agents are learning, there is no stable solution.

Another issue in competitive co-evolution is the credit/blame assignment problem. When performance
of an agent improves, it is not necessarily clear whether the improvement is due to an improvement in that
agent’s behavior or anegative change in the opponent’s behavior. Similarly, if an agent’s performance gets
worse, the blame or credit could belong to that agent or to the opponent.

One way to deal with the credit/blame problem is to fix one agent while evolving the other and then
switch. Of course thismethod encourages the arms race more than ever. Nevertheless, Rosin and Belew use
thistechnique, along with an interesting method for maintaining diversity in genetic populations, to evolve
agents that can play TicTacToe, Nim, and a simple version of Go [66]. When it is a given agent’s turn to
evolve, it executes a standard GA generation. Individuals are tested against individualsfrom the competing
population, but a technique called “competitive fitness sharing” is used to maintain diversity. When
using this technique, individuals from agent X’s population are given more credit for beating opponents
(individualsfrom agent Y’s population) that are not beaten by other individualsfrom agent X’s population.
More specifically, the reward to an individual for beating individua y is divided by the number of other
individuals in agent X's population that also beat individual y. Competitive fitness sharing shows much
promise for people building systems that use competitive co-evolution.

5.3.3 Modeling of others goals, actions, and knowledge

In the case of homogeneous agents, it was useful for agents to model the internal states of other agentsin
order to predict their actions. With heterogeneous agents, the problem of modeling others is much more
complex. Now the goals, actions, and domain knowledge of the other agents may al so be unknown and thus
need modeling.

Without communication, agents are forced to model each other strictly through observation. Huber and
Durfee consider a case of coordinated motion control among multiple mobile robots under the assumption
that communication is prohibitively expensive [40]. Thus the agents try to deduce each other’s plans by
observing their actions. In particular, each robot (simulated or real) tries to figure out the destinations of
the other robots by watching how they move. Plan recognition of this type is also useful in competitive
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domains, since knowing an opponent’s goals or intentions can make it significantly easier to defeat.

Inadditiontomodeling agents’ goal sthrough observation,itisalso possibletolearntheir actions. Wang's
OBSERVER system allowsan agent to incrementally learn the preconditions and effects of planning actions
by observing domain experts [92]. After observing for atime, the agent can then experimentally refine its
model by practicing the actionsiitself.

When modeling other agents, it may be useful to reason not only about what is true and what is false,
but al'so about what is not known. Such reasoning about ignorancesis called autoepistemic reasoningror
atheoretical presentation of an autoepistemic reasoning method in MAS, see [59].

JustasRMM isuseful for modeling the states of homogeneousagents, it can be usedin the heterogeneous
scenario aswell. Tambe takesit one step further, studying how agents can learn models of teams of agents.
In an air combat domain, agents can use RMM to try to deduce an opponents’ plan based on its observable
actions [85]. For example, afired missilemay not be visible, but the observation of a preparatory maneuver
commonly used before firing could indicate that a missile has been launched.

When teams of agents are involved, the situation becomes more complicated. In thiscase, an opponent’s
actions may not make sense except in the context of ateam maneuver. Then the agent’s role within the team
must be modeled. Tambe discusses the advantages of team modeling [86].

One reason that modeling other agents might be useful is that agents sometimes depend on each other
for achieving their goals. Unlike in game theory where agents can cooperate or not depending on their
utility estimation, there may be actions that require cooperation for successful execution. For example,
two robots may be needed to successfully push a box, or, asin the pursuit domain, several agents may be
needed to capture an opponent. Sichman and Demazeau analyze how the case of conflicting mutual models
of different co-dependent agents can arise and be dealt with [79].

5.3.4 Resource management

Heterogeneous agents may have interdependent actions due to limited resources needed by severa of the
agents. Example domains include network traffic problems in which several different agents must send
information through the same network; and load balancing in which several computer processes or users
have a limited amount of computing power to share among them. Designers of multiagent systems with
limited resources must decide how the agents will share the resources.

One interesting network traffic problem called Braess' paradox has been studied from a multiagent
perspective using GAs [30]. Braess paradox is the phenomenon of adding more resources to a network
but getting worse performance. Glance and Hogg claim that under certain conditions, including usage-
dependent resource costs, agents that are sharing the network and reasoning separately about which path of
the network to use cannot achieve global optimal performance [30]. Glance and Hogg use GAsto represent
different parts of a contrived sample network. Arora and Sen then improve the GA representation slightly
and show that with the new representation, the system is actually able to find the globally optimal traffic
flow [4].

Adaptiveload balancing has been studied as amultiagent problem by allowing different agentsto decide
which processor to use at a given time. Using RL, Schaerf et al. show that the heterogeneous agents can
achieve reasonable |oad balance without any central control and without communication among agents[76].
The agents keep track of how long ajob takes when it is scheduled on a given resource, and they are given
some incentive to explore untried processors or processors that did poorly in the past.

5.3.5 Social conventions

Although the current multiagent scenario does not allow for communication, there has been some very
interesting work done on how heterogeneous agents can nonethel essreach “ agreements,” or make coinciding
choices, if necessary. Humans are able to reach tacit agreements as illustrated by the following scenario:

Imagine that you and a friend need to meet today. You both arrived in Paris yesterday, but you

were unable to get in touch to set atime and place. Nevertheless, it is essentia that you meet
today. Where will you go, and when?
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Rick Vohra posed this question to an audience of roughly 40 people at the AAAI-95 Fall Symposium on
Active Learning: roughly 75% of the people wrote down (with no prior communication) that they would
go to the Eifel tower at noon. Thus even without communicating, people are sometimes able to coordinate
actions. Apparently features that have been seen or used often present themselves as obvious choices.

Inthe context of MAS, Fenster et a. define the Focal Point method [26]. They discuss the phenomenon
of cultural (or programmed) preferences allowing agents to “meet” without communicating. They propose
that, al else being equal, agents who need to meet should choose rare or extreme options.

On asimilar note, conventions might emerge over time. Walker and Woolridge propose biasing agents
towards options that have been chosen, for example, most recently or most frequently in the past [91].
Rather than coming from pre-analysis of the optionsasin the Focal Point method, conventions emerge over
time.

53.6 Roles

When agents have similar goals, they can be organized into ateam. Each agent then plays a separate role
within the team. With such a benevolent team of agents, one must provide some method for assigning
different agentsto different roles. This assignment might be obvious if the agents are very specific and can
each only do one thing. However in some domains, the agents are flexible enough to interchange roles.

The multiagent design of a steam pump is one such domain. Prasad et al. study design agents that can
either initiate a design or extend a design [62]. In different situations, different agents are more effective
at initiation and at extension. Thus a supervised learning technique is used to help agents learn what roles
they should fill in different situations.

Although already mentioned above in the context of modeling other agents, Tambe's work deserves
mention in this context as well. When an agent is faced with an opposing team of agents, it may be useful
to model individual agents as filling roles within a team action rather than as acting independently [86].

5.4 Further Learning Opportunities

Throughout the above investigation of issues and techniques in the heterogeneous non-communicating
multiagent scenario, many learning approaches are described. A few of the other most obvious future ML
applicationsto this scenario are described here and summarized in Table 6.

One challenge for system builders who use evolving agents is dealing with the credit/blame problem.
When several different agents are evolving at the same time, changes in an agent’s fitness could be due to
its own behavior or due to the behavior of others. Yet if agents are to evolve effectively, they must have a
reasonable idea of whether a given change in behavior is beneficial or detrimental. Methods of objective
fitness measurement are also needed for testing various evolution techniques. In competitive (especially
zero-sum) situations, it is difficult to provide adequate performance measurements over time. Even if al
agents improve drastically, if they all improve the same amount, the actual results could remain the same.
One possibleway around this problem isto test agents against past agentsin order to measureimprovement.
However thissolutionis not ideal: the current agent may have adapted to the current opponent rather than
past opponents. A reliable measurement method would be a valuable contribution to ML in MAS.

In cooperétive situations, agents ideally learn to behave in such a way that they can help each other.
Unfortunately, most existing ML techniques focus on exploring behaviors that are likely to help an agent
with its own “personal” deficiencies. An interesting contribution would be a method for introducing into
the learning space a bias towards behaviors that are likely to blend well with the behaviors of other agents.

Many of the techniques described in this section pertained to modeling other agentsin the heterogeneous
non-communicating scenario. However the true end is not just knowledge of another agent's current
situation, but rather the ability to predict its future actions. For example, the reason it is useful to deduce
another mobilerobot's goal location isthat its path to the goal may then be predicted and collision avoided.
There is still much room for improvement of existing techniques and for new techniques that allow agents
to predict each other’s future actions.

In the context of teams of agents, it has been mentioned that agents might be suited to different rolesin
different situations. In a dynamic environment, these flexible agents are more effective if they can switch
roles dynamically. For example, if an agent finds itself in a position to easily perform a useful action that
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is not usually considered a part of its current role, it may switch roles and leave its old role available for
another agent. A challenging possible approach to this problem is to enable the agents to learn which roles
they should assume in what situations. Dynamic role assumptionis a particularly good opportunity for ML
researchers in MAS.

6 Heterogeneous Communicating Multiagent Systems

The scenarios examined thus far have included agents that differ in any number of ways, including their
sensory data, their goals, their actions, and their domainknowledge. Such heterogeneous multiagent systems
can be very complex and powerful. However thefull power of MAS can be realized when adding the ability
for agents to communicate with one another. In fact, adding communication introduces the possibility
of having a multiagent system turn into a system that is essentially equivalent to a single-agent system.
By sending their sensor inputs to and receiving their commands from one agent, all the other agents can
surrender control to that single agent. In this case, control is no longer distributed. Thus communicating
heterogeneous agents can span the full range of complexity in agent systems.

Admittedly, communication could be viewed as simply part of an agent’s interaction with the environ-
ment. However just asagents are considered special parts of the environment for the purposes of thissurvey,
S0 iscommunication among agents considered extra-environmental. With the aid of communication, agents
can coordinate much more effectively than they have been able to up to this point. In this scenario we
include homogeneous as well as heterogeneous communicating agents.

6.1 Heterogeneous Communicating M ultiagent Pur suit

In the pursuit domain, communication creates new possibilitiesfor predator behavior. Here, agents can still
be fully heterogeneous. But now cooperating agents can also communicate with one another. Since the
prey acts on its own in the pursuit domain, it has no other agents with which to communicate. However
the predators can freely exchange information in order to help them capture the prey more effectively. The
current situationisillustrated in Figure 10.

Agent

Agent
[j .\ o
Aient

Agent

Figure 10: The pursuit domain with communicating agents. Agents can still be fully heterogeneous but
now the predators can communicate with one another.

Tan uses communi cating agentsin the pursuit domain to conduct someinteresting multiagent Q-learning
experiments [87]. In hisinstantiation of the domain, there are several prey agents and the predators have
limited vision so that they may not always know where the prey are. Thus the predators can help each
other by informing each other of their sensory input. Tan shows that they might also help each other by
exchanging reinforcement episodes and/or control policies.

Recall the “local” strategy defined by Stephens and Merx in which each predator simply moved to its
closest “capture position.” In their instantiation of the domain, the predators can see the prey, but not each
other. With communication possible, they define two more possible strategies for the predators [81]. When
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using a “distributed” strategy, the agents are still homogeneous, but they communicate to insure that each
moves toward a different capture position. In particular, the predator farthest from the prey chooses the
capture position closest to it, and announces that it will approach that position. Then the next farthest
predator chooses the closest capture position from the remaining three, and so on. This simple protocol
encourages the predators to closein on the prey from different sides. A distributed strategy, it ismuch more
effective than thelocal policy and does not require very much communication. However there are situations
in which it does not succeed.

Stephens and Merx then present one more strategy that always succeeds but requires much more
communication: the“central” strategy [81]. The central strategy is effectively a single agent system. Three
predatorstransmit al of their sensory inputsto one central agent which then decideswhere all the predators
should move and transmits its decision back to them. In this case, there is realy only one intelligent
controlling agent and three puppets. Observe that by taking MASto the extreme of full communication, we
may arrive at asingle-agent system.

Bendaet d., in the original presentation of the pursuit domain, also consider the full range of commu-
nication possihilities, all the way up to the central strategy [9]. They consider the possible organizations of
the four predators when any pair can either exchange data, exchange data and goals, or have one control the
other. The tradeoff between lower communication costs and better decisions is described. Communication
costs might come in the form of limited bandwidth or consumption of reasoning time.

Another way to frame this tradeoff is as one between cost and freedom: as communication cost
(time) increases, freedom decreases. Osawa suggests that the predators should move through four phases.
In increasing order of cost (decreasing freedom), they are: autonomy, communication, negotiation, and
control [57]. When the predators stop making sufficient progress toward the prey using one strategy,
they should move to the next most expensive strategy. Thus they can close in on the prey efficiently and
effectively.

We identify an important lesson to learn from the above examples:

I'n terms of increasing complexity, the extreme|
multiagent scenario is a complex single-agent
scenario.

6.2 General Communicating MAS

Indeed, this continuum of complexity leading into the extreme single agent case appliesfor MASin general
(see Figure 1). With communicating agents, systems can get arbitrarily complex and arbitrarily centralized
until a single agent has all the control. Of course communication bandwidth may be prohibitively low to
reach the extreme in a given domain.

The fully general multiagent scenario appearsin Figure 11. In this scenario, we allow the agents to be
heterogeneous to any degree from homogeneity to full heterogeneity. The key addition is the ability for
agents to transmit information directly to each other. From a practical point of view, the communication
might be broadcast or posted on a “blackboard” for al to interpret, or it might be targeted point-to-point
from an agent to another specific agent.

6.3 Issuesand Techniques

Since heterogeneous communicating agents can choose not to communicate, and in some cases can also
choose to be homogeneous or at least to minimize their heterogeneity, most of the issues discussed in the
previous two scenarios apply in thisone as well. But the ability to communicate raises another whole set of
issuesfor which techniques exist. Two of the most studied i ssues are communication protocol s and theories
of commitment. The issue of benevolence vs. competitiveness, already discussed in the previous MAS
scenario, becomes more complicated in thiscontext. Theseissuesand othersalong with some of the existing
techniques to deal with them and further learning opportunities are described below and summarized in
Table 7.
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Figure 11: The general communicating MAS scenario. Agents can be heterogeneous to any degree. Infor-
mation can betransmitted directly among agents asindicated by the arrows between agents. Communication
can either be broadcast or transmitted point-to-point.

Heterogeneous Communicating

I ssues
L earning opportunities
e Understanding each other 9gopp
¢ Planning communicative acts e Evolving language
* Benevolence vs. competitiveness o o Effects of speech acts on global dynamics
* Resource management (schedule coordination) o Communication utility and truthfulness
« Commitment/decommitment o Commitment utility
e Truthin communication
Techniques

Language protocols: KIF for content (Genesreth and Fikeg29]),
KQML for message format (Finin et al.[28]).
Speech acts. Cohen and Levesque/Lux and Steiffet, 51]
Learning socia behaviors. Mataric [53]
Bayesian learning in negotiation: model others. Zeng and Sycarfo6]
Multiagent Q-learning. Weiss[93]
Training other agents' Q-functions (track driving). Clouse[13]
Minimizethe need for training. Potter and Grefenstet{®1]
Cooperative co-evolution. Bull et al.[11]
Contract nets for electronic commerce. Sandholm and Less¢r3]
Market-based systems. Huberman and Clearwate#a1]
Generalized Partial Global Planning (GPGP). Decker[21]
Internal, Social, and Collective (role) commitments. Castelfranch{12]
Commitment states (potential, pre, and actual) as planning states. Haddadi[34]
Belief/Desire/Intention (BDI) model: OASIS. Rao and Georgef63]
BDI commitments only over intentions. Rao and Georgefi63]
Codlitions. Zlotkin and Rosenschein/Shehory and Kraus/Sandholm and LiE8s&8, 72]
Reasoning about truthfulness. Sandholm and Lesser/ Rosensct{&#) 65]

Table 7: The issues, techniques, and learning opportunities for communicating multiagent systems as
reflected in the literature.
6.3.1 Understanding each other

In all communicating multiagent systems, and particularly in domains that include agents built by different
designers, there must be some set language and protocol for the agentsto use when interacting. Independent
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aspects of protocols are information content, message format, and coordination conventions. Among many
others, existing language protocols for these three levels are: KIF for content [29], KQML for message
format [28], and, more recently, COOL for coordination [8]. There has been a lot of research done on
refining these and other communication protocols. MAS designers must carefully consider what featuresin
acommunication protocol are needed in agiven domain.

6.3.2 Planning communicative acts

With the addition of communication as a capability available to agents, it is possible to consider this
capability asan “action” no different from any other. When an agent transmitsinformation to another agent,
it has an effect just like any other action would have. Thus within a planning framework, one can define
preconditions and effects for communicative acts. When combined with amodel of other agents, the effect
of acommunication act might be to alter an agent’s belief about the state of another agent or agents. The
theory of communication as action iscalled speech actfl4, 51].

Mataric adds a learning dimension to the idea of speech acts. Starting with the foraging behavior
mentioned above [52], the agents can then learn to choose among a set of social behaviors that include
broadcasting and listening [53]. Q-learning is extended so that reinforcement can be received for direct
rewards or for rewards to other agents.

When using communication asaplanning action, the possibility ari sesof communicating misinformation
inorder to satisfy aparticular goal. For instance, an agent may want another agent to believe that something
istrue. Rather than actually making it true, the agent might just saythat it is true. For example, Sandholm
and Lesser analyze a framework in which agents are allowed to “decommit” from agreements with other
agents by paying a penalty to these other agents [74]. They consider the case in which an agent might not
be truthful in its decommitment, hoping that the other agent will decommit first. In such situations, agents
must also consider what communicationsto believe /citeRosenschein94:Rules.

6.3.3 Benevolence vs. competitiveness

Several studies involving competitive agents were described in the heterogeneous non-communicating
scenario (see Section 5). In the current scenario, there are many more examples of competitive agents.

Zeng and Sycara study a competitive negotiation scenario in which agents use Bayesian Learning
techniques to update models of each other based on bids and counter bidsin a negotiation process [96].

Similar to Tan's work on multiagent RL in the pursuit domain [87] is Weil3's work with competing
Q-learners. The agents compete with each other to earn the right to control a single system [93]. The
highest bidder pays a certain amount to be allowed to act, then receives any reward that results from the
action.

Another Q-learning approach, thistime with benevolent agents, has been to explore theinteresting idea
of having one agent teach another agent through communication. Starting with atrainer that has moderate
expertise in a task, a learner can be rewarded for mimicking the trainer. Furthermore, the trainer can
recommend to the learner what action to take in a given situation so as to direct the |earner toward areward
state. Eventually, the learner is able to perform the task without any guidance. Clouse studies the effect
of different levels of advice in aroad-following domain [13]. He concludes that moderate advice improves
performance and speeds up learning, while too much advice |eads to worse performance because the learner
does not experience enough negative examples while training.

Whiletraining isauseful concept, some research isdriven by the goal of reducing the role of the human
trainer. As opposed to the process of shaping in which the system designer develops simple behaviors and
slowly buildsthem into more complex ones, popul ations appropriately seeded for competitive co-evolution
can reduce the amount of designer effort. Potter and Grefenstetteillustratethiseffect in the domain described
abovein which two robots competefor astationary pellet of food [61]. Subpopulationsof rules are seeded to
be more effective in different situations. Thus specialized subpopulations of rules corresponding to shaped
behaviors tend to emerge.

Rather than competitiveco-evolution Bull et al. build a system system which uses cooperativeco-
evolution [11]. They use GAs to evolve separate communicating agents to control different legs of a
quadrapedal robot.
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Drawing inspiration from competition in human societies, several researchers have designed systems
based on the law of supply and demand. In the contract netframework, agents all have their own goals,
are self-interested, and have limited reasoning resources [80]. They bid to accept tasks from other agents
and then can either perform the tasks (if they have the proper resources) or subcontract them to still other
agents. Agents must pay to contract their tasks out and thus shop around for the lowest bidder. Sandholm
and Lesser discuss some of the issuesthat arise in contract nets[73].

In asimilar spirit is an implemented multiagent system that controls air temperature in different rooms
of abuilding [41]. A person can set one's thermostat to any temperature. Then depending on the actual
air temperature, the agent for that room tries to “buy” either hot or cold air from another room that has
an excess. At the same time, the agent can sell the excess air at the current temperature to other rooms.
Modeling the loss of heat in the transfer from one room to another, the agentstry to buy and sell at the best
possible prices. The market regulates itself to provide equitable usage of a shared resource.

6.3.4 Resource management

In the previous scenario, resource management came up as a problem involving interdependent actions. In
the current scenario, agents can also coordinate schedules. Decker's Generalized Partial Global Planning
(GPGP) allows several heterogeneous agents to post constraints, or commitmentsto do atask by sometime,
to each other’s local schedulers and thus coordinate without the aid of any centralized agent [21].

6.3.5 Commitment/decommitment

When agents communicate, they may decide to cooperate on a given task or for a given amount of time. In
so doing, they make commitment$o each other. Committing to another agent involves agreeing to pursue a
given goal, possibly in agiven manner, regardless of how much it serves one’s owninterests. Commitments
can make systems run much more smoothly by providing a way for agents to “trust” each other, yet it
is not obvious how to get self-interested agents to commit to others in a reasonable way. The theory of
commitment and decommitment (when the commitment terminates) has consequently drawn considerable
attention.

For example, Castelfranchi defines three typesof commitment: internal commitment—an agent bindsit-
self to do something, social commitment—an agent commitsto another agent, and collective commitment—
an agent agrees to fill a certain role [12]. Setting an alarm clock is an example of internal commitment to
wake up at acertain time.

Haddadi discusses commitment states as planning states: potential cooperation, pre-commitment, and
commitment [34]. Agents can then use means-ends analysis to plan for goals in terms of commitment
opportunities. Thiswork is conducted within amodel called Belief/Desire/Intention, or BDI.

BDI is apopular technique for modeling other agents. Other agents' domain knowledge (beliefs) and
goals (desires) are modeled aswell astheir “intentions,” or goalsthey are currently trying to achieve and the
methods by which they are trying to achieve them. Rao and Georgeff use the BDI model to build a system
for air-traffic control, OASIS, which has been implemented for testing (in paralel with human operators
who retain full control) at the airport in Sydney, Australia[63]. Each aircraft isrepresented by acontrolling
agent which deals with a global sequencing agent. OASIS mixes reactive and deliberative actions in the
agents: they can break out of planned sequences when coming across situations that demand immediate
reaction. Since agents cannot control their beliefs or desires, they can only make commitments to each
other regarding their intentions.

Finally, groups of agents may decide to commit to each other. Rather than the more usual two-agent
or all-agent commitment scenarios, Zlotkin and Rosenschein study situationsin which agents may want to
form coalitions[97]. Since thiswork is conducted in a game theory framework, agents consider the utility
of joining a coalition in which they are bound to try to advance the utility of other members in exchange
for reciprocal consideration. Shehory and Kraus present a a distributed algorithm for task allocation when
coalitionsare either needed to perform tasks or more efficient that single agents[78]. Sandholm and L esser
use avehicle routing domain to illustrate a method by which agents can form valuable coalitionswhen itis
intractable to discover the optimal codlitions[72].
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6.4 Further Learning Opportunities

Once again, there are many possible ways in the current scenario to enhance MAS with ML techniques.
Within this heterogeneous communi cating multiagent scenario there isaclear need to pre-define alanguage
and communication protocol for use by the agents. However, an interesting alternative would be to allow
the agents to learn for themselves what to communicate and how to interpret it. For example, an agent
might be given a small language of utterances and a small set of meanings, but no mapping between the
two. Agents would then have to learn both what to say and how to interpret what they hear. A possible
result would be more efficient communications: they would need to be understandable only by the agents
rather than by both agents and humans.

When considering communicationsas speech acts, agentscould be allowed to learn the effects of speech
on the global dynamics of the system. In domains with low bandwidth or large time delays associated
with communication, the utility of communicating at a given moment might be learned. In addition, if
allowed to learn to communicate, agents are more likely to avoid being reliably conned by untruthfulness
in communication: when another agent says something that turns out not to be true, it will not be believed
so readily in the future,

Finally, commitment—the act of taking on another agent’s goal s—has both benefits and disadvantages.
System builders may want to allow their agentsto learn when to commit to others. Thelearning opportunities
in this scenario are summarized in Table 7.

7 Robotic Soccer

Several multiagent domains have been mentioned throughout the course of this survey, including design,
planning, entertainment, games, air-traffic control, air combat, personal assistants, load-balancing, and
robotic leg control. In this section a single domain which embodies most multiagent issues is presented.

Robotic soccer isaparticularly good domain for studying MAS. Originated by Alan Mackworth [70], it
has been gaining popularity inrecent years, with several international competitionstaking place[43, 44, 33].
It is aso the subject of an official IJCAI-97 Challenge [45]. It can be used to evauate different MAS
techniquesin adirect manner: teams implemented with different techniques can play against each other.

Although the pursuit domain serves us well for purposes of illustration, robotic soccer is much more
complex and interesting as a general testbed for MAS. Even with many predators and several prey, the
pursuit domain is not complex enough to simulate the real world. Although robotic soccer isa game, most
real-world complexitiesare retained. A key aspect of soccer’'s complexity isthe need for agents not only to
control themselves, but also to control the ball which is a passive part of the environment.

7.1 Overview

Robotic soccer can be played either with real robots or in a simulator. Although more costly and time
consuming to develop, a number of groups have developed real robotic systems. The first robotic soccer
system was the Dynamo system [70]. Sahota et al. built a 1 vs. 1 version of the game. Asada et a. have
used vision-based RL with their soccer playing robots [5]. Veloso et . discuss some of the robotic issues
involved in building robotic soccer players[3, 89].

Some robotic issues can only be studied in the real-world instantiation, but there are also many issues
that can be studied in simulation. A particularly good simulator for this purpose is the “soccerserver”
developed by Noda [56] and pictured in Figure 12. This simulator isrealistic in many ways: the players
vision is limited; the players can communicate by posting to a blackboard that is visible to al players; al
players are controlled by separate processes; each player has 10 teammates and 11 opponents; each player
has limited staminga; actions and sensors are noisy; and play occurs in real time. The simulator provides
a domain and supports users who wish to build their own agents. Furthermore, teams of agents can be
evaluated by playing against each other, or perhaps against standard teams. The simulator was successfully
used for a competition among twenty-nine teams from around the world in 1997 [44]. Thus robotic soccer
satisfies Decker’s criteria for DAI testbeds [18].
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Figure 12: The soccerserver system

7.2 MASin Robotic Soccer

The main goal of any testbed is to facilitate the trial and evaluation of ideas that have promise in the real
world. A widevariety of MASissues can be studied in simulated robotic soccer. Infact, all of the seventeen
MAS issues listed in Table 2 can be feasibly studied in the soccer simulator. The advantages of robotic
soccer as atestbed for MAS are summarized in Table 8.

Table 8: Advantages of (simulated) robotic soccer asa MAS testbed

o Complex enough to be redlistic o Direct comparisons possible
o Easily accessible e Good multiagent ML opportunities

o Embodies most MAS issues

Homogeneous non-communicating MAS can be studied in robotic soccer by fixing the behavior of the
opposing team and populating the team being studied with identical, mute players. To keep within the
homogeneous agent scenario, the opponents must not be modeled as agents. In this context, the players
can be reactive or deliberative to any degree. The extremely reactive agent might simply look for the ball
and move straight at it, shooting whenever possible. At this extreme, the players may or may not have any
knowledge that they are part of ateam. On the other hand, players might model each other, thus enabling
deliberative reasoning about whether to approach the ball or whether to move to a different part of thefield
in order to defend or to receive a pass. With players modeling each other, they may also reason about how
to affect each other’s behaviorsin thisinherently dynamic environment. Finally it is possible to study the
relative merits of local and global perspectives on the world. Robots can be given global views with the
help of an overhead camera, and the soccerserver comes equipped with a coach mode that permits global
views. However, robotic soccer is usually approached as a problem requiring local sensing.

Robotic soccer isalso useful for studying the i ssues associated with heterogeneous non-communicating
agents. Since each player has several teammates with the same global goal and several opponents with
the diametrically opposed goal, each player is both benevolent and competitive at the same time. This
possibility for combination of collaborative and adversarial reasoning is a major feature of the domain.
When trying to collaborate, players actions are usually interdependent: to execute a successful pass, both
the passer and the receiver must execute the appropriate actions. Thus modeling each other for the purpose
of coordinationis helpful. Social conventions, such as programmed notions of when agiven agent will pass
or which agents should play defense, can also help coordination. Since communication s still not allowed,
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the players must have areliable method for filling the different team roles needed on a soccer team (defense,
offense, goalie). Idealy, the players are able to switch roles during the course of a game when appropriate.
Finally, if the teams are learning during the course of a single game or over several games, all the issues of
evolving agents, including the “armsrace” possibility and the credit/blame problem, arise.

Robotic soccer is perhaps best suited for the study of the most complex multiagent scenario: heteroge-
neous communicating agents. Since the agents can indeed communicate, the full potential of the domain
is redlized in this scenario. With players posting messages to the blackboard, they must have a language
in order to understand each other. Protocols are also needed for commitment to team plays: the passer and
receiver in apass play must both agree to execute the pass. For more complex team plays, several players
may need to commit to participate. But then the issue arises of how single-mindedly they must adhere to
the committed play: when may they react to more pressing situations and ignore the commitment? For any
team play, including asimple pass, timingisvery important in such areal-time scenario. Thus, players must
coordinate their actions very carefully. Finally, speech acts are particularly interesting in the environment
that is both collaborative and adversarial. |f the opponents can understand the same language, a planned
utterance can affect the knowledge of both teammates and opponents. The utility of communication must
be carefully considered and the possibility of lying in order to fool the opponent arises. Therefore, planned
communicative acts, along with most of the other issuesfrom Table 2, turn up in robotic soccer.

Intermsof the reasonsto use MAS presented in Table 1, robotic soccer systemsusually require separate
agentsfor controlling the separate players, and they can benefit from the parallelism, robustness, and simpler
programming of MAS. Systems whose players have onboard sensors are necessarily multiagent, since no
single agent has access to al of the players sensory inputs. Some competitions also stipulate in their rules
that the robots must be controlled by separate agents. At the very least, the two teams must be controlled by
separate agents. Even teams that could theoretically be controlled by a single agent stand to gain by using
MAS. By processing the sensory inputs of the different players separately, multiple agents can control their
players in parallel, perhaps contending with different tasks on the field. One player might be in position
to defend its goal, while another is preparing an offensive attack. These players need not be controlled by
the same agent: they can go about their tasks in parallel. Furthermore, if any of the agents fails for some
reason (as often happensin real robotic systems), the other agents can attempt to compensate and continue
playing. Finaly, it isempirically easier to program a single agent per player than it is to control an entire
team centrally.

7.3 MachineLearningin Robotic Soccer

Aswell as addressing most of the issues inherent in MASS, robotic soccer is a great domain for multiagent
Machine Learning. In another soccer simulator, Stone and Veloso use Memory-based Learning to allow a
player tolearn when to shoot and when to passtheball [82]. They then use Neural Networksto teach aplayer
to shoot a moving ball into the goal [83]. They use similar techniques in the soccerserver system as well,
extending the learned behavior as a part of a hierarchical learning system [84]. Matsubaraet al. also use a
Neural Network to allow a player to learn when to shoot and when to passin the soccerserver system [54].
Uchibe et a. have successfully combined RL modules for shooting and for avoiding opponents using real
robots [88].

Once low-level behaviors have been developed, the opportunity to use ML techniques at the strategy
level is particularly exciting. For example, Balch uses a behavioral diversity measure to encourage role
learning in a RL framework, finding that providing a uniform reinforcement to the entire team is more
effective than providing local reinforcementstoindividual players[6]. Lukeet a. use genetic programming
to evolve cooperative behaviors within a team of players [50].

8 Conclusion
Thissurvey ispresented asadescription of thefield of MAS. Itisdesigned to serve both asan introductionfor

people unfamiliar with the field and as an organizational framework for system designers. This framework
is presented as a series of three increasingly complex and powerful scenarios. The simplest systems are
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those with homogeneous non-communicating agents. The second scenario involves heterogeneous non-
communicating agents. Finally, the general MAS scenario involves communicating agents with any degree
of heterogeneity. Single-agent systemsare presented asthe most extreme version of thisfinal, most complex
scenario, where control is centralized in one agent and the others act as remote slaves.

Each multiagent scenario introduces new issues and complications. Although MAS is a new field,
several techniques and systems already address these issues. After summarizing a wide range of such
existing work, useful future directions are presented. Throughout the survey, Machine Learning approaches
are emphasized.

Although each domain requires a different approach, from a research perspective the ideal domain
embodies as many issues as possible. Robotic soccer is presented here as a useful domain for the study
of MAS. Systems with a wide variety of agent heterogeneity and communication abilities can be studied.
In addition, collaborative and adversarial issues can be combined in areal-time situation. With the aid of
research in such complex domains, thefield of MAS should continue to advance and to spread in popularity
among designers of real systems.

MASisan activefield with many open issues. Continuing research ispresented at dedicated conferences
and workshops such as the International Conference on Multi-Agent Systems [95, 2, 1]. MAS work also
appearsin many of the DAI conferences and workshops[22, 94]. This survey provides aframework within
which the reader can situate both existing and future work.
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