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Abstract

The major themes of our research include the creation

of mobile robot systems that are robust and adaptive

in rapidly changing environments and the view of in-

tegration as a basic research issue. Where reasonable,

we try to use the same representations to allow dif-

ferent components to work more readily together and

to allow better and more natural integration of and

communication between these components. In this pa-

per, we describe our most recent work in integrating

mobile robot exploration, localization, navigation, and

planning through the use of a common representation,

evidence grids.

1 Introduction

A central theme of our research is the view of inte-

gration as a basic research issue, studying the combi-

nation of di�erent, complementary capabilities. One

principle that allows integration is the use of uni-

fying representations. Where reasonable, we try to

use the same representations to allow di�erent com-

ponents to work more readily together and to allow

better and more natural integration of and commu-

nication between these components. In the work re-

ported here, the unifying representation is the evidence

grid, a probabilistic metric map. In this paper, we

describe how using evidence grids as a unifying repre-

sentation not only allows for better integration across

techniques, but also allows reuse of data in learning

and adaptation.

We have developed and integrated techniques for

autonomous exploration, map building, and continu-

ous self-localization. Further, we have integrated these

techniques with methods for navigation and planning.
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In addition, this integrated system includes methods

for adapting maps to allow for robust navigation in

dynamic environments. As a result, a robot can enter

an unknown environment, map it while remaining con-

�dent of its position, and robustly plan and navigate

within the environment in real time.

In the next section, we describe the common repre-

sentation we use for integrating the various techniques.

In Section 3, we review our previous results in local-

ization and exploration, along with our integration of

these techniques and mechanisms to make them adap-

tive to changes in the environment. In Sections 4 and

5 we introduce the new components for reactive navi-

gation and planning, and show how they integrate into

the system using our representation. In the remaining

sections, we describe experiments to verify that the

resulting system works robustly and repeatably, and

present the results of these experiments.

2 Unifying Representation

We use evidence grids [7] as our spatial representa-

tion. An evidence grid is a probabilistic representation

which uses Cartesian grid cells to store evidence that

the corresponding region in space is occupied. Evi-

dence grids have the advantage of being able to fuse

information from di�erent types of sensors. To update

an evidence grid with new sensor readings, the sensor

readings are interpreted with respect to a sensor model

that maps the sensor datum at a given pose to its e�ect

on each cell within the evidence grid 1 The interpre-

tation is then used to update the evidence in the grid

cells using a probabilistic update rule. Evidence grids

have been created that use di�erent updating meth-

ods, most notably, Bayesian [7], and Dempster-Shafer

[4]. In the results reported here, Bayesian updating is

used.

1These sensor models may be learned or may be explicitly

modeled. Our results use a simple, untuned, explicit model.
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In this study, we use sonar sensors in combination

with a planar structured light range�nder. In order to

reduce the e�ect of specular re
ections, we have de-

veloped a technique we call laser-limited sonar. If the

laser returns a range reading less than the sonar read-

ing, we update the evidence grid as if the sonar had

returned the range indicated by the laser, in addition

to marking the cells actually returned by the laser as

occupied.

We create two types of representations with the ev-

idence grids: short-term perception maps, and long-

term metric maps. The short-term maps store very

recent sensor data that does not contain signi�cant

odometry error, and these maps can be used for ob-

stacle avoidance and for localization. The long-term

maps are used to represent the environment over time,

and can be used for navigation and path-planning.

3 Previous Results in Explo-

ration and Localization

3.1 Learning Where You Are

Evidence grids provide a uniform representation for

fusing temporally and spatially distinct sensor read-

ings. However, the use of evidence grids requires that

the robot be localized within its environment. Due to

odometric drift and non-systematic errors such as slip-

page and uneven 
oors, odometry errors typically ac-

cumulate over time making localization estimates de-

grade. This can introduce signi�cant errors into evi-

dence grids as they are built. We have addressed this

problem by developing a method for continuous local-

ization, in which the robot corrects its position esti-

mates incrementally and on the 
y [9].

registration

mature map

long-term map

window of odometry error

new map

x,y,theta offset to
correct odometry

time

short-term maps

map adaptation
mechanism

(see section 3.4)

sensor data

Figure 1: Continuous Localization

Continuous localization builds short-term percep-

tion maps of the robot's local environment. These

maps typically contain very small amounts of error,

and are used to locate the robot within a global, long-

term map via a registration process. (In the next sec-

tion we will describe how these long-term maps are

created.) The results from this process are used to

correct the robot's odometry.

Fig. 1 shows the process of continuous localization.

The robot builds a continuous series of short-term per-

ception maps of its immediate environment, each of

which is of brief duration and contains only a small

amount of dead reckoning error. After several time in-

tervals, the oldest (most \mature") short-term map is

used to position the robot within the long-term map

by registering the two maps.

The registration process consists of sampling the

possible poses within a small area around the robot's

current estimated pose. For each tested pose, the ma-

ture short-term map is rotated and translated by the

di�erence in pose (the o�set) and a match score is cal-

culated based on agreement between the cell values of

the short-term map and the long-term map, summed

across all cells. The match scores for all tested poses

are then used to determine the o�set that is likely to

have the highest match score. This o�set is applied

to the robot's odometry, placing it at the pose which

causes its local perceptions to best match the long-

term map. After the registration takes place the most

mature map is discarded, and a new short-term per-

ception map is created. See [2] and [9] for more details,

experimental results, and comparisons with other tech-

niques.

3.2 Learning New Environments

In order for mobile robots to operate in unknown en-

vironments, they need the ability to explore and build

maps that can be used for navigation. We have devel-

oped an exploration strategy based on the concept of

frontiers, regions on the boundary between open space

and unexplored space. When a robot moves to a fron-

tier, it can see into unexplored space and add the new

information to its map. As a result, the mapped ter-

ritory expands, pushing back the boundary between

the known and the unknown. By moving to successive

frontiers, the robot can constantly increase its knowl-

edge of the world. We call this strategy frontier-based

exploration[11].

A process analogous to edge detection and region ex-

traction in computer vision is used to �nd the bound-

aries between open space and unknown space in the

evidence grid. Any open cell adjacent to an unknown
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(a) evidence grid (b) frontier edge 
      segments

(c) frontier regions

Figure 2: Frontier detection

cell is labeled a frontier edge cell. Adjacent edge cells

are grouped into frontier regions. Any frontier region

above a certain minimum size (roughly the size of the

robot) is considered a frontier. Fig.2a shows an evi-

dence grid built by a real robot in a hallway adjacent

to two open doors. Fig.2b shows the frontier edge

segments detected in the grid. Fig.2c shows the re-

gions that are larger than the minimum frontier size.

The centroid of each region is marked by crosshairs.

Frontier 0 and frontier 1 correspond to open doorways,

while frontier 2 is the unexplored hallway.

Once frontiers have been detected within a particu-

lar evidence grid, the robot attempts to navigate to the

nearest accessible, unvisited frontier. When the robot

reaches its destination (or if the navigation routine de-

termines that the robot cannot get to the frontier), it

performs a sensor sweep using laser-limited sonar, and

adds the new information to the evidence grid. The

robot then detects frontiers in the updated grid, and

navigates to the nearest remaining accessible, unvis-

ited frontier.

We have demonstrated that frontier-based explo-

ration can successfully map real-world o�ce environ-

ments [11], and that this technique scales well for use

in multi-robot environments [12]. In relatively small

environments, such as a single o�ce, frontier-based

exploration was capable of mapping accurately using

dead reckoning for position estimation. However, for

larger environments, dead reckoning errors would gen-

erate large errors in the generated maps. In the next

section, we show how we integrated continuous local-

ization and frontier-based exploration.

3.3 Integrated Exploration and Local-

ization

Frontier-based exploration provides a way to explore

and map an unknown environment, given that a robot

knows its own location at all times. Continuous lo-

calization provides a way for a robot to maintain an

accurate estimate of its own position, as long as the

environment is mapped in advance. The question of

how to combine exploration with localization raises a

"chicken-and-egg" problem: the robot needs to know

its position in order to build a map, and the robot

needs a map in order to determine its position. By

integrating continuous localization and frontier-based

exploration, we can solve this problem, allowing the

robot to explore and build a map while maintaining

an accurate estimate of its position [13].

This works because the exploration strategy will

only take the robot as far as the edge of its \known

world," such that about half of its sensors can still

see the old, known environment, which can be used

to localize, while its other sensors are building up the

map in the unknown environment. Frontier-based ex-

ploration and continuous localization run in parallel.

Whenever the robot arrives at a new frontier, it adds

to the map of the environment and passes this map to

continuous localization. Continuous localization uses

this map of the known world as its long-term map.

As the robot navigates to the next frontier, continu-

ous localization constructs short-term maps based on

the robot's recent perceptions, and compares them to

the long-term map to correct the robot's position es-

timate. When the robot arrives at the new frontier,

its position estimate will be accurate, and new sensor

information will be integrated at the correct location

within the map.

While other systems have been developed for mo-

bile robot exploration, they have been limited to con-

strained environments, e.g. where all walls are ei-

ther parallel or perpendicular to each other [5], [10]

or where the entire environment can be explored us-

ing wall-following [6]. Our system di�ers in being able

to explore unstructured environments where walls and

obstacles may be in any orientation.

3.4 Dynamic Environments: Adaptive

Long-Term Maps

We are also interested in explicitly modeling changes

that occur in the world after the robot has �nished ex-

ploration. This is useful for learning and representing

changes in the environment. We have extended the

continuous localization algorithm to allow the long-
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(a) native representation (b) paths using long term map (c) paths after adaptation

Figure 3: Paths generated by Trulla

term map to be updated with recent sensor data from

the short-term perception maps, making the long-term

map adaptive to the environment [2]. After the most

mature short-term map is used to correct the robot's

dead reckoning, the odometry correction from the con-

tinuous localization process is also applied to the short-

term perception map, and then its cells are combined

with the corresponding cells of the long-term map us-

ing Bayesian updating (dashed lines in Fig. 1). The

cells are weighted by a learning rate that controls the

e�ect the short-term map has on the long-term map.

Previous results demonstrated that this allows the

robot to recognize and respond to changes in the envi-

ronment without introducing excessive errors in odom-

etry [2]. In the next section we will describe how this

capability can be used in conjunction with planning to

allow adaptation to changing environments.

4 Planning: Trulla

While previous versions of our system used a simple

path planner, we have extended our system to use

Trulla, a propagation-based path planner [3]. Trulla

uses a navigability grid to describe which areas in the

environment are navigable (considering 
oor proper-

ties, obstacles, etc). In order to integrate Trulla into

our system, we note that Trulla's notion of a naviga-

bility grid is similar to our long-term metric map.

Trulla works as follows: beginning from the cell con-

taining the goal, the neighboring cells are explored

outward, and each is assigned its own subgoal. Each

newly tested cell is assigned the closest subgoal of its

already-tested neighbors, if that subgoal is visible from

the new cell. If none of the neighbors' subgoals are

visible, then the new cell lies around the corner of an

obstacle, and the neighbor with the closest subgoal is

itself assigned as the subgoal of the new cell. In this

manner, the shortest paths to the goal are propagated

out to all cells. Since each cell can only point to a

closer subgoal, the paths that Trulla produces do not

su�er from local minima. Once the subgoals are deter-

mined, each cell is assigned the direction to its subgoal,

resulting in a �eld of vectors that point in the direc-

tion of the shortest path to the goal. See [3] for more

details on Trulla.

We have replaced Trulla's navigability grid with

our long-term map { cell occupancy probabilities are

mapped to navigability values. As our long-term map

adapts to changes in the environment, as described

in Section 3.4, Trulla can update its paths to re
ect

the robot's current knowledge about the world. Trulla

is capable of replanning quickly, and we have reached

speeds in excess of one hertz.

Fig. 3a shows an example of a native Trulla navi-

gability grid and the vectors to get from any grid cell

to the goal, located in the upper, left-hand corner.

Fig. 3b shows the the same area as represented by the

long-term map. Fig. 3c shows the vectors produced

for the same goal after a change has occured to the en-

vironment and the long-term map has been updated

by continuous localization.

Although the long-term map can adapt to somewhat

rapid and persistent changes in the environment, very

fast changes, such as a person walking through the

room, will not appear in the long-term map. Paths

generated by Trulla will avoid persistent obstacles but

are not su�cient to prevent collisions with transient

obstacles. In related work, Trulla has previously been

combined with reactive navigation to avoid collisions

with unmodeled obstacles [8]. In the work reported

here, Trulla is combined with Vector Field Histogram

navigation to avoid transient obstacles and to perform

reactive navigation.
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5 Reactive Navigation: VFH

Vector Field Histogram (VFH) is a reactive naviga-

tion method which uses recent, local sensor perception

to drive a robot towards a speci�ed goal [1]. It was

chosen over other methods because of its performance

and similar representation of the environment, mak-

ing integration easier. VFH uses the Histogrammic

In-Motion Mapping (HIMM) method to construct an

occupancy grid from sensor readings �ltered through a

simple sensor model. The area of the HIMM grid im-

mediately surrounding the robot is divided into arcs,

and for each arc an object density is computed as the

weighted sum of the occupancy values of the grid cells

contained by the arc. Given a goal, VFH searches for

the contiguous set of arcs with su�ciently low object

density which best matches the direction to the goal.

Because the method models the robot as a point ob-

ject, the free path cannot be blindly followed { the

robot's body would collide with the edges and corners

of obstacles. To compensate for this assumption, the

HIMM grid is also used to compute a potential �eld.

The resulting repulsion vector is added to the vector

from the chosen set of arcs to provide a force away

from nearby obstacles while generally heading in the

chosen direction. The robot is steered in the direction

of this summed heading vector.

polar histogram and potential
field provide best heading

short term evidence grid
with immediate environment

(replaces HIMM map)

sensor 
data

heading

goal

free path
repulsion

Figure 4: Integration of Vector Field Histogram

In our integration, illustrated in Fig. 4, we replace

the HIMM occupancy grid with the short-term per-

ception map produced by continuous localization. The

short-term perception map allows VFH to consider all

sensors, and yields a more consistent and less noisy

picture of the robot's immediate environment.

6 Integrated Architecture

Fig. 5 illustrates the complete architecture. When

heading into an unknown environment, the robot au-

tonomously maps the environment, producing the ini-

tial long-term map 2. Continuous localization runs

in parallel, regularly correcting the odometry of the

robot. While continuous localization maintains the

robot's odometry, it regularly produces the short-term

perception maps and updates the long-term map, both

of which are sent to a separate Map Server process.

The Map Server allows the sensor-fused perceptions of

the immediate environment to be shared among the

various processes, reducing the sensor bottleneck and

replicated sensor data gathering and fusion code.

mapserver

sensor data

control

TrullaVFH

exploration

short term
map

long term
map

Continuous
Localization

Figure 5: Architecture of integrated system

The user (or possibly some other high-level process)

speci�es a navigation goal to Trulla, which consults the

Map Server for the current long-term map and com-

putes the vector �eld describing the best path from

each cell to the goal. Trulla sends the vector �eld

to VFH, which uses the robot's current position to

index the vector �eld and get the direction to the

goal. VFH then retrieves the short-term map from

the Map Server, computes the object density and po-

tential �eld, and steers the robot. VFH repeats this

seqeunce until the goal is reached.

While VFH is steering the robot, continuous lo-

calization continues to correct odometry and produce

short-term and adapted long-term maps. When a new

long-term map is available Trulla replans and sends

the new vector �eld to VFH. When new vector �elds

or a new short-term map is available, VFH uses them

to reactive navigate along the current path to the goal.

2We are currently extending the system to recognize previ-

ously explored environments in which case the map is simply

retrieved.
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7 Experiment Design

To demonstrate the capability of our integrated system

to plan and navigate reliably in environments with un-

expected changes, we conducted four experiments with

a Nomad200 mobile robot. All four experiments used

an environment characterized by a wall between two

rooms with one or two passages in which the robot

could move between rooms. The robot was required

to navigate from one room to the other starting with

a long-term map learned through exploration. One of

the passages was then changed (blocked or unblocked),

requiring continuous localization to adapt the map and

Trulla to replan accordingly, with VFH providing re-

active navigation.

(a) both passages open (b) left passage blocked

Figure 6: Initial room maps

8 Results

In the �rst experiment, the system was given the long-

term map shown in Fig. 6a, with both passages open.

However, the left passage was physically blocked as

shown in Fig. 6b. This was the "unexpected blockage"

con�guration. In the second experiment, the robot was

given the long-term map from Fig. 6b, which showed

the left passage blocked, but the environment was ac-

tually con�gured as shown in Fig. 6a, with both pas-

sages open. This was the "unexpected opening" con-

�guration.

Each experiment was repeated using learning rates

of 0.1 and 0.5. Ten runs were performed for each ex-

periment, with varying start and goal locations cho-

sen near the left side of the environment to ensure the

robot would have an opportunity to sense the changes.

We expected that the higher learning rate would

yield faster adaptation and replanning and more fuzzi-

ness or blurring around the edges of the map, while

the lower learning rate would take longer to adapt but

cause less blurring of the map edges. The match of the

left passage area of the adapted map with the a priori

map for the actual con�guration (how well it learned

the change) was expected to be roughly the same with

either learning rate.

For the unexpected blockage experiment, the robot,

as expected, planned a path through the left opening,

which its map indicated was open. Approaching the

blockage, VFH detected and tried to navigate around

the blockage. Continuous localization accumulated ev-

idence of the blockage and updated the long term map.

When the long-term map su�ciently represented the

blockage, Trulla replanned its next path through the

right passage, which VFH then followed to the goal.

The run ended when the robot reached the goal. For

the unexpected opening experiment, the robot planned

a path through the right passage according to its map,

unaware of the shortcut. As the robot passed by the

closer opening on its way to the planned passage, sen-

sor readings showing that the left passage was in fact

open were obtained as chance permitted, and the long-

term map updated. After one or more traversals past

the opening, the long-term map indicated the left pas-

sage was open and Trulla planned a path through it

as the shorter route.

In both the unexpected blockage and unexpected

opening experiments, the runs continued until the

robot actually traversed the unexpected opening. In

the two unexpected blockage experiments, the change

is considered learned when the planned paths change

enough to cause the robot to follow a path through

the right passage, even if the left passage is not com-

pletely blocked o� in the long-term map. In the two

unexpected opening experiments, the change is consid-

ered learned when Trulla can �rst plan a path through

the opening in the current direction of travel which has

a signi�cant e�ect on the overall vector �eld, even if

the robot's current position at that time causes it to

instead follow a path through the right passage.

All runs were completed without any collisions.

During one run of the unexpected opening experiment

with learning rate 0.1, the robot's odometry was cor-

rupted (due to a communication network error) and

the robot was unable to complete the run. All results

for that experiment are based on the nine successful

runs.

Fig. 7 shows the e�ectiveness of learning in terms

of the match between the learned maps and the actual

environment con�guration as represented by the ini-

tial maps. Values shown are the percentage of cells in

agreement { occupied, empty, or unkown. The average

time to learn the change in the environment (as de�ned

above) and the average error in the robot's pose (peri-
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(b) unexpected blockage, rate 0.5
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(c) unexpected opening, rate 0.1
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(d) unexpected opening, rate 0.5

Figure 7: E�ect of learning on long-term maps

odically measured during each run) are shown in Table

1.

The lower set of lines in each graph illustrates the

percentage of matching cells in the local area around

the left passage between the adapted map and the ini-

tial long-term map which included the change. Ini-

tially there is a low match because the robot started

with a map that did not match the environment, but

the match improves over time as the long-term map

adapts to the true state of the environment. Although

the match score would ideally rise to 100 percent, it

does not because of blurring and incomplete learning.

The blockage is incompletely learned because the robot

can only see the front until it replans through the al-

ternate opening and passes to the rear of the blockage.

The upper set of lines in each graph shows the match

between the remainder of the adapted map and the

initial long-term map. Before learning has had any ef-

fect the match is perfect, but over time the edges blur

from the inaccuracies in pose.

As shown in 1, for a given learning rate, learning

the blocked passage case was faster than learning in

the unexpected opening case because the robot could

gather a lot of sensor data while VFH was trying to

navigate the blocked passage prior to the replanning.

Learning that the passage was open took longer be-

cause it was dependent on getting occasional readings

of the area while the robot followed its path through

the other passage.

As expected, the learning rate had a signi�cant ef-

fect on the ability to quickly adapt to changes. A

higher learning rate results in a faster ability to learn

the changes in the environment. In addition, there are

no signi�cant di�erences in the pose error as corrected

by continuous localization.

Learning Rate

0.1 0.5

Unexpected avg time: 123 sec 46 sec

Blockage avg pose error: 10.3 in 10.3 in

Unexpected avg time: 493 sec 120 sec

Opening avg pose error: 7.8 in 6.4 in

Table 1: E�ects of learning rate: summary

By examining the di�erences across the 10 runs for

each of the four experiments, we could examine the
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ability of the system to perform reliable and repeat-

ably. As can be seen within each graph in Fig. 7, the

di�erence among the runs was very small. The shape

of the curves is almost identical, with the main di�er-

ence being in the length of time required to notice the

di�erence.

9 Conclusion

We have created a system where a robot can enter

a previously unknown indoor environment, map that

environment while maintaining accurate position in-

formation, and robustly plan and navigate within that

environment. The system is designed to be adaptive to

rapid changes in the environment. Using a uni�ed rep-

resentation for localization, exploration, reactive navi-

gation and planning components enhanced the ability

to integrate these components, allowing for more e�-

cient data reuse.

Experimental results were presented for the e�ect

of the learning rate on adaptation to changing envi-

ronments, and also to show that the system performs

reliably and repeatable. Work continues on a method

for storing, identifying and using previously learned

environments, using a topological representation for

the overall world in which the robot works. In addi-

tion, we are enhancing the algorithms to eliminate an

assumption that the robot is on level ground.
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