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Abstract

We have developed a multiagent robotic system in-

cluding perception, cognition, and action components

to function in a dynamic environment. The system in-

volves the integration and coordination of a variety of

diverse functional modules. At the sensing level, our

complete multiagent robotic system incorporates de-

tection and recognition algorithms to handle the mo-

tion of multiple mobile robots in a noisy environment.

At the strategic and decision-making level, delibera-

tive and reactive components take in the processed

sensory inputs and select the appropriate actions to

reach objectives under the dynamic and changing en-

vironmental conditions. At the actuator level, phys-

ical robotic e�ectors execute the motion commands

generated by the cognition level. In this paper, we

focus on presenting our approach for reactive visual

control of multiple mobile robots. We present a track-

ing and prediction algorithm which handles visually

homogeneous agents. We describe our non-holonomic

control for single robot navigation, and show how it

applies to dynamic path generation to avoid multi-

ple moving obstacles. We illustrate our algorithms

with examples from our real implementation. Using

the approaches introduced, our robotic team won the

RoboCup-97 small-size robot competition at IJCAI-97

in Nagoya, Japan.

1 Introduction

Our multiagent robotic system addresses the

robotic soccer task. Robotic soccer o�ers a complex

environment in which multiple agents need to collab-

orate in the presence of adversaries to achieve spe-
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ci�c objectives. Robotic soccer o�ers a challenging

research domain to investigate a large spectrum of is-

sues of relevance to the development of complete au-

tonomous agents [1].

The fast-paced nature of the domain necessitates

real-time sensing coupled with quick behaving and

decision making. The behaviors and decision mak-

ing processes can range from the most simple reactive

behaviors, such as moving directly towards the ball,

to arbitrarily complex reasoning procedures that take

into account the actions and perceived strategies of

teammates and opponents.

We have been pursuing research in the robotic soc-

cer domain within the RoboCup initiative [5], which,

in 1997, included a simulator league and small-size

and medium-size robot leagues. Our research involves

both the simulator league and the small-size robot

league [10]. In this paper, we focus on the small-size

robot league presenting our approach for reactive vi-

sual control of multiple objects and results. Our team,

CMUnited, won the RoboCup-97 small-robot compe-

tition at IJCAI-97 in Nagoya, Japan.

2 System Overview

The small-size robot setup is viewed as an over-

all complete autonomous framework composed of the

physical navigational robotic agents1, a video cam-

era over-looking the playing �eld connected to a cen-

tralized interface computer, and several clients as

the minds of the small-size robot players. Figure 1

sketches the building blocks of the architecture.

The complete system is fully autonomous consist-

ing of a well-de�ned and challenging processing cycle.

The global vision algorithm perceives the dynamic en-

vironment and processes the images, giving the posi-

tions of each robot and the ball. This information is

sent to an o�-board controller and distributed to the

di�erent agent algorithms. Each agent evaluates the

world state and uses its strategic knowledge to decide

what to do next. Actions are motion commands that

are sent by the o�-board controller through radio fre-

1For hardware details and speci�cations of the robots, please
see [11].
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Figure 1: CMUnited Architecture with Global Per-

ception and Distributed Reaction.

quency communication. Commands can be broadcast

or sent directly to individual agents. Each robot has

an identi�cation binary code that is used on-board

to detect commands intended for that robot. Motion

is not perfectly executed due to inherent mechanical

inaccuracies and unforeseen interventions from other

agents. The e�ects of the actions are therefore uncer-

tain. This complete system is fully implemented.

The physical robots themselves are of size 15cm �

12cm � 10cm. Figure 2 shows our robots. Di�eren-

tial drive mechanism is used in all of the robots. Two

motors with integrated gear boxes are used for the

two wheels. Di�erential drive was chosen due to its

simplicity. The size constraints do not allow the real-

ization of other more complex drive mechanisms. The

size of our robots conforms to RoboCup Competition

rules2. Employing the di�erential drive mechanism

means that the robot is non-holonomic, which makes

the robot control problem considerably more challeng-

ing.

Figure 2: Our robots, showing the two color patches

on top of the robots and the di�erential drive wheels

at the sides.

Although it may be possible to �t an on-board vi-

sion system onto robots of small size, in the interest of

2see http://www.robocup.org/RoboCup/

being able to quickly move on to strategic multiagent

issues, we have opted for a global vision system.

The fact that perception is achieved by a video

camera overlooking the complete �eld o�ers an op-

portunity to get a global view of the world state. Al-

though this setup may simplify the sharing of infor-

mation among multiple agents, it presents a challenge

for reliable and real-time processing of the movement

of multiple mobile objects | the ball, �ve robots on

our team, and �ve robots in the opponent team.

3 Real-Time Perception for Multiple

Agents

This section focusses on presenting our vision pro-

cessing algorithm whose accuracy makes it a major

contribution towards the success of our robotic team.

3.1 Color-based Detection

The vision requirements for robotic soccer have

been examined by di�erent researchers [7, 8]. Systems

with on-board and o�-board types have appeared in

recent years. All have found that the reactiveness of

soccer robots requires a vision system with a high pro-

cessing cycle time. However, due to the rich visual

input, researchers have found that dedicated proces-

sors or even DSPs are often needed [2, 7]. Our current

system uses a frame-grabber with frame-rate trans-

fer from a 3CCD camera. A relatively slow processor

(166MHz Pentium) was at the heart of the vision sys-

tem, performing all vision computations.

The RoboCup rules specify well de�ned colors for

di�erent objects in the �eld and these are used as the

major cue for object detection. The RoboCup rules

specify a green color �eld with speci�c white mark-

ings. The ball is an orange golf ball (see Figure 2).

It also speci�es a yellow or blue colored circle on the

top of the robots, one color for each team. A single

color patch on the robot is not enough to provide ori-

entation information. Thus, an additional pink color

patch was added to each robot. These colors can be

di�erentiated reliably in color-space.

The set of detected patches are unordered. The

detected color patches on the tops of the robots are

then matched by their distance. Using the constant

distance between the team-color (blue or yellow) and

the pink orientation patch, our detection algorithm

matches patches that are this distance apart. Two

distance-matched patches are detected as a robot.

Noise is inherent in all vision systems. False detec-

tions in the current system are often of a magnitude of

100 spurious detections per frame. The system elimi-

nates false detections via two di�erent methods. First,

color patches of size not matching the ones on the



robots are discarded. This technique �lters o� most

\salt and pepper" noise. Second, by adding the dis-

tance matching mechanism described above, all false

detections are eliminated.

3.2 Data Association

The detection scheme described above returns an

unordered list of robots for each frame. To be able

to control the robots, the system must associate each

detected robot in the �eld with a robot identi�cation.

Each of the robots is �tted with the same color

tops and no attempts are made to di�erentiate them

via color hue. Experience has shown that, in order to

di�erentiate 5 di�erent robots by hue, 5 signi�cantly

di�erent hues are needed. However, the rules of the

RoboCup game eliminate green (�eld), white (mark-

ings), orange (ball), blue and yellow (team and oppo-

nent) from the list of possibilities. Furthermore, in-

evitable variations in lighting conditions over the area

of the �eld and noise in the sensing system are enough

to make a hue-based detection scheme impractical.

With each robot �tted with the same color, visu-

ally, all robots in each team look identical to the vi-

sual system. Detecting and di�erentiating multiple

objects simultaneously is trivial if the objects were

non-homogeneous. However, problems arise when the

objects to be identi�ed are homogeneous such that

distinguishing between them is not possible.

Data association addresses the problem of retaining

robot identi�cation in subsequent frames. We devised

an algorithm to retain association based on the spatial

locations of the robots.

We assume that the starting positions of all the

robots are known. This can be done trivially by speci-

fying the location of the robots at start time. However,

problems arise when subsequent frames are processed,

the locations of the robots have changed due to robot

movements. Association can be achieved by making

two complementary assumptions: 1) Robot displace-

ments over consecutive frames are local; 2) The vision

system can detect objects at constant frame rate. By

measuring the maximum robot velocity, we can know

that in subsequent frames, the robot is not able to

move out of a 3cm radius circular region. This pro-

vides the basis of our association technique.

3.3 Greedy Association

With these assumptions in mind, a minimum dis-

tance scheme can be used to retain association be-

tween consecutive frames.

During consecutive frames, association is main-

tained by searching for objects within a minimumdis-

placement. Current robot positions are matched with

the closest positions from the previous frame.

The following is the pseudo-code of a greedy asso-

ciation procedure:

let prev[1::n] be the array of robot locations

from the previous frame

let cur[1::m] be the array of robot locations

from the current frame

let ma be triangular array of size n� 1 s.t.

ma[i][j] = dist(prev[i]; cur[j])

for i := 1 to m do

�nd smallest element ma[i][j]

save (i; j) as a matched pair

set all elements in row i and column j to be 1

end

if m < n then

forall prev[i] unmatched, save (prev[i]; prev[i])

return the set of saved pairs as the set of matchings.

This algorithm searches through all possible

matches, from the smallest distance pair upwards.

Whenever a matched pair is found, it greedily accepts

it as a matching pair.

Due to noise, it is possible for the detection system

to leave a robot or two undetected (i.e.. in the pseudo-

code m < n). In this case, some locations will be

left unmatched. The unmatched location will then

be carried over to the current frame, and the robots

corresponding to this location will be assumed to be

stationary for this one frame.

This algorithm was implemented and was used in

RoboCup97. Although the implementation was very

robust, we present an improvement that allows for a

globally optimal associatio.

3.4 Globally Optimal Association

The greedy association algorithm, as described

above, fails in some cases, for example as the one illus-

trated in Figure 3. In the �gure, a greedy algorithm

incorrectly matches the closest square and circular ob-

jects.

f1

f2 f1

f2

Figure 3: A case in which greedy association fails but

global optimal association performs well. The arrow

indicates the actual object displacement over subse-

quent frames f1 and f2. The dotted lines indicate the

wrong matches returned by greedy association.

An improved algorithm was devised to handle the

situation depicted above. The new algorithm gener-

ates all possible sets of matching and calculates the



�tness of the each of the sets globally according to the

following least square criteria:

NX
i=1

(dist(previ; curi))
2
;

where (previ; curi) are the i
th matching pair. And

the function dist(x; y) is the Euclidean distance. The

set of matches that minimizes the above criteria is

selected as the best matches.

While these algorithms do not theoretically guaran-

tee perfect associations, in particular with noisy per-

ception and cluttered environments, the implementa-

tion has proved to be very robust.

3.5 Tracking and Prediction

In the setting of a robot soccer game, the ability to

detect merely the locations of objects on the �eld is of-

ten not enough. Like for real soccer players, it is often

essential for robots to predict future locations of the

ball (or even of the other players). We have used an

Extended Kalman �lter (EKF) for such a purpose[4],

which is very suitable since the detection of the ball's

location is noisy.

The EKF is a recursive estimator for a possibly non-

linear system. It involves a two-step iterative process,

namely update and propagate. The current best esti-

mate of the system's state and its error covariance is

computed on each iteration. During the update step,

the current observations are used to re�ne the current

estimate and recompute the covariance. During the

propagate step, the state and covariance of the system

at the next time step are calculated using the system's

equations. The process then iteratively repeats, alter-

nating between the update and the propagate steps.

We capture the ball's state into 5 variables: the

ball's x and y location, the ball's velocities in the x

and y direction and a friction parameter (�k) for the

surface.

These variables are related via the following set of

non-linear di�erence equations:

2
66664

xk+1

yk+1

_xk+1
_yk+1
�k+1

3
77775 =

2
66664

xk + _xk ��t

yk + _yk ��t

_xk � �k
_yk � �k
�k

3
77775

The above equations model the ball with simple

Newtonian dynamics. �k is a friction term which dis-

counts the velocity at each time step. �t is the time-

step size.

The prediction equations are:

xk+n = xk + _xk ��t � �kn

yk+n = yk + _yk ��t ��kn

�kn =

�
1; if �k = 1

(1 � (�k)
n)=(1� �k); otherwise

The prediction equations are derived by solving the

recursive equation obtained by substituting the value

of xk+i where i decreases from n to 1. We are only

interested in the predicted spatial location of the ball

thus we do not explicitly calculate the predicted ve-

locity.

Through a careful adjustment of the �lter param-

eters modelling the system, we were able to achieve

successful tracking and, in particular prediction of the

ball trajectory, even when sharp bounces occur.

Our vision processing approach worked perfectly

during the RoboCup-97 games. We were able to de-

tect and track 11 objects (5 teammates, 5 opponents

and a ball) at 30 frames/s. The prediction provided

by the EKF allowed the goal-keeper to look ahead in

time and predict the best defending position. During

the game, no goals were su�ered due to miscalculation

of the predicted ball position.3

4 Single-Agent Control

In order to be able to successfully collaborate,

agents require robust basic skills. These skills include

the ability to go to a given place on the �eld. The

ability to direct the ball in a given direction, and the

ability to intercept a moving ball are all built on top

of this simple behavior.

The non-holonomic path planning problem has

been addressed by many researchers, e.g., [6, 3]. How-

ever, most of the algorithms deal with static worlds

and generate pre-planned global paths. In the robot

soccer domain, this is not possible for the following

reasons: 1) The domain is inherently dynamic, as

robots move around the �eld; 2) The fast reaction time

(less than 1/150 second for each robot) needed during

a game prohibits the use of computationally expen-

sive algorithms. Furthermore, the robots mechanics

are noisy and possible interference from other robots

occurs (e.g., pushing), making precisely mapped out

paths ine�ective and unnecessary.

We devised and implemented a reactive controller

for our system, which has the following advantages:

1) It is computationally inexpensive; 2) It by nature

deals with dynamic environments; 3) It recovers from

noisy command execution and possible interferences.

3In RoboCup-97 we scored a total of thirteen goals and only
su�ered one.



A reactive controller also has possible disadvan-

tages: 1) It may get caught in a local path space min-

ima; 2) It may generate sub-optimal paths. However,

the advantage outweighs the disadvantage. To handle

the possibility of failure, a failure recovery routine was

devised.

4.1 Reactive Non-Holonomic Control

The navigational movement control is done via re-

active control. The control rules described below are

non-linear control strategy that smoothly guides the

robot to face the target and maintain a smooth transi-

tion between the rotational and translational velocity

components.

(v; _�) =

�
(� � cos �; � � sin �) if j�j < �

4
or j�j > 3�

4

(0; sgn(�) � �0) otherwise

where v and _� are the desired translational and ro-

tational velocities, respectively, � is the direction of

the target relative to the robot (�� < � < �), �0

is the in place rotational velocity, and � and � are

the base translational and rotational velocities, re-

spectively. The translational and rotational velocities

can be translated to di�erential drive parameters via a

simple, invertible linear transform. This set of control

formulae di�ers from the love vehicle in that it takes

into account the orientation of the robot with respect

to the target and explicitly adds rotational control.

This is illustrated in Figure 4.

Robot

Target

Figure 4: The geometry of the robot control algo-

rithm. � is the direction of the target relative to the

robot.

�

This set of control rules implicitly allows for head-

ing independence, i.e., the control rule allows for both

forward and backward movements, whichever one is

most e�cient to execute.

Figure 5 shows an actual run of the reactive control

algorithmdescribed above. The target point is marked

with a cross.

5 Dynamic Path Generation

The multi-object tracking, the prediction of the

ball's direction and speed, and the e�ective reactive

non-holonomic control for single robot navigation are

of great relevance to the successful performance of

our team of robots [10]. In particular, we developed

Figure 5: Sample trace of the execution of the reactive

control algorithm. The target point is marked with a

cross.

a dynamic path generation algorithm that applies to

highly dynamic environments, such as robotic soccer.

The path planning problem in a dynamic environ-

ment and related problems has been addressed by

many researchers [3, 9]. The requirement that we have

is more strigent in the way that our domain requires

that we must control multiple non-holonomic robots

in a environment with dynamic obstacles and half of

which are adversaries who we cannot control nor know

the behaviour of.

In the robotic soccer �eld, there are always multi-

ple non-static robots between a robot and its target

location. Our robots try to avoid collisions by plan-

ning a path around the other obstacles. Due to the

highly dynamic nature of the environment, our ob-

stacle avoidance algorithm uses closed-loop control by

which the robots continually replan their goal posi-

tions around obstacles. The algorithm consists of an

incremental generation of di�erent possible intermedi-

ate target points. The selection of which intermediate

target point to go to is based on an evaluation of the

obstructness of the paths through it. In a nutshell,

our dynamic path generation algorithm aims at �nd-

ing an intermediate target point that both deviates

as little as possible from its straight line to the �nal

target, and that avoids in the best way the detected

obstacles considered. Figure 6 illustrates a typical sit-

uation where the algorithm chooses to go around the

obstacle through the side that is less crowded with

obstacles.

The algorithm takes into account, i.e., incorporates

lookahead for a pre-speci�ed number of obstacles. In-

termediate target points are generated at increasing

distances from each detected obstructing obstacle to

allow for the robot to go around multiple objects, ac-

cording to its lookahead. The algorithm takes also

into account the walls of the �eld in its generation

and evaluation of the intermediate target points. A

lookahead of a single obstacle actually also produces

good results, as the environment is rather dynamic

and other robots are continually moving around.

Multiple robots have di�erent target locations, they

employ the same algorithm which together plans a set

of path which lead the robots to their targets. How-

ever, even with this algorithm in place, the robots can
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Figure 6: The robot starts by trying to go towards

its �nal target along a straight line. When it comes

across an obstacle within a certain distance of itself, it

aims at an intermediate target, considering several ob-

stacles according to a pre-speci�ed lookahead. Using

reactive control to approach this dynamic environment

of moving obstacles, the robot continually recomputes

its path until it obtains an unobstructed path to the

�nal target.

occasionally get stuck against other robots or against

the wall. Particularly if adversarial robots do not use

obstacle avoidance, collisions are inevitable. When un-

able to move, our robots identify the source of the

problem as the closest obstacle and \unstick" them-

selves by moving away. Once free, normal control re-

sumes.

Figure 7 shows an actual run of the dynamic path

generation algorithm described above. The target

point is shown with a cross. The obstacle is another

robot sitting between the robot's initial location and

the target point.

Figure 7: Execution trace of a robot reaching the tar-

get while avoiding an obstacle (another robot).

6 Conclusion

We presented the reactive visual control algorithm

of our robotic soccer team. The team consists of �ve

non-holonomic robots which need to operate in a dy-

namic and noisy environment. We introduced our as-

sociation and tracking approach that allows for the re-

liable continuous identi�cation of robots that are visu-

ally homogeneous. We also introduce a non-holonomic

control that reactively plans the robot trajectory, by

using translation and rotational motion parameters.

Our team is fully implemented and we illustrated our

algorithms with examples from real runs of the robots.

For a video of our robot team, including its per-

formance in the RoboCup'97 games, please visit our

Homepage in http://www.cs.cmu.edu/~robosoccer.
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