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I.  INTRODUCTION

Given a group of mobile robots (say, 20 robots) randomly placed on a laboratory

floor, how would one control them to form a geometric pattern such as a circle without

using a centralized coordinator?  This is the formation problem of distributed mobile

robots studied in References 1, 2, 3, 4, and 5.  Distributed robots make motion plans

based on a given task goal of the group and the perceived information about their

environment from onboard sensors without the aid of a centralized coordinator.

Line and circle formation, or formation of any geometric pattern in general, is only

one of many issues of distributed mobile robots [Ref. 8]. Representative work addressing

other issues of distributed mobile robots includes cellular robotics systems  [Ref. 9, 10,

11], and dynamically reconfigurable robotic systems [Ref. 12]. These systems can change

their overall shape depending on the task and the environment by autonomously detaching

and combining cells.

A. PROBLEM STATEMENT

The formation problem of distributed mobile robots has been studied for idealized

mobile robots  [Ref. 1, 2, 3, 5]− robots that are represented by a point, able to move in

any direction, and equipped with range sensors that can determine the position of all other

robots.  Since a robot is a point, two or more robots may occupy the same location. Each

robot has its own coordinate system and there is no common, global coordinate system.

Furthermore, these robots do not communicate with each other. Under these assumptions,

Prof. Suzuki and his colleagues have developed a number of distributed formation

algorithms.  In particular, they developed algorithms for multiple distributed mobile robots

to form circles, simple polygons and line segments; to uniformly distribute robots within a

circle or a convex polygon; and divide them into groups [Ref. 1, 2, 3, 4, 5].

In the previous studies [Ref. 1, 2], even though the number of robots participating

in a given task is assumed to be unknown,  the perfect sensor assumption makes it possible

for each robot to “see” the location of all other robots, and hence to determine the number



2

of robots. Perfect sensors are not occluded by the presence of other robots.  One of the

biggest challenges in implementing existing formation algorithms is the inability to sense

the location (or even just the presence) of all other robots by using sonar or infrared

sensors. Each robot may see a different number of robots at each instant in time.

Based on earlier work, this thesis studies the line, circle and cluster formation of

distributed “physical” mobile robots.  The mobile robots considered in this thesis have

physical dimensions (hence two robots cannot occupy the same spot), and their motions

obey physical laws (hence wheeled mobile robots must satisfy nonholonomic constraints).

Furthermore, robots are assumed to be equipped with range sensors having realistic

physical properties. The Robot Simulator from  Nomadic Technologies, Inc. is used.

Robots in the Simulator realistically simulate the motion behavior and sensor systems of

Nomad 200 mobile robots [Ref. 22, 23]. The Nomad robot has a synchronous drive

mechanism which enables it to translate, steer, and rotate its turret independently.  The

robot is nonholonomically constrained, thus it is not able to instantaneously move in the

lateral direction.  The robot's sensor systems include tactile (bumper) sensors, infrared

sensors, ultrasonic sensors, and laser sensors.  All but the laser sensors are used in the

simulations for this study.

To solve the line formation problem considering physical dimensions of mobile

robots, a new line algorithm (a least-squares line algorithm) is described in this thesis

which is based on least-square line fit computations. Since physical constraints of the

robots are considered, robots are able to see only their vicinity, and two or more robots

cannot occupy the same spot simultaneously. Each robot finds a least square line fit by

using the coordinate information of the visible robots.

The diameter of circles in existing algorithms [Ref. 1, 4, 5] depends on the

maximum sensor ranges. Since sensor ranges are limited, a robot can't see robots on the

other side of a circle if the desired diameter is larger than the maximum sensor ranges. In

this thesis a new algorithm is presented (the merge-then-circle algorithm) to solve this

problem. In this new algorithm each robot relies on position information of the two closest
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robots, and does not use position information of the furthest robot. So robots can form a

circle with a diameter greater than the sensor range limits.

In the previous studies [Ref. 1, 2, 4, 5], formation algorithms of distributed mobile

robots are developed without considering the robot's sensor ranges, but in reality robot's

sensor ranges are limited. In Reference 3, the formation of a single point by robots and

agreement on an x-y coordinate system is examined by assuming that robots have limited

visibility. It is also assumed in Reference 3 that a robot is a point (hence robots can occupy

the same position simultaneously) and does not block the views of others.

If  robots are randomly placed in a large field,  a robot may not see other robots

due to limited sensor ranges. In this thesis, a scenario where robots are randomly

distributed in a large rectangular field is considered. Different from the previous study

[Ref. 3], an alternative method (limited range algorithm) is proposed, which is based on

the fact that the field is rectangular. This new method converges robots to the center of

the field before they execute any formation algorithm.

Different schemes for collision avoidance were examined in References 4, 13, 14,

15, 16, 17, and 18. The method proposed in Reference 4 is discussed in Chapter III. The

strategy proposed in Reference 15 is that if a robot detects another robot on its way, it

stops and waits some fixed period of time.  If a robot is still present, the robot turns left

and proceeds forward.  The method proposed in Reference 16 adds an initial step to the

algorithms from Reference 1 to avoid collisions. Motor schemas  [Ref. 19] is another

method for navigation and collision avoidance.

Motion control and collision avoidance in this thesis are achieved by implementing

the potential field algorithm [Ref. 6, 7].  To each robot of concern,  the presence of other

robots generates a repulsive force which keeps them apart, and the goal position produces

an attractive force.  Because the workspace is assumed to be obstacle-free, the shape of

robots is circular, and the goal position changes as other robots move,  the local minimum

problem of the potential field method is rarely encountered in the simulations.
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B. OUTLINE OF THE THESIS

This thesis has five chapters and four appendices. The remainder of this thesis is

organized as follows: Since the Robot Simulator from Nomadic Technologies, Inc. and the

potential field method are used for simulations, the Nomad 200 mobile robot, its

simulator, and the potential field method are explained in Chapter II. In Chapter III

existing line, circle and point formation algorithms, proposed in References 1, 2, 4, and 5,

are described. In Chapter IV, new algorithms for line (least-square line algorithm), circle

(merge-then-circle algorithm), cluster formations (merge algorithm), and formations with

limited sensor ranges (limited range algorithm) are developed by considering constraints of

the physical robots, and the simulation results are depicted. The conclusion and

recommendation are discussed in Chapter V. The algorithms proposed in Chapter IV are

developed for obstacle-free workspaces. Thus in Chapter V, it is suggested that in future

research, the new algorithms developed in this thesis can be improved by considering

obstacles in the workspace. The source codes of all the algorithms are listed in the

Appendices.
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II.  LITERATURE REVIEW

A. NOMAD 200 MOBILE ROBOT

The Nomad 200 is an integrated mobile robot system designed for research

developments [Ref 22, 23]. The mobile robot has four sensory modules including tactile,

infrared, ultrasonic, and laser systems. It has also on-board computers for sensor and

motor control and for host computer communication. The mobile base keeps track of its

position and orientation through dead-reckoning. The Nomad 200 architecture includes a

software package for the host computer with a graphic interface, and a simulator. The

Nomad 200 system allows one to switch between the simulator and the real robots. In

Figure 1, the distributed architecture of the Nomad 200 system is depicted. Robot

behaviors are written in C, including the UNIX operating system functionality. The whole

architecture runs on a Sun workstation. The various behaviors have been tested both in

simulation and on a Nomad 200 mobile robot. The algorithms described in this thesis have

only been tested using the simulator because we have only one Nomad 200 mobile robot

in our laboratory.

Figure 1. Distributed robotics architecture



6

 1. Mechanical System

The Nomad 200 mobile base is a three servo, three wheel synchronous drive non-

holonomic system with zero gyro-radius.  The three wheels translate together (controlled

by one motor) and rotate together (controlled by a second motor). A third motor controls

the angular position of the turret.  The robot can only translate along the forward and

backward directions  along which the three wheels are aligned (this is referred to as non-

holonomic constraint, similar to that of a car).  The robot has a zero gyro-radius, i.e. the

robot can rotate around its center.

The Nomad 200 has a maximum translational speed of 20 inches per second and a

maximum rotational speed of 60° per second. It has a diameter of 18 inches and a height

of  35 inches.

2. Sensor Systems

The robot's sensor systems include tactile (bumper) sensors, infrared sensors,

ultrasonic sensors, and laser sensors.  All but the laser sensors are used in simulations for

this study.  The tactile system which consists of two bumper rings is used to detect contact

with any object.

The Nomad 200 has a 16 channel reflective intensity based on an infrared ranging

system that provides 360 degree coverage. Each of the 16 sensors are composed of two

LED emitters and a photodiode detector. The range to the object(s) is determined by the

intensity of the light from the emitter reflected back to the detectors from an object. The

infrared sensors are quite accurate at ranges up to 35 inches, but are not reliable at ranges

beyond 35 inches.

The Nomad 200 also has a 16 channel sonar ranging system which can give range

information from 5 inches to 255 inches with 1% accuracy over the entire range. The

sonar system is a time of flight ranging sensor based upon the return time of an acoustic

signal.  The sensors are standard Polaroid transducers with a beam width of 25°. The

circumference of the robot is covered by sixteen sensors.
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The user manuals [Ref. 22, 23] for the Nomad 200 robot state that the maximum

sonar range is 255 inches. However, by changing two parameters (halfcone and overlap)

which are stored in the robot.setup file, users can alter maximum sonar range.  Halfcone

sets half the angular range of the main lobe of the sonar, while overlap sets the minimal

apparent size of a surface to be detected when using the conical model. In the simulations,

to get the best result, halfcone is taken as 125, which means 12.5° (the same as default),

and overlap is set at 0.08 (default is 0.05). Default values only permit a maximum of 62

inches for the sonar range, but by optimizing the values, robots manage to detect objects

out to 206 inches in the simulations.

3. The Robot Simulator

The Nomadic Host Software Development Environment is a full featured object-

based mobile robot software development package for the Nomad 200 mobile robot.  It

consists of two parts: the server and the client. The server performs four functions:

• Host-Robot Interface

• Robot Simulator

• Graphic User Interface

• Client-Server Language User Interface.

The client provides the link between the application program and the server. The Host-

Robot interface allows complete control of the robot from a host computer. The Robot

Simulator runs on the host computer and simulates the robot's basic motion patterns, such

as translation, steering, and turret rotation. It also simulates the five sensor systems, which

are tactile, infrared, sonar, laser, and compass. The simulated robot responds to the same

set of commands as the real robot. The simulator is capable of simulating up to six robots.

That's why the algorithms described in this thesis employ up to six robots in their

simulations. The graphics user interface provides graphic displays for various sensory

information and interfaces between the robot and the robot simulator. The client-server
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language user interface allows users to program in C or Lisp and acts as a client process to

access the server.

The simulator has graphics user-interface windows, which provide a graphic

display for the robot's position and orientation and its various sensor systems. The graphic

environment consists of four main windows: the world window, the robot window, the

short sensors window, and the long sensors window. The world window gives an overall

view of the environment (real or simulated).  The robot window, (one for each robot),

contains information about each individual robot, such as current command executed,

position, orientation, and sensor data history.  There are two windows (the short sensors

window and the long sensors window) attached to each robot window that give more

detailed information about the current sensor readings. Each time any of the functions that

return sensor data is called, the sensor data returned, as well as the current positions of all

robots, are displayed graphically on these windows. Users are allowed to draw maps in the

world window to simulate the environment. The figures that show the simulation results in

the following sections are the snapshots of the world window taken at different time

instants during a simulation.

In order to run the simulator, the executable server program (Nserver), the setup

files for the world (world.setup) and for each robot (robot.setup), as well as the license file

must be in the same directory.  To start the server, one simply executes the Nserver.

Individual setup files can be specified as command line parameters.  If the setup files are

not specified, the server will automatically look for world.setup and robot.setup.  It is

necessary to have a separate setup file for each robot to be created.  The name of each

robot setup file must be specified in the world setup file. The best way to discriminate

between the robots is to set a different color for each robot in its own robot.setup file.

The application program for each robot should run simultaneously as a separate

process, by taking advantage of multitasking capabilities of the UNIX operating system.

This makes debugging very easy and provides the possibility of testing each behavior

independently, as well as the ability to add or remove some robots during simulations.
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B. POTENTIAL FIELD METHOD

A robot in the potential field method is treated as a point represented in

configuration space as a particle under the influence of an artificial potential field U whose

local variations reflect the “structure” of the free space. The potential function can be

defined over free space as the sum of an attractive potential pulling the robot toward the

goal configuration and a repulsive potential pushing the robot away from the obstacles

[Ref. 6].  Motion planning is performed in an iterative fashion.  At each iteration, the

artificial force induced by the potential function at the current configuration is regarded as

the most appropriate direction of motion, and path planning proceeds along this direction

by some increment.

The general idea is that a robot is attracted toward its goal configuration, while

being repulsed by the obstacles.  In this section, this idea is illustrated with the definition

of one possible potential function, in the case where the robot moves freely in W=RN, with

N=2, i.e. C=RN. W denotes the Robot's workspace, R is the set of real numbers, and C

denotes the configuration space of a robot. An element of C is denoted by (q).  A more

detailed discussion can be found in Reference 6.

The field of artificial forces F(q) in C is produced by a differentiable potential

function:

( ) ( )U C R F q U qfree: ,→ = −∇   with:   
& &

 , (1)

where ( )&

∇ U q  denotes the gradient vector of U at q. In C R NN= =( 2 or 3) , we can

write q=(x, y) or (x, y, z), and:
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In order to attract the robot toward its goal configuration while repulsing it from the

obstacles, U is constructed as the sum of two elementary potential functions:

( ) ( ) ( )U q U q U qatt rep= +  ,                                          (3)

where Uatt is the attractive potential associated with the goal configuration qgoal and Urep is

the repulsive potential associated with the C-obstacle region. Uatt is independent of the C-

obstacle region, while Urep is independent of the goal configuration. With these

conventions, 
&

F  is the sum of two vectors:

& & & &

F U F Uatt att rep rep= −∇ = −∇    and     , (4)

which are called the attractive and the repulsive forces, respectively.

1. Attractive Potential

The attractive potential field Uatt  can simply be defined as a parabolic-well, i.e.:

( ) ( )U q qatt goal=
1
2

2ξρ  , (5)

where ξ is a positive scaling factor and ρgoal(q) denotes the Euclidean distance ||q - qgoal||.

The function Uatt is positive or null, and attains its minimum at qgoal, where Uatt(qgoal) = 0.
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The function ρgoal is differentiable everywhere in C. At every configuration q, the attractive

force 
&

Fatt  deriving from Uatt is:

( ) ( )
( ) ( )

( )

& &

&

F q U q

q q

q q

att att

goal goal

goal

= −∇

= − ∇

= − −

ξρ ρ

ξ

 . (6)

The parabolic well demonstrates good stabilizing characteristics. It generates a

force 
&

Fatt  that converges linearly toward 0 when the robot's configuration gets closer to

the goal configuration.  On the other hand, 
&

Fatt  increases with the distance to the goal

configuration and finally tends toward infinity when ρgoal(q) →∞.  Alternatively, Uatt can be

defined as a conic-well, i.e.:

( ) ( )U q qatt goal= ξρ  .            (7)

Then, the attractive force is:

   

( ) ( )
( )

& &

F q q

q q

q q

att goal

goal

goal

= − ∇

= −
−

−

ξ ρ

ξ
 .               (8)

The amplitude of 
&

Fatt (q) is constant over C, except at qgoal, where Uatt is singular.

Since the amplitude of the force does not tend toward 0 when q → qgoal, the conic-well

potential does not have the stabilizing characteristics of the parabolic-well function.

The advantages of both the parabolic and the conic-wells can be combined by

defining the attractive potential as a parabolic-well within a distance “d” from the goal

configuration and a conic-well beyond that distance.  In this case a discontinuity problem

is encountered as plotted in Figure 2(a) when it is implemented by using the above conic-

well definition. The attractive force must be made continuous at transition point, which
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can be achieved simply by multiplying the conic-well attractive potential by “d”.  Then, the

resulting attractive force can be defined as follows, which is plotted in Figure 2(b).

( )
( )

( )
&

F q

q q q q d

d
q q

q q
q q d

att

goal goal

goal

goal

goal

=

− − − ≤

−
−

−
− >















ξ

ξ

if 

if 

 . (9)

Figure 2 plots of attractive force that is defined by combining the attractive

potential as a parabolic-well within a distance “d” from the goal configuration and a conic-

well beyond that distance.  Figure 2(a) illustrates the discontinuity at the transition point,

and (b) illustrates the continuity after multiplying the conic-well attractive potential by “d”.

2. Repulsive Potential

The main idea is to create a potential barrier around the C-obstacle region that

cannot be traversed by the robot. In addition, the repulsive potential should not affect the

motion of the robot when it is sufficiently far away from the C-obstacles.

These constraints can be achieved by defining the repulsive potential function as

follows:

( ) ( ) ( )

( )

U q q
q

q

rep =
−









 ≤

>
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




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



1
2

1 1

0

0

2

0

0

η
ρ ρ

ρ ρ

ρ ρ

if 

if 

      , (10)

where η   is  a positive scaling factor,  ρ(q) denotes the distance from q to the C-obstacle

region CB, i.e.:
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Figure 2. (a) Discontinuity problem, and (b) Continuous attractive force.
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( )ρ q
q CB

q q=
′ ∈

− ′min     , (11)

and  ρ0 is a positive constant called the distance of influence (or cut-off distance) of the C-

obstacle.  The function Urep is positive or null, tends to infinity as q gets closer to the C-

obstacle region, and is null when the distance of the robot's configuration to the C-

obstacle is greater than ρ0.

If CB is a convex region with a piece wise differentiable boundary, ρ is

differentiable everywhere in Cfree.  Then the artificial repulsive force derived from Urep is

defined as follows:
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         if 

 . (12)

Each obstacle detected by any sensor produces a repulsive force. Equation (12)

calculates the repulsive force produced by one obstacle. But in implementation, each sonar

sensor produces a repulsive force when something is detected.

 The resulting repulsive force is the sum of repulsive potential fields created by

each individual sensor contact. Thus, the resulting artificial repulsive force is:

( )( ) ( )( )& &

F total q F qrep rep i
i

=
=
∑

0

15

 , (13)
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where i represents the sensor number. In the Nomad 200 robot, there is one infrared and

one sonar sensor that can scan the same direction. Infrared sensor information is used if

the returned value is within maximum infrared sensor range, and the sonar information is

used otherwise.

In the simulations, total repulsive force is calculated by adding the repulsive forces

which are produced by sensors that detect obstacles at ranges less than ρ0 distance. ρ0 is

empirically determined using simulations. In the least-square line algorithm, it is taken as

20 inches. In the merge algorithm and merge-then-circle algorithm, it is taken as 50 inches.
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III.  DESCRIPTION OF EXISTING ALGORITHMS

In this chapter the existing line, circle and point algorithms, proposed in

References 1, 2, 4, and 5, are described. These algorithms have different assumptions. In

Reference 1, it is assumed that robots cannot determine their absolute positions in the

plane. Also, they don't have a compass to determine absolute directions, and all robots are

identical. In Reference 5, the time that it takes for a robot to move to its new position is

negligibly small and a robot is a “point,” hence two or more robots can occupy the same

position simultaneously. In Reference 4, which is different from References 1 and 5, the

physical dimensions of robots are considered, and they are represented as discs with

diameters of 40 centimeters. It is assumed in Reference 4 that a robot can monitor

positions of other robots and move in any desired direction at any speed not exceeding a

given maximum of 5 cm per second, and robots do not have a common x-y coordinate

system.

In References 1 and 5, collision avoidance is not considered. In Reference 4, a

revised version of Reference 1, the physical dimensions of robots are considered, and a

simple collision avoidance strategy is implemented. The strategy is: if a robot detects

another robot nearby (implemented at 20 cm which is measured between the surfaces of

robots) in the direction of its motion, it swerves to the left minimally, provided that it

successfully finds a direction that is clear of any such robots. If left swerve is impossible,

the robot doesn't move until either its path becomes clear or a suitable left swerve

becomes possible.

A. LINE ALGORITHMS

In References 1 and 4, Prof. Suzuki and Prof. Sugihara proposed an algorithm to

solve the formation of a line segment problem with distributed autonomous mobile robots.

The algorithm depends on two robots that will be endpoints of the line segment. The

following steps explain how the algorithm works:
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• Step 1. Two robots are manually moved to their destination points which are
the endpoints of the line segment.

• Step 2. Then all other robots execute a fillpolygon algorithm which works as
follows. If one of the robots sees all other robots arranged in a wedge whose
apex angle is less than π, the robot moves into the wedge along the bisector of
the apex. If not, the robot moves away from the nearest robot.

In Reference 5, Prof. Suzuki and Prof. Yamashita presented a simple line

algorithm. It is assumed that each robot repeatedly becomes active and inactive (sleep

mode) at unpredictable time instants. Robots do the following when they become active:

• Step 1. Determine the furthest robot Rf and the closest robot Rc.

• Step 2. Calculate the distance d from its current position to the point p that is
the foot of the perpendicular drop from itself to a line passing through Rc and
Rf.

• Step 3. Move min {d, v} towards point p, where v is the maximum distance
robots can move at a time.

B. CIRCLE ALGORITHMS

An algorithm for formation of a circle with a given radius r is proposed by Prof.

Suzuki and Prof. Sugihara in References 1 and 4. For convenience, let robot R be any one

of the distributed robots participating in the task of circle formation. The algorithm works

as follows. Robot R continuously monitors the position of the furthest robot Rf and the

closest robot Rc and moves in real time. In this algorithm, a is the distance between R and

Rf, and ξ is a small positive constant.

• Step 1. Robot R moves toward Rf, if a is greater than 2r.

• Step 2. Robot R moves away from Rf, if a is less than (2r - ξ ).

• Step 3. Robot R moves away from Rc, if  (2r - ξ) ≤ a ≤ 2r.

It is pointed out in References 1 and 4 that robots using this algorithm sometimes

converge into a configuration known as Reuleaux's triangle. Furthermore, in Reference 5 a
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different, better algorithm is proposed which avoids convergence into a Reuleaux triangle

if the number of robots is large. This new circle algorithm works as follows [Ref. 5]. As

before, robot R becomes active and inactive at random points in time. Each time robot R

becomes active, it:

• Step 1. Determines the furthest robot Rf and the closest robot Rc.

• Step 2. Calculates the distance d from its current position to the middle point
pm between Rc and Rf.

• Step 3. Moves a distance of min{d - r, v} towards pm if (d - r) ≥ 0, or a
distance of min{r - d, v} away from pm if (d - r) < 0, where v is the maximum
distance that a robot can move at a time, r is the desired radius of a circle to be
formed.

Both algorithms, described above, do not work when the desired diameter of the

circle is larger than sensor range limits (hence a robot is not able to see robots on the other

side of the circle).

C. POINT ALGORITHMS

The following algorithm, described in Reference 5, forms a point by moving robot

R toward Rf. This algorithm works as follows. Each time robot R becomes active it

calculates the distance a to Rf and moves a distance min{a/b, v} towards Rf, where b is a

constant greater than one and v is the maximum distance R can move each time.

Prof. Suzuki and Prof. Yamashita also proposed another algorithm in Reference 5,

to converge robots towards a point. In this algorithm, robot R calculates the distance d to

the centroid g of robot positions, then it moves a distance min{d/b, v} towards g.

D. SUMMARY

Implementing existing formation algorithms on physical robots is very difficult

because of their assumptions. The existing line algorithm proposed in References 1 and 4

is not a completely autonomous implementation for line formation, because it depends on

two robots which are manually moved to the endpoints of a line segment. The other line
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algorithm, presented in Reference 5, depends on detection of furthest and closest robots.

The circle algorithms, explained in References 1, 4, and 5, cannot be used to form a large

circle whose diameter is larger than sensor range limits of the robots.

Physical robots cannot form a point. In the point algorithms, explained in

Reference 5, robots are considered as dimensionless points and they are capable of

detecting all the other robots in the operation field. In the next chapter, new formation

algorithms are developed for physical robots to solve the problems described in this

chapter.
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IV.  DESCRIPTION OF NEW ALGORITHMS AND  SIMULATION RESULTS

In this chapter new algorithms are developed to solve formation problems of

distributed mobile robots. It is assumed that robots have physical dimensions (in the

simulations robots are represented as disc shapes with radius of ro = 9 inch), so they

cannot occupy the same spot, and their motions obey physical laws (hence wheeled mobile

robots must satisfy nonholonomic constraints). Furthermore, robots don't have common

coordinate systems, and they are identical. The same program is executed by each robot.

In simulations, the potential field method is used for collision avoidance and motion

control. The algorithms are simulated using the Robot Simulator software from Nomadic

Technologies, Inc. The algorithm source codes are listed in the Appendices.

A. LEAST-SQUARE LINE ALGORITHM

The existing line algorithm explained in References 1 and 4 depends on two robots

which are manually moved to their destination points. The line algorithm described in

Reference 5 only utilizes position information of the furthest and closest robots. A new

line algorithm is described in this section. This new algorithm utilizes position information

of all robots detected by each robot.

The basic idea is that, at each iteration, a robot finds the least square line fitting of

all visible robots and moves towards the line. Robots don't have a common coordinate

system. They only have their own coordinate systems to compute the line fitting. It is

noted that at each instant of time, each robot may see a different number of robots and

different map.

Assume that robot R is any one of the distributed robots and that it sees n robots in

its vicinity at the current instant of time. Positions of the visible robots are represented in

the coordinate system of robot R as n pairs of data, (xi , yi), i = 1, 2, 3, ..., n. Note that in

the line fitting computations, coordinate (xo , yo) of robot R is included. The least-square

line fitting of the (n+1) pairs of data can be found by the following standard line equation

[Ref. 20].
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y mx b= + , (14)

where the values of m and b minimize the value of the following function:

( )S mx b yi i= + −∑ 2
. (15)

The values of m and b that accomplish this are determined with the first and second

derivative tests as explained in [Ref. 20]

( )( ) ( )

( ) ( )
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x y n x y

x n x

i i i i
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=
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− +
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1

1
2 2

 , (16)

( )b
n

y m xi i=
+

− ∑∑1

1
, (17)

with all sums running from i = 0 to i = n.

This representation (Equation 14) of lines has a singularity when the resulting line

is parallel to the y-axis. To avoid this singularity, the parametric representation of lines

[Ref. 21] is used to compute the least-square line fitting.

x y rcos sinθ θ+ =  , (18)

where r and θ  are two parameters depicted in Figure 3. The derivation of the following

least-square procedure is from Reference 21. The sum of  the squares of all residuals is:
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Figure 3. Parametric representation of lines using r and θ.

( )S x y ri i= + −∑ cos sinθ θ 2
 , (19)

where the summation goes from 0 to n. The line which best fits the set of data minimizes

S. The two parameters that characterize the best line are computed from:

∂
∂

∂
∂θ

S

r

S
= = 0  . (20)

Differentiating S with respect to r, we have:

( )[ ]∂
∂

θ θS

r
n r x yi i= + − − =∑∑2 1 0cos sin  , (21)

from which we solve r:

( )r
n

x yi i=
+

+∑ ∑1

1
cos sinθ θ  . (22)
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Here r may take any value (positive, negative, or zero). Substituting r into Equation (19)

and differentiating S with respect to θ, we get:

( ) ( )∂
∂θ

µ θ µ θ
S

= + =1 22 2 2 0sin cos  , (23)

where

and             

( ) ( )

( )

µ

µ

1
2 2

2 2

2

1

1

= − +
−
+

= −
+

∑ ∑∑∑

∑∑∑

y x
x y

n

x y
x y

n

i i

i i

i i

i i

            (24)

If we pick θ in such a way that:

( ) ( )sin cos2 2 22 1θ µ θ µ= − =   and    , (25)

it clearly satisfies Equation (23). Therefore θ is calculated from:

( )θ µ µ= −
1

2
2 2 2 1atan ,  . (26)

 After finding θ  and r, the robot is directed to move to point p on the line as shown

in Figure 3.

In the simulations, the potential field method is used for collision avoidance. In the

program, to compute the goal point in the line segment, Equations (16) and (17) are

evaluated. In Equation (16) when m goes to infinity, a problem occurs. This problem is

solved in the simulations by checking the conditions and using the if statements. Because

of this problem, Equations (22) and (26) are developed. The simulation results show the
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program that uses Equations (16) and (17) runs in any distribution of robots. That’s why,

even though Equations (22) and (26) are developed, they are not implemented in the

simulations.

After calculating the goal point, robot R moves to that point because of an

attractive force produced by that point. The movements of robot R also depend on

repulsive forces produced by any object within a distance of 20 inches. Even if there are

other robots at or near point p, robot R is able to squeeze into the line because a repulsive

force causes other robots to move slightly. Robot R finds a new goal point by reason of

utilizing position information of all visible robots. This algorithm doesn't uniformly

distribute the robots in the line, which means that the distances between robots may not be

equal. In the simulations, if robot R detects only one robot nearby (which is the case if it is

the endpoint of the line segment), it positions itself do distance away from the closest

robot, where do stands for the cut-off distance of repulsive forces in the potential field

algorithm (in simulations do is taken to be 20 inches).

Figure 4 shows a simulation result of the algorithm. In Figure 4(a) the initial

distribution of the robots is depicted. As seen in Figure 4(f)  robots formed a line segment

in the plane. Note that the position of the line depends on the initial distribution of the

robots. The source code of the algorithm is in Appendix A.

B. MERGE ALGORITHM

In the previous chapter, existing point algorithms are discussed. As mentioned

before, robots are assumed to be dimensionless points in Reference 5. It is not possible to

form a point using existing algorithms if the physical dimensions of robots are considered.

That's why in this section a new algorithm is described. The new algorithm simply merges

robots together to form a cluster instead of a point.

The algorithm works as follows. Robot R continuously monitors the environment

and moves to the middle point pm between the visible furthest robot Rf and closest robot Rc

by using the potential field method to avoid collisions. Figure 5 shows a schematic

representation of this algorithm. But if robot R sees only one robot, which may be the
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Figure 4. Selected images from a simulation of the least-square line algorithm: (a)
the initial distribution, (b)-(e) intermediate steps, and (f) the final distribution of the
robots.
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Figure 5. Schematic representation of merge algorithm.

situation if the robots are initially distributed in a line segment and R is at one of the

endpoints of the line segment, then robots cannot merge together. To solve this problem,

robot R turns π/3 degree right from Rc and moves to a distance do  from Rc if it detects only

Rc.  If robot R doesn't see any robot around, then it doesn't move. So if robots are initially

distributed in a large field far away from each other, they may not be able to merge

together, or they may form more than one cluster, because the distance between the

clusters or the robots are greater than the sensor range limits.

Figure 6 shows a simulation result of the algorithm from initial distribution to final

stage. In the simulations do is 50 inches. Since the attractive and repulsive forces cancel

each other, robots don't move once they are merged. But if only two robots form a cluster,

they keep moving around themselves. In simulations, even if robots are initially distributed

in a line, they form a cluster by executing this algorithm. Figure 7 shows another

simulation result where robots are initially distributed in a line. The source code of the

algorithm is in Appendix B.
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Figure 6. Selected images from a simulation of the merge algorithm: (a) the initial
distribution, (b)-(c) intermediate steps, and (d) the final distribution of the robots.
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Figure 7. Selected images from a simulation of the merge algorithm: (a) the initial
distribution from a line formation, (b)-(e) intermediate steps, and (f) the final
distribution of the robots.
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C. MERGE-THEN-CIRCLE ALGORITHM

In this section, a new algorithm is presented which allows robots to form a

relatively large circle. Since sonar ranges are limited, a robot will not be able to see robots

on the other side of a circle if the radius r is relatively large. In this new algorithm, each

robot relies on the position information of the two closest robots, and does not use

position information of the furthest robot. In this way, robots are able to form a circle with

a diameter greater than the sensor range limits.

The algorithm is divided into two stages: first converge all robots into a single

cluster by using the merge algorithm and then diverge them from the cluster to form a

circle. The algorithm works as follows:

• Step 1. Robot R executes merge algorithm.

• Step 2. If the speed of robot R is less than some small value (1 inch/sec in the
simulations) for N successive iterations (in simulations N is 20), robot R goes
to sleep. It wakes up after T seconds to get the sensor data to determine the
empty spaces around and sleeps again for another T seconds. T is empirically
determined in simulations.

• Step 3. After waking up, if robot R sees an empty area based on the sensor
data it got between the two sleep periods, it moves a distance r toward the
middle of the empty area and goes back to sleep for another period of T
seconds. If there is no empty space around, i.e., it is surrounded by other
robots, it disregards previous data collected between the two sleep periods. It
searches the surrounding area to look for an empty space. As soon as an empty
space is detected, the robot travels (r + do + ro) toward the center of the empty
space and then sleeps for T seconds.

• Step 4. Let Rc1 and Rc2 be the closest robots to robot R, one on each side of a
line passing through from its position in the merged cluster to its present
position. After waking up, robot R moves toward Rc1 or Rc2 until the distances
to them are equal.

• Step 5. Robot R compares the desired diameter of the circle and the maximum
sensor range (in simulations it is 206 inches). If the desired diameter is less
than maximum sensor range which means robot R is able to detect robots on
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the other side of the circle, then it positions itself r distance away from the
centroid pm of Rf, Rc1 and Rc2. If not, it doesn't move.

In Step 2, robot R goes to sleep after N successive iterations, which happens when

all robots are nearly merged. By waiting T seconds, robot R ensures all robots are merged.

Taking the position information of robots between two sleep periods makes certain that all

robots collect data before anyone wakes up. The sleep time at the end of Step 3 ensures

that all robots reach their goal positions and form a rough circle. Step 5 utilizes all of the

available information robot R can get to form a circle.

In the simulations, six robots are simulated. It is noted that if the number of robots

is very large, robots will form a big cluster. In this case, at Step 3 if robot R is surrounded

by other robots then it travels (r + L(do+ro)), where L will be empirically determined in the

simulations to optimize the formation of the rough circle.

In the simulations, at Step 3, robot R finds its goal position in its coordinate system

by using the State vectors of the simulator which gives the position information of the

robots in their coordinate systems. By extensive simulations, T is found set to 100

seconds.

Figure 8 shows a simulation of the merge-then-circle algorithm with a desired

radius r = 120 inches. Figure 8(a) is the initial starting distribution. Figure 8(b) and Figure

8(d) are intermediate stages while robots execute merge algorithm. Figure 8(e) is the

merged cluster after Step 2. Figure 8(g) is the rough circle after Step 3. Figure 8(h) is the

final distribution of robots on a circle after Step 4. Robots don't move at Step 5 because

the desired diameter of the circle (2 x 120 inches) is larger than 206 inches. The source

code of the algorithm is in Appendix C.
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Figure 8. Selected images from a simulation of the merge-then-circle algorithm: (a)
the initial distribution, (b)-(g) intermediate steps, and (h) the final distribution of
the robots.
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D. LIMITED RANGE ALGORITHM

In this section, the robots are initially placed at random in a large rectangular field.

The field is so large that a robot may not see other robots due to limited sensor range. The

objective is again to form specific geometric patterns with the distributed mobile robots.

Even though the field is assumed to be rectangular in shape, its size is unknown. For all

robots in the large field to form a circle or a line, one possible method is to have each

robot search for all other robots and then execute a formation algorithm. Here an

alternative method is proposed which is based heavily on the fact that the field is

rectangular. All robots converge to the center of the field before executing any formation

algorithm. This method can be described as follows:

• Step 1. Starting from its initial position, robot R moves straight until it reaches
a wall (an edge of the field). It may need to avoid other robots before reaching
a wall.

• Step 2. Robot R follows the edges of the field in counterclockwise direction
until it has encountered three corners. It records the coordinates of the first and
third corners.

• Step 3. It computes the center point pm of the field, which is the middle point
between the first and third corners.

• Step 4. It converges to pm and goes to sleep for T seconds. The sleep mode is
waiting until all robots converge. Time T is determined by a worst case
analysis.

• Step 5. After waking up, it executes any formation algorithm described in
previous sections.

In the simulations, a simple collision avoidance strategy is adopted (it is called

panic mode). The strategy is that if robot R detects another robot very close to itself (it is

implemented as 20 inches) in the direction of its move, it stops and turns left to avoid

collisions. In Step 2  robot R detects the edge of the field by the following computations.

If  sonars adjacent to sonar Smin return approximately the same or very close values (in

simulations robot R checks if the difference is less than 10 inches or not), then robot R
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considers that sonar Smin gives the distance to the edge of the field, where Smin stands for

one of the sonar sensors which returns the minimum value.

In the simulations, after robot R detects an edge, it follows the edge

counterclockwise using the following behaviors:

• Case 1. If (12 < Smin < 5), then it turns left.

• Case 2. If (4 < Smin < 12), then it turns right.

• Case 3. If (Smin = 12), then it moves straight.

The simulator simulates robots with 16 sonar sensors and they are numbered from

zero to 15 counterclockwise.

During the following edges, robot R counts corners. If it detects that it is getting

closer to an object in the direction of its motion for N successive iterations (in simulations

N is 10), it considers that there is a corner and increases a corner counter. If the distance

to the corner becomes less than 20 inches, then robot R turns left, and continues to follow

the edge. Only the coordinates of first and third corners are recorded. So when robot R

reaches the third corner, it is able to compute the coordinates of the center point pm which

is the middle point of the first and third corners.

In simulations, robot R uses potential field algorithm to converge to the center of

the field while executing Step 4. If robot R detects the center is blocked by another robot,

then it stops within 20 inches of that robot. If center is not blocked then it stops after

arriving at the center. After robots converge at the center, they sleep for a period of T

seconds, which is determined by a worst case analysis. T is the elapsed time between the

first and the last robot arrivals at the center. The following situation is the worst-case,

which makes T a maximum. At the beginning, if robot R is very close to one of the corners

and finds that corner, and at the same time one of the other robots is close to the opposite

corner and cannot detect the edge, then this makes T a maximum. Thus T is calculated by

dividing half of the total circumference of the field by the speed of the robots (in

simulations robot speed is set at a constant 10 inches/sec). By waiting T seconds in Step 4,
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robot R ensures all robots merged to the center of the field. It is noted that in simulations

robots don't get closer while following the edges because the speeds of the robots don't

change.

In this algorithm, robots are considered to have their own coordinate systems. If it

is assumed that robots don't have any coordinate system, then robots must use a different

algorithm to converge to the center of the field. In this new algorithm, instead of recording

the coordinates of the first and third corners at Step 2, robot R measures the distance

between the corners while following the edges and records the distances. In Step 3 it

calculates the distance to pm from the third corner by using the Pythagorean theorem

(Figure 9). Step 4 and Step 5 are the same as before.

Figure 9. Pythagorean theorem for calculating the center of the rectangularly
shaped field.

In simulations, at Step 5, the merge-then-circle algorithm is executed to form a

circle. It is noted that the sleep times in the merge-then-circle algorithm will be the same

as T  in Step 4. Figure 10 depicts a simulation result of this algorithm. Figure 10(a) shows

an initial distribution of robots. In Figure 10(c), robots are following the edges of the field.

Figure 10(f) is a merged cluster at the center of the field. Figure 10(g) is a rough circle

occurring in the intermediate steps of the merge-then circle algorithm. Figure 10(h) is the

final distribution of the robots on a circle after completion of Step 5. The source code of

the algorithm is in Appendix D.
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Figure 10. Selected images of a simulation of the limited range algorithm: (a) the
initial distribution, (b)-(g) intermediate steps, and (h) the final distribution of the
robots.
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V.  CONCLUSION  AND  RECOMMENDATION

In this thesis, formation problems for distributed autonomous mobile robots are

analyzed by considering the physical dimensions of robots. All algorithms explained in this

thesis are simulated using the Nomad 200 Robot Simulator. This simulator represents

robots with their physical constraints. By assuming the physical robots, new algorithms for

the formation of a line, circle and cluster are developed. Formation problems for mobile

robots, distributed in a large rectangular field with limited sensor ranges, are also studied

and simulated. In the simulations, the potential field method is adopted for collision

avoidance.

The simulation results of the new algorithms, described in this thesis, indicate that

these algorithms can be used in various fields currently using centralized control, like

factory automation projects, operations in hazardous environments, planetary and space

explorations, and military applications, such as so called “Battlefield of the Future”

scenarios.

Existing formation algorithms [Ref. 1, 2, 3, 4, 5] do not work well on physical

mobile robots because of their assumptions that robots are dimensionless points and are

equipped with perfect sensors. However physical robots have limited sensor ranges. The

new algorithms described in this thesis are developed for physical robots with

consideration of sensor range limitations.

In this thesis the algorithms are developed for obstacle-free spaces. In future

research these algorithms can be improved by considering obstacles in the operation field.
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APPENDIX A. THE SIMULATION PROGRAM CODE FOR LEAST-SQUARE
LINE ALGORITHM

/***********************************************************
This is a C program used for the simulations to simulate least-square
line algorithm by using potential field method. Developed by Okay
Albayrak. Last Modified in May 1996. This program has one input
argument. Usage <function> <Robot_ID> number.
***********************************************************/

/*** Include Files ***/
#include "Nclient.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/*** Constants ***/
#define TRUE 1
#define FALSE 0
#define PI 3.1415926

/*** Function Prototypes ***/
void GetSensorData(void); /* This function returns sensor data */

void Movement(void);/*This function controls robot motions*/

int  sign(int);

void potential(void); /* This function implements potential field */

/*** Global Variables ***/
long SonarRange[16]; /* array of sonar readings (inches) */

long IRRange[16]; /*array of infrared readings (no units) */

int BumperHit = 0; /* boolean value */

/*the current robot configuration; x, y, steering_angle, turret_angle (x
and y are in tenth of inches, and angles are in tenth of degrees )*/
long robot_config[4];

long goal_config[4]; /*the goal configuration of the robot*/

/* sonar sensor numbers which returns minimum and maximum distances */
int minreturn, maxreturn;

/* minimum and maximum distances returned by the sonar sensors */
long mindist, maxdist;

double xgoal, ygoal; /* coordinates of destination in robot’s coordinate
system */

/* the desired translation and steering velocity in 1/10 inch/sec and
1/10 deg/sec */



40

int tvel, svel;

int Robot_ID; /* represents robot number */

/*** Main Program ***/
main (unsigned int argc, char* argv[])
{

int i;
   int order[16];
   int oldx, oldy;
   Robot_ID = atoi(argv[1]) ;
   printf("argv[1]= %s \n",argv[1]);
   printf("Robot_ID= %d \n",Robot_ID);

/* Enter robot’s number */
    if (argc!=2) {

printf("please enter 1 parameters besides the command\n");
       exit();
   }

/* This version of Nomad Robot 200 simulator can only simulate up
to six robots */

   if ( (Robot_ID<1) || ( Robot_ID>6) ) {
       printf("Robot ID must be between 1 and 6 ");
       exit();
   }

   /* Communication port with robot and host computer */
   SERV_TCP_PORT=7772 ;
   

/* Connect to Nserver. */
   connect_robot(Robot_ID);

/* Initialize Smask and send to robot. Smask is a large array that
controls which data the robot returns back to the server. This
function tells the robot to give us everything. */
init_mask();

/* Configure timeout (given in seconds). This is how long the
robot will keep moving if you become disconnected. Set this low if
there are walls nearby. */
conf_tm(1);

/* Sonar setup: configure the order in which individual sonar
units fire. In this case, fire all units in counter-clockwise
order (units are numbered counter-clockwise starting with the
front sonar as zero). The conf_sn() function takes an integer and
an array of at most 16 integers. If less than 16 units are to be
used, the list must be terminated by a element of value -1. See
the IR setup below for an example of this. The single integer
value passed controls the time delay between units in multiples of
four milliseconds. */
for (i = 0; i < 16; i++)

order[i] = i;
conf_sn(1,order);
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/* Infrared setup: only use the front 8 sensors as a last resort.
The IR sensors are not useful for gauging distances accurately,
and are thus only used to determine the  presence of obstacles
that are missed by the sonar system. */
for (i = 0; i < 16; i++)

    order[i] = i;
   conf_ir(1,order);

   /* Unfortunately, the robot can talk... */
   tk("Let's make a line.");

/* Zero the robot. This aligns the turret and steering angles. The
repositioning junk is neccessary to allow the user to position the
robot. This is needed for real robots. */
/*
oldx = State[34];  /* State vector 34 and 35 give the coordinates
of the robot */

   oldy = State[35];
   zr();
   ws(1,1,1,20);
   place_robot(oldx, oldy, 0, 0);
   */

   /* Main loop. */
   while (!BumperHit)

{
       GetSensorData();
       Movement();
   } /* end of the while statement */

  /* Disconnect. */
   vm(0,0,0);
   disconnect_robot(Robot_ID);

} /* end of the main function */

/* Movement(). This function is responsible for using the sensor data to
direct the robot's motion appropriately. */
void Movement (void)
{
   /* Variables are defined here. */

int i;

int sum = 1; /* This variable is used to find how many robots are
visible */

double x[16], y[16]; /* x and y coordinates of the robots seen by
sonar sensor */

   
double Ex , Ex2, Ey, Exy; /* Variables used to calculate least-
square line fitting */

   
double c0, nc1, c1, distance;

   /* Initialization of the variables */
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Ex = 0.0; /* Used to calculate sum of x coordinates of the visible
robots. */

Ex2 = 0.0; /* Used to calculate sum of squares of x coordinates of
the robot. */

Ey = 0.0; /* Used to calculate sum of x coordinates of the visible
robots. */

   
Exy = 0.0; /* Used to calculate sum of multiplication of  x and y
coordinates. */

/* This loop is for calculating sum, Ex, Ey, Ex2, Exy */
   for (i = 0; i<16 ; i++)

{
     x[i] = 0.0;

     y[i] = 0.0;

if (SonarRange[i] < 255)
{

x[i] = ( (double)(SonarRange[i]) + 8.81) * cos (
(double)(i) * 0.39);

y[i] = ( (double)(SonarRange[i]) + 8.81) * sin (
(double)(i) * 0.39);

sum++; /* calculates the number of visible robots
including itself */

       } /* end of if statement */
       

Ex = Ex + x[i]; /* Calculates sum of x coordinates of the
visible robots. */

Ex2 = Ex2 + (x[i]*x[i]); /* Calculates sum of squares of x
coordinates */

Ey = Ey + y[i]; /* Calculates sum of x coordinates of the
visible robots. */

Exy = Exy+(x[i]*y[i]); /* Calculates sum of multiplication
of  x and y coordinates. */

   } /* end of for loop */

   printf ("sum = %d\n",sum);
   printf ("Ex = %f\n",Ex);
   printf ("Ey = %f\n",Ey);
   printf ("Ex2 = %f\n",Ex2);
   printf ("Exy = %f\n",Exy);

/* Ex or Ey  equals to zero, if there is no visible robots or all
the robots are in the line */

   if ( (fabs(Ex) < 0.01) || (fabs(Ey) < 0.01))
{

       xgoal = 0.0;
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       ygoal = 0.0;

       printf("Ex < 0.01 || Ey < 0.01");

   } /* end of if statement */
   

else
{

/* c0 is the slope of the least-square line fit */
c0 = ( (Ex*Ey)-((double)(sum)*Exy) ) / (((Ex*Ex) -
((double)(sum)*Ex2) );

/* nc1 and c1 calculates the same value which is the y-
intercept of the least square line fit*/

  nc1 = (Ey - (Ex*c0)) / (double)(sum);

c1= ((Ey*Ex2) - (Exy*Ex)) / ( ((double)(sum)*Ex2) - (Ex*Ex)
);

       printf ("c0 = %f\n", c0);
       printf("nc1 = %f\n", nc1);
       printf ("c1 = %f\n", c1);
       

/* xgoal and ygoal are the coordinates in the line segment
*/

       
xgoal = (-c1 * c0) / ((c0*c0) + 1);

       ygoal = (c0*xgoal) + c1;

  }/* end of else statement */

/* If only one robot is detected , then the robot moves to that
robot. Because the robot might be at the endpoint of the line
segment */

   if ( (sum == 2) && (mindist > 25) )
{

xgoal = ( (double)(mindist) + 8.81) *
cos((double)(minreturn) * 0.39);

ygoal = ( (double)(mindist) + 8.81) *
sin((double)(minreturn) * 0.39);

   }

/* robots uses potential field method to control its movements */
   potential() ;

/* The simplest search algorithm; if there isn’t any robot
detected, then the robot makes a big circle to search others. */

   if (mindist==255){
       svel = 50;
       tvel = 100;
   }

/* Set the robot's velocities. The first parameter is the robot's
translational velocity, in tenths of an inch per second. This
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velocity can be between -240 and 240. The second parameter is the
steering velocity, and the third is the turret velocity. The units
of the latter two are tenths of a degree per second, and can be
between -450 and 450. The same value is given for these  two so
that the turret is always facing the direction of motion. */

   vm(tvel,svel,svel);

} /* end  of the function */

/* Read in sensor data and load into arrays. */
void GetSensorData (void)
{
   int i;

   /* Read all sensors and load data into State array. */
 gs();

/* Read State array data and put readings into individual arrays.
*/

   for (i = 0; i < 16; i++)
   {

/* Sonar ranges are given in inches, and can be between 6
and 255, inclusive. */

   SonarRange[i] = State[17+i];

printf("SonarRange[%d] : %d \n", i, SonarRange[i]);

/* IR readings are between 0 and 15, inclusive. This value
is inversely proportional to the light reflected by the
detected object, and is thus proportional to the distance of
the object. Due to the many environmental variables
effecting the reflectance of infrared light, distances
cannot be accurately ascribed to the IR readings. */

   IRRange[i] = State[1+i];
   }

/* The robot configuration parameters (x,y,steering_angle,and
turret_angle) are stored in State[34], State[35], State[36], and
State[37].  */

   for (i = 0; i < 4; i++)
       robot_config[i] = State[34+i];

/* Check for bumper hit. If a bumper is activated, the
corresponding bit in State[33] will be turned on. Since we don't
care which bumper is hit, we thus only need to check if State[33]
is greater than zero. */
if (State[33] > 0) {

    BumperHit = 1;
tk("Ouch.");

    printf("Bumper hit!\n");
    }

/* Calculate which sonar returns minimum distance */
  minreturn = 0;
   for (i = 1 ; i < 16 ; i++)
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{
    if (SonarRange[i] < SonarRange[minreturn])
    minreturn = i;
  }

  mindist = SonarRange[minreturn];

printf("minreturn : %d mindist: %d \n",minreturn,mindist);

/* Calculate which sonar returns maximum distance */
 maxreturn = minreturn ;
  for (i = 0 ; i < 16 ; i++)

{
if ((SonarRange[i] >= SonarRange[maxreturn]) &&
(SonarRange[i]<255))

      maxreturn = i;
   } /* end of for loop */

maxdist = SonarRange[maxreturn];
   

printf("maxreturn : %d maxdist: %d \n", maxreturn,maxdist);

/* Notice the user if there is no contact */
   if (mindist == 255)
      printf("There is no object around");

} /* End of the GetSensorData() function */

/* Sign function. It returns 1 if x is positive, and returns -1
otherwise */
int sign(int x)
{
   return x>0?1:-1;
} /* end of sign function */

/* The potential field method is used for motion control and collision
avoidance */
void potential() {

/* Various constants for computing attractive and repulsive forces
should be  defined here, e.g., */

double rho_0 = 20.0; /* cut-off distance of the repulsive force */
  

double scale = 15.0 ; /* scaling factor for attractive force */
  

double eta = 12000.0; /* repulsive force scaling factor */
  

double d  = 100.0 ; /* saturation in attractive force */
  

double gain_tvel = 0.1; /* translational velocity gain */
  

double gain_svel = 200.0; /* rotational velocity gain */
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int i;

/* attractive and repulsive forces are defined */
  double F_att[2], F_rep[2], F_tol[2] ;
  

double rho_float;
  double distance ;

   printf ("xgoal = %f\n", xgoal);
   printf ("ygoal = %f\n", ygoal);
   

/* the distance between present location and destination is
calculated */

   distance = hypot(xgoal,ygoal) ;
   

printf("distance : %f\n ", distance);
  

/* parabolic-well definition of the attractive force */
   if (distance <= d)

{
     F_att[0] = scale*xgoal ;

     F_att[1] = scale*ygoal ;
  }

/* conic-well definition of attractive force */
else
{

  F_att[0] = scale*d*(xgoal/distance) ;
 F_att[1] = scale*d*(ygoal/distance) ;

  }

/* compute the repulsive force in the robot coordinate */
  F_rep[0] = 0.0; /* repulsive force implied on x-axis */
  F_rep[1] = 0.0; /* repulsive force implied on y-axis */
  for (i = 0; i <= 15; i++)
    {
      rho_float = (double) (SonarRange[i]);
      if (rho_float < rho_0)

{
F_rep[0] += -eta * (1.0/rho_float - 1.0/rho_0) *
cos((double)(i) * 0.392699) / (rho_float);

F_rep[1] += -eta * (1.0/rho_float - 1.0/rho_0) *
sin((double)(i) * 0.392699) / (rho_float);

} /* end of if  statement */
    

} /* end of for loop */

  /* compute the total force in the robot coordinates */
  F_tol[0] = F_att[0] + F_rep[0];
  F_tol[1] = F_att[1] + F_rep[1];

 /* set the translational velocity */
    tvel = (int) (gain_tvel * F_tol[0]);
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 /* set the rotational velocity */
  if (F_tol[0] == 0.0) svel = 0;

else
{

svel = (int)(gain_svel * sin(atan2(F_tol[1],F_tol[0])));

        svel = svel * sign( (int)(F_tol[0]) );
      }

/* limit the translational and rotational velocities */
  if (abs(tvel) > 230)
    tvel = 230 * sign(tvel);

  if (abs(svel) > 450)
    svel = 450 * sign(svel);

} /* end of potential() function */
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APPENDIX B. THE SIMULATION PROGRAM CODE FOR MERGE
ALGORITHM

/***********************************************************
This is a C program used for the simulations of merge algorithm.
Developed Okay Albayrak. Last modified in May 1996. Usage <function>
<Robot_ID>. This program merges the robots to a cluster.
***********************************************************/

/*** Include Files ***/
#include "Nclient.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/*** Constants ***/
#define TRUE 1
#define FALSE 0
#define PI 3.1415926

/*** Function Prototypes ***/
void GetSensorData(void); /* This function returns sensor data */

void Movement(void); /* This function controls robot motions */

int  sign(int); /* This functions returns 1 for positive values and -1
for negative values */

void potential(void); /* This function implements potential field */

/*** Global Variables ***/
long SonarRange[16]; /* array of sonar readings (inches) */

long IRRange[16]; /* array of infrared readings (no units) */

int  BumperHit = 0; /* boolean value */

/*the current robot configuration; x, y, steering_angle, turret_angle (x
and y are in tenth of inches, and angles are in tenth of degrees )*/
long robot_config[4];

long goal_config[4]; /* the goal configuration of the robot */

/* constants for computing attractive and repulsive forces in potential
field*/
double F_att[2], F_rep[2], F_tol[2];

/* sonar sensor numbers which returns minimum and maximum distances */
int minreturn, maxreturn;

/* minimum and maximum distances returned by the sonar sensors */
long mindist, maxdist;
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double xgoal, ygoal; /* coordinates of destination in robot’s coordinate
system */

/* the desired translation and steering velocity in 1/10 inch/sec and
1/10 deg/sec */
int tvel, svel;

int Robot_ID; /* represents robot number */

/*** Main Program ***/
main (unsigned int argc, char* argv[])
{
  int i, index;
  int order[16];
  int oldx, oldy;
  Robot_ID = atoi(argv[1]) ;
  printf("argv[1]= %s \n",argv[1]);
  printf("Robot_ID= %d \n",Robot_ID);

/* Enter robot’s number */
  if (argc!=2) {

printf("please enter 1 parameters besides the command\n");
     

exit();
  }

/* Nomad Robot 200 simulator can only simulate up to six robots */
 if ( (Robot_ID<1) || ( Robot_ID>6) ) {
    printf("Robot ID must be between 1 and 6 ");
    exit();
 }

/* This is the communication port between robot and host server.
*/

 SERV_TCP_PORT=7772;
 

/* Connect to Nserver. */
 connect_robot(Robot_ID);

/* Initialize Smask and send to robot. Smask is a large array that
controls which data the  robot returns back to the server. This
function tells the robot to give us everything. */

 init_mask();

/* Configure timeout (given in seconds). This is how long the
robot will keep moving if you become disconnected. Set this low if
there are walls nearby. */

 conf_tm(1);

/* Sonar setup: configure the order in which individual sonar
units fire. In this case, fire all units in counter-clockwise
order (units are numbered counter-clockwise starting with the
front sonar as zero). The conf_sn() function takes an integer and
an array of at most 16 integers. If less than 16 units are to be
used, the list must be terminated by a element of value -1. See
the IR setup below for an example of this. The single integer
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value passed controls the time delay between units in multiples of
four milliseconds. */

 for (i = 0; i < 16; i++)
     order[i] = i;
 conf_sn(1,order);

/* Infrared setup: only use the front 8 sensors as a last resort.
The IR sensors are not useful for gauging distances accurately,
and are thus only used to determine the presence of obstacles that
are missed by the sonar system. */

 for (i = 0; i < 16; i++)
     order[i] = i;
 conf_ir(1,order);

 /* Unfortunately, the robot can talk... */
 tk("Let's make a cluster.");

/* Zero the robot. This aligns the turret and steering angles. The
repositioning junk is neccessary to allow the user to position the
robot. This is needed for real robots. */

 /*
 oldx = State[34];
 oldy = State[35];
 zr();
 ws(1,1,1,20);
 place_robot(oldx, oldy, 0, 0);

*/

 /* Main loop. */
 while (!BumperHit)
    {
     GetSensorData();
     Movement();
    } /* end of the while statement */

  /* Disconnect. */
vm(0,0,0); /* before disconnecting zero all the velocities */

  
disconnect_robot(Robot_ID);

} /* end of the main function */

/* Movement(). This function is responsible for using the sensor data to
direct the robot's motion appropriately. */
void Movement (void)
{
 /* Variables are defined here. */
 int i;
 double x1, x2, y1, y2 ;

/* Coordinates of the closest robot */
x1 = ( (double)(mindist) + (8.81)) * cos ( (double)(minreturn) *
0.39);
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y1 = ( (double)(mindist) + (8.81)) * sin ( (double)(minreturn) *
0.39);

/* Coordinates of the furthest  visible robot */
x2 = ( (double)(maxdist) + (8.81)) * cos ( (double)(maxreturn) *
0.39);
y2 = ( (double)(maxdist) + (8.81)) * sin ( (double)(maxreturn) *
0.39);

/* Coordinates of the goal points in robot coordinate system */
  xgoal = (x2 + x1)/2.0;
  ygoal = (y2 + y1)/2.0;

/* If initial distribution is a line this will break the line */

if (abs(minreturn - maxreturn) == 1 ) || (abs(minreturn -
maxreturn) == 15) || (minreturn==maxreturn) )
{

if ( abs(mindist-maxdist)<=4 )
{

xgoal = ((double)(mindist)+8.81) * cos(
((double)(minreturn)*0.39) - (60.0 *(PI/180.0)) );

ygoal = ((double)(mindist)+8.81) * sin(
((double)(minreturn)*0.39) - (60.0 *(PI/180.0)) );

}
    }

/* The robot uses potential field method to move to its goal point
*/

 potential() ;

/* The simplest search algorithm; if there isn’t any robot
detected, then the robot makes a big circle to search others. */

 if (mindist==255){
     svel = 50;

     tvel = 100;
     }

/* Set the robot's velocities. The first parameter is the robot's
translational velocity, in tenths of an inch per second. This
velocity can be between -240 and 240. The second parameter is the
steering velocity, and the third is the turret velocity. The units
of the latter two are tenths of a degree per second, and can be
between -450 and 450. The same value is given for these  two so
that the turret is always facing the direction of motion. */
vm(tvel,svel,svel);

} /* end of function */

/* Read in sensor data and load into arrays. */
void GetSensorData (void)
{
  int i;
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/* Read all sensors and load data into State array. */
  gs();

/* Read State array data and put readings into individual arrays.
*/

  for (i = 0; i < 16; i++)
    {

/* Sonar ranges are given in inches, and can be between 6
and 255, inclusive. */

      SonarRange[i] = State[17+i];

printf("SonarRange[%d] : %d\n", i, SonarRange[i]);

/* IR readings are between 0 and 15, inclusive. This value
is inversely proportional to the light reflected by the
detected object, and is thus proportional to the distance of
the object. Due to the many environmental variables
effecting the reflectance of infrared light, distances
cannot be accurately ascribed to the IR readings. */

    IRRange[i] = State[1+i];
    }

/* The robot configuration parameters (x,y,steering_angle,and
turret_angle) are stored in State[34], State[35], State[36], and
State[37].  */

  for (i = 0; i < 4; i++)
    robot_config[i] = State[34+i];

/* Check for bumper hit. If a bumper is activated, the
corresponding bit in State[33] will be turned on. Since we don't
care which bumper is hit, we thus only need to check if State[33]
is greater than zero. */

  if (State[33] > 0)
    {
    BumperHit = 1;
    tk("Ouch.");
    printf("Bumper hit!\n");
    }

/* Calculate which sonar returns minimum distance */
  minreturn = 0;
   for (i = 1 ; i < 16 ; i++) {

    if (SonarRange[i] < SonarRange[minreturn])
      minreturn = i;
  }

mindist = SonarRange[minreturn];
 printf("minreturn:%d mindist: %d\n",minreturn,mindist);

/* Calculate which sonar returns maximum distance */
  maxreturn = minreturn ;
  for (i = 0 ; i < 16 ; i++)

{
if ((SonarRange[i] >= SonarRange[maxreturn]) &&
(SonarRange[i]<255))
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      maxreturn = i;
  }

 maxdist = SonarRange[maxreturn];
   printf("maxreturn:%d maxdist: %d\n",maxreturn,maxdist);

/* Notice the user if there is no contact */
   if (mindist == 255)
     printf("There is no object around");

} /* end of the GetSensorData() function */

/* Sign function.  It returns 1 if x is positive, and returns -1
otherwise */
int sign(int x)
{
  return x>0?1:-1;
} /* end of the sign() function */

/* The potential field method is used for motion control and collision
avoidance */
void potential() {

/* Various constants for computing attractive and repulsive forces
should be defined here, e.g., */

double rho_0 = 50.0; /* cut-off distance of the repulsive force */

double scale = 10.0 ; /* scaling factor for attractive force */
  

double eta = 12000.0; /* repulsive force scaling factor */
  

double d  = 100.0 ; /* saturation in attractive force */
  

double gain_tvel = 0.1; /* translational velocity gain */
  

double gain_svel = 200.0; /* rotational velocity gain */
   

int i;
  

/* attractive and repulsive forces are defined */
  double F_att[2], F_rep[2], F_tol[2] ;
  

double rho_float;
  

double distance ;

   printf ("xgoal = %f\n", xgoal);
   printf ("ygoal = %f\n", ygoal);
   

/* the distance between present location and destination is
calculated */

   distance = hypot(xgoal,ygoal) ;
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printf("distance : %f\n ", distance);

  /* parabolic-well definition of the attractive force */
   if (distance <= d)

{
     F_att[0] = scale*xgoal ;

     F_att[1] = scale*ygoal ;
  }

/* conic-well definition of attractive force */
else
{

  F_att[0] = scale*d*(xgoal/distance) ;
 F_att[1] = scale*d*(ygoal/distance) ;

  }

/* compute the repulsive force in the robot coordinate system */
  F_rep[0] = 0.0;
  F_rep[1] = 0.0;
  for (i = 0; i <= 15; i++)
    {
     rho_float = (double) (SonarRange[i]);
     if (rho_float < rho_0)

{
F_rep[0]+= -eta * (1.0/rho_float - 1.0/rho_0) *
cos((double)(i) * 0.392699)/(rho_float);

F_rep[1]+= -eta * (1.0/rho_float - 1.0/rho_0) *
sin((double)(i) * 0.392699)/(rho_float);

} /* end of if  statement */

} /* end of for loop */

/* compute the total force in the robot coordinates */
  F_tol[0] = F_att[0] + F_rep[0];
  F_tol[1] = F_att[1] + F_rep[1];

 /* set the translational velocity */
    tvel = (int) (gain_tvel * F_tol[0]);

 /* set the rotational velocity */
  if (F_tol[0] == 0.0) svel = 0;

    else
{

svel=(int)(gain_svel*sin (atan2(F_tol[1],F_tol[0])));
        

svel = svel * sign( (int) (F_tol[0]) );
   }

/*limit the translational and rotational velocities */
  if (abs(tvel) > 230)
     tvel = 230 * sign(tvel);
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  if (abs(svel) > 450)
     svel = 450 * sign(svel) ;

} /* end of potential() function */
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APPENDIX C. THE SIMULATION PROGRAM CODE FOR MERGE-THEN-
CIRCLE ALGORITHM

/***********************************************************
This is a C program used for the simulations of merge-then-circle
algorithm. It is developed by Okay Albayrak, and it is last modified in
May 1996. Usage <function> <Robot_ID> <Radius of the Circle in 1/10
inch>. This function needs 2 parameters  first parameter is the robot id
and second one is the desired radius of the circle.
***********************************************************/

/*** Include Files ***/
#include "Nclient.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/*** Constants ***/
#define TRUE 1
#define FALSE 0
#define PI 3.1415926

/*** Function Prototypes ***/
void GetSensorData(void); /* This function returns sensor data */

void Movement(void); /* This function controls robot motions */

int  sign(int); /* This function returns 1 for positive values, -1
otherwise */

void SwichToCircle(void);/*This functions forms a rough circle after all
robots merged*/

void Movement1(void);

void GoCircle(); /* This function makes robots form a homogeneous circle
after they form a rough circle */

void min2max(void);

void potential(void); /* This function implements potential field method
*/

/*** Global Variables ***/
long SonarRange[16]; /* array of sonar readings (inches) */

long IRRange[16]; /* array of infrared readings (no units)*/

int  BumperHit = 0; /* boolean value */

/* the current robot configuration; x, y, steering angle, turret angle.
x and y are in tenth of inches, and angles are in tenth of degrees */
long robot_config[4];
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long goal_config[4];/*the goal configuration of the robot*/

double xgoal, ygoal; /* coordinates of the goal position in robot
coordinate system */

int tvel, svel; /* translation and steering velocities 1/10 inch/sec and
1/10 deg/sec */

int minreturn, maxreturn, secondminreturn ;

long mindist, maxdist, secondmindist ;

double r, R; /* desired radius of the circle */

int Robot_ID; /*Robot ID number can be between one and six*/

long SortedSonarRange[16]; /* This array has the sorted values of
SonarRange[16] */

int SortedSonarReturn[16];

int SleepTime = 100;

/*** Main Program ***/
main (unsigned int argc, char* argv[])
{
  int i, index;

int order[16];
  int oldx, oldy;
  int SumStop = 0;

  Robot_ID = atoi(argv[1]);

 /* r is radius */
 r = (double)(atoi(argv[2])) ;
 R = r;

 printf("argv[1]= %s \n",argv[1]);
 printf("Robot_ID= %d \n",Robot_ID);

 if (argc!=3) {
printf("please enter 2 parameters besides the command\n");

    exit();
  }

  if ( (Robot_ID<1) || ( Robot_ID>6) ) {
    printf("Robot ID must be between 1 and 6 ");
    exit();
  }

/* This is the communication port between robot and host server.
*/

 SERV_TCP_PORT=7772;
 

/* Connect to Nserver. */
 connect_robot(Robot_ID);
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/* Initialize Smask and send to robot. Smask is a large array that
controls which data the  robot returns back to the server. This
function tells the robot to give us everything. */

 init_mask();

/* Configure timeout (given in seconds). This is how long the
robot will keep moving if you become disconnected. Set this low if
there are walls nearby. */

 conf_tm(1);

/* Sonar setup: configure the order in which individual sonar
units fire. In this case, fire all units in counter-clockwise
order (units are numbered counter-clockwise starting with the
front sonar as zero). The conf_sn() function takes an integer and
an array of at most 16 integers. If less than 16 units are to be
used, the list must be terminated by a element of value -1. See
the IR setup below for an example of this. The single integer
value passed controls the time delay between units in multiples of
four milliseconds. */
for (i = 0; i < 16; i++)

       order[i] = i;
 conf_sn(1,order);

/* Infrared setup: only use the front 8 sensors as a last resort.
The IR sensors are not useful for gauging distances accurately,
and are thus only used to determine the presence of obstacles that
are missed by the sonar system. */

 for (i = 0; i < 16; i++)
       order[i] = i;
 conf_ir(1,order);

 /* Unfortunately, the robot can talk... */
 tk("Start the program.");

/* Zero the robot. This aligns the turret and steering angles. The
repositioning junk is neccessary to allow the user to position the
robot. This is needed for real robots. */

 /*
 oldx = State[34];
 oldy = State[35];
 zr();
 ws(1,1,1,20);
 place_robot(oldx, oldy, 0, 0);

*/

  /* Main loop. */
  while (!BumperHit)
    {
      GetSensorData();
      Movement();

if ( (abs(tvel) < 11) && (mindist != 255) )
SumStop++;

printf("Merge->SwitchToCircle SumStop = %d\n",SumStop);
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if (SumStop > 25)
{

      st();
      GetSensorData();
      sleep(SleepTime);
      SwichToCircle();

      } /* end of if statement */

   } /* end of while loop */

  /* Disconnect. */
  vm(0,0,0) ;
  disconnect_robot(Robot_ID);

} /* end of main function */

/* Movement(). This function is responsible for using the sensor data to
direct the robot's motion appropriately. */
void Movement (void)
{
   /* Variables are defined here. */
  int i;

  double x1, x2, y1, y2 ;

/* Coordinates of the closest robot */
x1 = ((double)(mindist)+(8.81)) * cos((double)(minreturn)*0.39);

y1 = ((double)(mindist)+(8.81)) * sin((double)(minreturn)*0.39);

/* Coordinates of the furthest  visible robot */
x2 = ((double)(maxdist)+(8.81)) * cos((double)(maxreturn)*0.39);

  
y2 = ((double)(maxdist)+(8.81)) * sin((double)(maxreturn)*0.39);

/* Coordinates of the goal points in robot coordinate system */
  xgoal = (x2 + x1)/2.0;
  ygoal = (y2 + y1)/2.0;

/* If initial distribution is a line this will help to break the
line */
if (abs(minreturn-maxreturn) == 1 ) || (abs(minreturn - maxreturn)
== 15) || (minreturn==maxreturn) )
{

if ( abs(mindist-maxdist)<=4 )
{

xgoal = ((double)(mindist) + 8.81) *
cos(((double)(minreturn)*0.39) - (60.0 *(PI/180.0)) );

ygoal = ((double)(mindist) + 8.81) *
sin(((double)(minreturn)*0.39) - (60.0 *(PI/180.0)) );

}
  }
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/* The robot uses potential field method to move to its goal point
*/

 potential() ;

/* The simplest search algorithm; if there isn’t any robot
detected, then the robot makes a big circle to search others. */

 if (mindist==255)
{

      svel = 50;
      tvel = 100;
     }

/* Set the robot's velocities. The first parameter is the robot's
translational velocity, in tenths of an inch per second. This
velocity can be between -240 and 240. The second parameter is the
steering velocity, and the third is the turret velocity. The units
of the latter two are tenths of a degree per second, and can be
between -450 and 450. The same value is given for these  two so
that the turret is always facing the direction of motion. */
vm(tvel,svel,svel);

}

/* Read in sensor data and load into arrays. */
void GetSensorData (void)
{
  int i;

  /* Read all sensors and load data into State array. */
  gs();

/* Read State array data and put readings into individual arrays.
*/

  for (i = 0; i < 16; i++)
    {

/* Sonar ranges are given in inches, and can be between 6
and 255, inclusive. */

     SonarRange[i] = State[17+i];
     printf("SonarRange[%d] : %d\n", i, SonarRange[i]);

/* IR readings are between 0 and 15, inclusive. This value
is inversely proportional to the light reflected by the
detected object, and is thus proportional to the distance of
the object. Due to the many environmental variables
effecting the reflectance of infrared light, distances
cannot be accurately ascribed to the IR readings. */
IRRange[i] = State[1+i];

    }
 

/* The robot configuration parameters (x,y,steering_angle,and
turret_angle) are stored in State[34], State[35], State[36], and
State[37].  */
for (i = 0; i < 4; i++)

      robot_config[i] = State[34+i];
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/* Check for bumper hit. If a bumper is activated, the
corresponding bit in State[33] will be turned on. Since we don't
care which bumper is hit, we thus only need to check if State[33]
is greater than zero. */
if (State[33] > 0)

    {
    BumperHit = 1;

tk("Ouch.");
      printf("Bumper hit!\n");
    }

/* Calculate which sonar returns minimum distance */
minreturn = 0;
for (i = 1 ; i < 16 ; i++) {

if (SonarRange[i] < SonarRange[minreturn])
      minreturn = i;
  }

  mindist = SonarRange[minreturn];
  printf("minreturn:%d mindist: %d\n",minreturn,mindist);

/* Calculate which sonar returns maximum distance */
  maxreturn = minreturn ;
  for (i = 0 ; i < 16 ; i++) {

if ((SonarRange[i] >= SonarRange[maxreturn]) &&
(SonarRange[i]<255))

      maxreturn = i;
  }

maxdist = SonarRange[maxreturn];
   printf("maxreturn:%d maxdist: %d\n",maxreturn,maxdist);

/* find the second closest robot */
min2max();

  secondminreturn = SortedSonarReturn[1];
  secondmindist = SortedSonarRange[1] ;

if ((abs(SortedSonarReturn[0]-SortedSonarReturn[1])==1) || (
abs(SortedSonarReturn[0]-SortedSonarReturn[1])==15) )

{
     secondminreturn = SortedSonarReturn[2];

     secondmindist = SortedSonarRange[2] ;

if ( (abs(SortedSonarReturn[0]-SortedSonarReturn[2])==1) ||
(abs(SortedSonarReturn[0]-SortedSonarReturn[2])==15) )
{

          secondminreturn = SortedSonarReturn[3];
          secondmindist = SortedSonarRange[3] ;
       }
   }

/* Notice the user if there is no contact */
   if (mindist == 255)
     printf("There is no object around");
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} /* End of the GetSensorData() function */

/* Sign function.  It returns 1 if x is positive, and returns -1
otherwise */
int sign(int x)
{
  return x>0?1:-1;
}

/* The potential field method is used for motion control and collision
avoidance */
void potential() {

/* Various constants for computing attractive and repulsive forces
should be defined here, e.g., */

  
double rho_0 = 50.0; /* cut-off distance of the repulsive force */

double scale = 10.0 ; /* scaling factor for attractive force */
  

double eta = 12000.0;/*repulsive force scaling factor*/

  double d  = 100.0 ; /*saturation in attractive force */

double gain_tvel = 0.1; /* translational velocity gain */
  

double gain_svel = 200.0;/*rotational velocity gain */
  

int i;

/* attractive and repulsive forces are defined */
  double F_att[2], F_rep[2], F_tol[2] ;
 

double rho_float;
  

double distance ;

   printf ("xgoal = %f\n", xgoal);
   printf ("ygoal = %f\n", ygoal);

/* the distance between present location and destination is
calculated */

   distance = hypot(xgoal,ygoal) ;
   printf("distance : %f\n ", distance);

/* parabolic-well definition of the attractive force */
   if (distance <= d)

{
    F_att[0] = scale*xgoal ;
     F_att[1] = scale*ygoal ;
  }

/* conic-well definition of attractive force */
else
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{
  F_att[0] = scale*d*(xgoal/distance) ;

 F_att[1] = scale*d*(ygoal/distance) ;
  }

/*compute the repulsive force in the robot coordinate*/
F_rep[0] = 0.0;

  F_rep[1] = 0.0;
  for (i = 0; i <= 15; i++)
    {
    rho_float = (double) (SonarRange[i]);
    if (rho_float < rho_0)

{
F_rep[0] += -eta * (1.0/rho_float - 1.0/rho_0) * cos
((double)(i) * 0.392699)/(rho_float);

F_rep[1] += -eta * (1.0/rho_float - 1.0/rho_0) * sin
((double)(i) * 0.392699)/(rho_float);

} /* end of if  statement */

    } /* end of for loop */

  /* compute the total force in the robot coordinates */
  F_tol[0] = F_att[0] + F_rep[0];
  F_tol[1] = F_att[1] + F_rep[1];

 /* set the translational velocity */
      tvel = (int) (gain_tvel * F_tol[0]);

 /* set the rotational velocity */
  if (F_tol[0] == 0.0) svel = 0;

else
{

svel = (int)(gain_svel * sin(atan2(F_tol[1],F_tol[0])));
        

svel = svel * sign((int)(F_tol[0]));
       

}
  

/*limit the translational  and rotational velocities */
  if (abs(tvel) > 230)

     tvel = 230 * sign(tvel);
  

if (abs(svel) > 450)
    svel = 450 * sign(svel) ;

} /* end of potential() function */

/* This function forms a rough circle */
void SwichToCircle(void)
{
   int i;
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   int s, sm, opposite;
   double xrgoal, yrgoal, alpha;
   int SumStop = 0;
   int CutOff = 0;

s = 0;
   sm = 0;
   for (i = 0; i<16; i++)

{
        if (SonarRange[i]==255)

{
            s = s + i;
            sm++;

} /* end of if statement */
    

} /* end of for loop */

/* If  the robot surrendered by other robots then the r distance
of this robot should be larger */

   if ( sm<9 )
r = r + ( (double)(mindist) * 10.0) ;

    
printf("s = %d\n", s);

    printf("sm = %d\n",sm);

   if (mindist != 255)
{

     if (SonarRange[15]==255)
{

         i = 0;
        while(SonarRange[i]==255 )

{
         s = s + 16;
         i++;

} /* end of while loop */
        }
      }

   printf("s = %d\n", s);
   printf("sm = %d\n",sm);

   if (sm == 0)
      opposite = 0;
    else

opposite = s / sm;  /* this gives the direction of the empty
space */

if (opposite == 0) opposite = 16;

/* If there is no empty space available search for it 33 times */
while ( ((SonarRange[(opposite+1)%16] != 255) ||
(SonarRange[(opposite-1)%16] != 255) || (SonarRange[opposite % 16]
!= 255)) && (CutOff < 33) )
{
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     CutOff++;
     printf("CutOff = %d\n",CutOff);
     opposite++;

     GetSensorData();
    }

/*if empty space is not found look for empty direction*/
   while (SonarRange[opposite % 16] != 255)

{
     opposite++;

     GetSensorData();
     printf("Second Chance");

     }

   opposite = opposite % 16;
   printf("opposite = %d\n",opposite);
   printf("r = %f\n",r);

/* calculate the destination point to form a rough circle */
   xrgoal = r * cos( (double)(opposite) * 0.392699);
   yrgoal = r * sin( (double)(opposite) * 0.392699);
   alpha  = (double)(robot_config[2]) * PI/(10.0*180.0);

printf("xrgoal = %f\n",xrgoal);
printf("yrgoal = %f\n",yrgoal) ;
printf("robot_config[0] = %d\n",robot_config[0]);
printf("robot_config[1] = %d\n",robot_config[1]);
printf("robot_config[2] = %d\n",robot_config[2]);

/* following gives the destination points for the robot to form
the rough circle */

goal_config[0] = (cos(alpha) * xrgoal) - (sin(alpha) * yrgoal) +
robot_config[0] ;

goal_config[1] = (sin(alpha) * xrgoal) + (cos(alpha) * yrgoal) +
robot_config[1];

printf("goal_config[0] = %d\n",goal_config[0]);
printf("goal_config[1] = %d\n",goal_config[1]);

/* Main loop. */
  while (!BumperHit)
     {
     GetSensorData();

     Movement1();
     if ( abs(tvel) < 11 )

SumStop++;

printf("SwitchToCircle->GoCircle SumStop = %d\n",SumStop);
        

if(SumStop > 25)
{

          st();
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          sleep(33);
          GoCircle();

}/* end of if statement */
     

} /* end of while loop */

/* Disconnect. */
 vm(0,0,0) ;
 disconnect_robot(Robot_ID);

} /* end of the function */

/* Movement1(). This function is responsible for using the sensor data
to direct the robot's motion appropriately. */
void Movement1 (void)
{
  int i;
  int panic;
  double phi;
  double D_att[2];

/* Make sure we are not about to plow into something; check the
front sonar and infrared sensors. If it looks bad, set panic flag.
The threshold value for IRRangle has no exact physical relevance,
and was empirically determined. */

  panic = FALSE;
  for (i = 12; i <= 15; i++)

if (SonarRange[i] < 8 || IRRange[i] < 10)
panic = TRUE;

  for (i = 0; i <= 4; i++)
if (SonarRange[i] < 8 || IRRange[i] < 10)

panic = TRUE;

  /*attractive force Direction in the world coordinates*/
  D_att[0] = (double)(goal_config[0]-robot_config[0]);
  D_att[1] = (double)(goal_config[1]-robot_config[1]);

/* convert the attractive force Direction into robot coordinates
*/

  phi = ((double)robot_config[2])*PI/(10.0*180.0);
  xgoal =  cos(phi)*D_att[0] + sin(phi)*D_att[1];
  ygoal = -sin(phi)*D_att[0] + cos(phi)*D_att[1];
  potential();
  vm(tvel,svel,svel);
}

/* This function forms a homogeneous circle after a rough circle is
formed. */
void GoCircle(void)
{
  /* Variables are defined here */
   int i;
  double x1, x2, x3, y1, y2, y3;
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  double xM, yM ;
  double teta;
  double dist;

while (!BumperHit)
{

  GetSensorData();

x1 = ((double)(mindist)+8.81)*cos((double)(minreturn)*0.39);
  

y1 = ((double)(mindist)+8.81)*sin((double)(minreturn)*0.39);
  

x2 = ((double)(maxdist)+8.81)*cos((double)(maxreturn)*0.39);

 y2 = ((double)(maxdist)+8.81)*sin((double)(maxreturn)*0.39);

x3 = ((double)(secondmindist) + 8.81) *
cos((double)(secondminreturn) * 0.39);

y3 = ((double)(secondmindist) + 8.81) *
sin((double)(secondminreturn) * 0.39);

/* middle point coordinates of  the centroid of furthest,
closest and second closest robots */

  xM = (x1+x2+x3)/3.0;
  yM = (y1+y2+y3)/3.0;

dist = hypot(xM,yM);  /* distance to the middle point */
  

teta = atan2(yM, xM); /* angle between middle point and the
robot */

  printf("dist = %f\n",dist);
  printf("R = %f\n",(R/10.0));

/* If the furthest robot can be seen, then move r distance
of middle point */

  xgoal = (dist - ((R+100.0)/10.0)) * cos(teta) ;
  ygoal = (dist - ((R+100.0)/10.0)) * sin(teta) ;

/* If  the desired radius is larger than 81 inches, the
robot doesn’t move */
if ( (int)(R/10.0) > 81)
{

xgoal = 0.0;
ygoal = 0.0;

   }

/* If  the distances to the closest and second closest
robots are not equal, move to the closest robot */

 if (abs(secondmindist - mindist) > 8)
{

      xgoal = x3;
      ygoal = y3;
   }
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potential();

 vm(tvel,svel,svel);
   

} /* end of while loop */

} /* end of function */

/* This function returns sorted sonar distances and the sonar numbers
that gives this distances */
void min2max (void)
{

int i, j;
int tmp , tmp1;

for(i=0; i<16; i++)
{

SortedSonarRange[i] = SonarRange[i];
SortedSonarReturn[i] = i;

}

for( i = 0; i<16; i++)
{

for(j = i ; j <16; j++)
{

if (SortedSonarRange[i] > SortedSonarRange[j])
{

tmp = SortedSonarRange[i];
       tmp1 = SortedSonarReturn[i];

SortedSonarRange[i] = SortedSonarRange[j];
     SortedSonarReturn[i] =  SortedSonarReturn[j];

       SortedSonarRange[j] = tmp;
       SortedSonarReturn[j] = tmp1;

     }/* end of if */

   }

  }

} /* end of function */
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APPENDIX D. THE SIMULATION PROGRAM CODE FOR LIMITED RANGE
ALGORITHM

/***********************************************************
This is a C program used for the simulations to simulate limited range
algorithm. This algorithms forms a circle at the center of the field,
even though at initial distribution robots cannot see each other. Usage
is the same as merge-then-circle algorithm. Last modified May 1996.
***********************************************************/

/*** Include Files ***/
#include "Nclient.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/*** Constants ***/
#define TRUE 1
#define FALSE 0
#define PI 3.1415926

/*** Function Prototypes ***/

void GetSensorData(void); /* This function returns sensor data */

void Movement(void); /*This function control robot motions*/

int  sign(int) ; /* This function returns 1 for positive values, -1 for
negative values */

void SwichToCircle(void) ; /* This function forms a rough circle after
robots merged */

void Movement1(void);

void GoCircle(); /* This function forms a homogeneous circle after
robots formed a rough circle */

void min2max(void);/*This function sorts the sonar returns*/

void GoCenter(void); /* This function merges robots at the center of the
rectangular shaped field */

void potential(void); /* Potential field method */

void Converge(void);

/*** Global Variables ***/
long SonarRange[16]; /* array of sonar readings (inches) */
long IRRange[16]; /* array of infrared readings (no units)*/
double fused_range[16];  /* fused range data */
int  BumperHit = 0; /* boolean value */
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long robot_config[4]; /* the current robot configuration; x, y,
steering_angle, turret_angle x and y are in tenth of inches, and angles
are in tenth of degrees */

long goal_config[4];/* the goal configuration of the robot*/

long SortedSonarRange[16]; /* sorted values of SonarRange[16] */

int SortedSonarReturn[16];

double xcorner1, ycorner1, xcorner2, ycorner2;
double xcorner3, ycorner3;
int minreturn, maxreturn, secondminreturn;
long mindist, maxdist, secondmindist;
double xgoal, ygoal;

int tvel, svel; /*desired translation and steering velocity in 1/10
inch/sec and deg/sec */

double side1, side2;
int Robot_ID;
double r, R;
int SleepTime;
int count = 0;
int corner = 0;
int CloseCor = 0;

/*** Main Program ***/
main (unsigned int argc, char* argv[])
{
  int i, index;
  int order[16];
  int oldx, oldy;

  Robot_ID = atoi(argv[1]);

  /* r is desired radius of the circle */
  r = (double)(atoi(argv[2]));
  R = r;

  printf("argv[1]= %s \n",argv[1]);
  printf("Robot_ID= %d \n",Robot_ID);

  if (argc!=3)
 {

printf("please enter 2 parameters besides the command\n");
     exit();
   }

   if ((Robot_ID<1) || (Robot_ID>6))
{

        printf("Robot ID must be between 1 and 6 ");
        exit();
     }
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  /* Communication port between client and server */
  SERV_TCP_PORT=7772 ;

 /* Connect to Nserver */
  connect_robot(Robot_ID);

/* Initialize Smask and send to robot. Smask is a large array that
controls which data the robot returns back to the server. This
function tells the robot to give us everything. */

  init_mask();

/* Configure timeout (given in seconds). This is how long the
robot will keep moving if you become disconnected. Set this low if
there are walls nearby. */

  conf_tm(1);

/* Sonar setup: configure the order in which individual sonar
units fire. In this case, fire all units in counter-clockwise
order (units are numbered counter-clockwise starting with the
front sonar as zero). The conf_sn() function takes an integer and
an array of at most 16 integers. If less than 16 units are to be
used, the list must be terminated by a element of value -1. See
the IR setup below for an example of this. The single integer
value passed controls the time delay between units in multiples of
four milliseconds. */

  for (i = 0; i < 16; i++)
order[i] = i;

  conf_sn(1,order);

/* Infrared setup: only use the front 8 sensors as a last resort.
The IR sensors are not useful for gauging distances accurately,
and are thus only used to determine the presence of obstacles that
are missed by the sonar system. */

  for (i = 0; i < 16; i++)
    order[i] = i;
  conf_ir(1,order);

  /* Unfortunately, the robot can talk... */
  tk("I can’t see anyone, okay let’s go center.");

  /* Get the sensor information. */
  GetSensorData();

  /* Main loop. */
  while (!BumperHit)
    {
    Movement();
    }

  /* Disconnect. */
  vm (0,0,0);
  disconnect_robot(Robot_ID);

}



74

/* Movement(). This function is responsible for using the sensor data to
direct the robot's motion appropriately. */
void Movement (void)
{

double xrobcorner1, yrobcorner1, xrobcorner2, yrobcorner2,
xrobcorner3;
double yrobcorner3 ;

  double alpha1, alpha2, alpha3;
  int i;
  int panic;
  int precorner;
   int preSonarRange0;

preSonarRange0 = SonarRange[0]; /* previous value of  the front
sonar sensor */

   GetSensorData();

/* This procedure checks if the robot get close to any object */
if ( (minreturn == 12) && ( (preSonarRange0-SonarRange[0])>4) &&
(SonarRange[0] < 120) )

CloseCor++;
  

if (SonarRange[0] == 255)
CloseCor = 0;

/* panic mode */
 panic = FALSE;
  for (i = 0; i <= 2; i++)
    if (fused_range[i] < 20) panic = TRUE;
  for (i = 14; i <= 15; i++)
    if (fused_range[i] < 20) panic = TRUE;

  svel = 0;
  tvel = 100;
  precorner = corner;

/* If there is a wall near the robot, then robot follows this wall
*/

if (((SonarRange[(minreturn+15)%16]-
SonarRange[(minreturn+17)%16])<11)&&(mindist < 150))
{

     if ((minreturn == 12) && (CloseCor <= 3))
{

          count++ ;

/* when following the wall state the distance to wall
will be between 33 and 28 inches */

               if (SonarRange[12] > 33)
{

svel = -25 ;
     tvel = 100 ;
     }
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else if (SonarRange[12] < 28)
{

     svel = 25;
     tvel = 100;
     }
             

else
{

svel = 0;
tvel = 100;

}
}

      else if ( (minreturn == 12) && (CloseCor > 3) )
{

          svel = 50;
          tvel = 100;
          

if (count > 7)
{

          corner++ ;
          count = 0;
  }
          }

/* If minreturn is not 12, then turn counterclockwise till
minreturn becomes 12. */

         else
{

          for (i=13; i<=20; i++)
{

if ( (i % 16) == minreturn )
{

svel = (i * 49) - 537;
/*i=13, svel=100; i=20, svel=443 */

tvel = (-4*i) + 152 ;
/*i = 13, tvel=100; i=20,tvel=72 */

                   }
              }
           

for (i=5; i<12; i++)
{

if (i == minreturn)
{

svel = (i*50) - 650;
/*i=5,svel=-400; i=11,svel= -100 */

tvel = 100 ;
                 }
            }
        }
    }

/* the simple collision avoidance strategy. */
if (panic) { tvel = 0; svel = 200;}
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printf("svel = %d \n",svel) ;
printf("tvel = %d \n",tvel) ;
printf("count = %d \n",count);
printf("corner = %d \n",corner);
printf("CloseCor = %d \n",CloseCor);

/* Set the robot's velocities. The first parameter is the robot's
translational velocity, in tenths of an inch per second. This
velocity can be between -240 and 240. The second parameter is the
steering velocity, and the third is the turret velocity. The units
of the latter two are tenths of a degree per second, and can be
between -450 and 450. The same value is given for these two so
that the turret is always facing the direction of motion. */

  vm(tvel,svel,svel);

if ((precorner == 0) && (corner == 1))
{

     xrobcorner1 = (double)(SonarRange[0]) * 10.0;
     yrobcorner1 = -(double)(mindist) * 10.0;

alpha1 =  (double)(robot_config[2]) * PI/(10.0*180.0) ;

xcorner1 = (cos(alpha1) * xrobcorner1) - (sin(alpha1) *
yrobcorner1) + (double)(robot_config[0]);

ycorner1 = (sin(alpha1) * xrobcorner1) + (cos(alpha1) *
yrobcorner1) + (double)(robot_config[1]);

}

if ((precorner == 1) && (corner == 2)) {
    xrobcorner2 = (double)(SonarRange[0]) * 10.0;
    yrobcorner2 = -(double)(mindist) * 10.0 ;

alpha2 =  (double)(robot_config[2]) * PI/(10.0*180.0) ;

xcorner2 = (cos(alpha2) * xrobcorner2) - (sin(alpha2) *
yrobcorner2) + (double)(robot_config[0]);

ycorner2 = (sin(alpha2) * xrobcorner2) + (cos(alpha2) *
yrobcorner2) + (double)(robot_config[1]);

      
}

if ((precorner == 2) && (corner == 3))
{

    xrobcorner3 = (double)(SonarRange[0]) * 10.0 ;
    yrobcorner3 = -(double)(mindist) * 10.0 ;

alpha3 =  (double)(robot_config[2]) * PI/(10.0*180.0) ;
   

xcorner3 = (cos(alpha3) * xrobcorner3) - (sin(alpha3) *
yrobcorner3) + (double)(robot_config[0]);

ycorner3 = (sin(alpha3) * xrobcorner3) + (cos(alpha3) *
yrobcorner3) + (double)(robot_config[1]);
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    /* calculate the distance between corners */
side1 = hypot((xcorner1-xcorner2) , (ycorner1-ycorner2));

    
side2 = hypot((xcorner2-xcorner3) , (ycorner2-ycorner3));

    
SleepTime = (int)((side1+side2)/100.0);

    
GoCenter();

    }

}/* end of function */

/* Read in sensor data and load into arrays. */
void GetSensorData (void)
{
  int i;

double corrected_ir[16];  /* correlate IR reading to distance. */
  double corrected_sonar[16];
  double norm[16];

  /* Read all sensors and load data into State array. */
  gs();

/* Read State array data and put readings into individual arrays.
*/

  for (i = 0; i < 16; i++)
    {

/* Sonar ranges are given in inches, and can be between 6
and 255, inclusive. */

     SonarRange[i] = State[17+i];

/* IR readings are between 0 and 15, inclusive. This value
is inversely proportional to the light reflected by the
detected object, and is thus proportional to the distance of
the object. Due to the many environmental variables
effecting the reflectance of infrared light, distances
cannot be accurately ascribed to the IR readings. */

      IRRange[i] = State[1+i];
    }

/* to correlate the IR reading to physical distance. The numbers
are obtained by least square linear regression of measurement
data. */

  for (i = 0; i < 16; i++)
corrected_ir[i] = 2.2508 * ((double) IRRange[i] + 0.8602);

 
for (i = 0; i < 16; i++)

 corrected_sonar[i] = (double) SonarRange[i];
 /* to fuse the sonar and IR data */
 

for (i = 0; i < 16; i++)
 {
      if (IRRange[i] <= 14)

{
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norm[i] = corrected_sonar[i] * corrected_sonar[i] +
corrected_ir[i] * corrected_ir[i];

fused_range[i] = (corrected_sonar[i] *
corrected_sonar[i] * corrected_ir[i]
+ corrected_ir[i] * corrected_ir[i] *
corrected_sonar[i]) / norm[i];

if (fused_range[i] <= 5.0)
fused_range[i] = 0.0;

}

else
{

fused_range[i] = corrected_sonar[i];
}

}

/* The robot configuration parameters (x,y,steering_angle,and
turret_angle) are stored in State[34], State[35], State[36], and
State[37].  */

  for (i = 0; i < 4; i++)
    robot_config[i] = State[34+i];

/* Check for bumper hit. If a bumper is activated, the
corresponding State[33] will be turned on. Since we don't care
which bumper is hit, we thus only need to check if State[33] is
greater zero. */

  if (State[33] > 0)
    {
     BumperHit = 1;
     tk("Ouch.");
     printf("Bumper hit!\n");
    }

  minreturn = 0;
for (i = 1 ; i < 16 ; i++)
{

     if (SonarRange[i] < SonarRange[minreturn])
      minreturn = i;
     }
  mindist = SonarRange[minreturn];

  maxreturn = minreturn ;
  for (i = 0 ; i < 16 ; i++)

{
if ((SonarRange[i] >= SonarRange[maxreturn]) &&
(SonarRange[i]<255))

      maxreturn = i;
  }
   maxdist = SonarRange[maxreturn];

  min2max();
  secondminreturn = SortedSonarReturn[1];
  secondmindist = SortedSonarRange[1] ;
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if ((abs(SortedSonarReturn[0]-SortedSonarReturn[1])==1) || (
abs(SortedSonarReturn[0]-SortedSonarReturn[1])==15) )

{
     secondminreturn = SortedSonarReturn[2];

       secondmindist = SortedSonarRange[2] ;

if ( (abs(SortedSonarReturn[0]-SortedSonarReturn[2])==1) ||
(abs(SortedSonarReturn[0]-SortedSonarReturn[2])==15) )
{

          secondminreturn = SortedSonarReturn[3];
           secondmindist = SortedSonarRange[3] ;
       }
   }

   if (mindist == 255)
      printf("There is no object around");

}

/* Sign function.  It returns 1 if x is positive, and returns -1
otherwise */
int sign(int x)
{
  return x>0?1:-1;
}

void min2max (void)
{

int i, j;
int tmp , tmp1;

for (i=0; i<16; i++)
{

SortedSonarRange[i] = SonarRange[i];
  SortedSonarReturn[i] = i;
  }

for ( i = 0; i<16; i++)
{

for (j = i ; j <16; j++)
{

if (SortedSonarRange[i] > SortedSonarRange[j])
{

       tmp = SortedSonarRange[i];
       tmp1 = SortedSonarReturn[i];

SortedSonarRange[i] = SortedSonarRange[j];

SortedSonarReturn[i] =  SortedSonarReturn[j];
       

SortedSonarRange[j] = tmp;
       SortedSonarReturn[j] = tmp1;
     }
   }
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  }

} /* end of the function */

void GoCenter(void)
{
  int i;
  int panic;
  int SumStop = 0;
  double phi;
  double D_att[2];

/* Make sure we are not about to plow into something; check the
front sonar and infrared sensors. If it looks bad, set panic flag.
The threshold value for IRRangle has no exact physical relevance,
and was empirically determined. */

  panic = FALSE;
  for (i = 0; i <= 2; i++)
    if (fused_range[i] < 20) panic = TRUE;
  for (i = 14; i <= 15; i++)
    if (fused_range[i] < 20) panic = TRUE;

  goal_config[0] = (xcorner1+xcorner3)/2;
  goal_config[1] = (ycorner1+ycorner3)/2;

  while(!BumperHit)
   {
     GetSensorData();

/* attractive force direction in the world coordinates */
D_att[0] = (double)(goal_config[0]-robot_config[0]); /* x
component */

  
D_att[1] = (double)(goal_config[1]-robot_config[1]); /* y
component */

/* convert the atrtractive force direction into robot
coordinates. */

  phi = ((double)robot_config[2])*PI/(10.0*180.0);
   xgoal =  cos(phi)*D_att[0] + sin(phi)*D_att[1];
  ygoal = -sin(phi)*D_att[0] + cos(phi)*D_att[1];

  potential();

  if (panic)
{

    tvel = 0;
   svel = 0;
   }

vm(tvel,svel,svel);

if ( (abs(tvel)<11) && (mindist != 255) )
SumStop++;
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printf("GoCenter->Converge SumStop = %d\n", SumStop);

  if (SumStop > 10)
{

     st();

printf("GoCenter->Converge SleepTime =
%d\n",(SleepTime+100));

     
sleep(SleepTime+100) ;

     
Converge();

     }
 

} /* end of while loop */

}

void SwichToCircle(void)
{

int i;
int s, sm, opposite;
double xrgoal, yrgoal, alpha;
int SumStop = 0;
int CutOff = 0;

s = 0;
sm = 0;

 for (i = 0; i<16; i++) {
   if (SonarRange[i]==255)

{
   s = s + i;
   sm++;

}
   }

if ( sm<9 )  r = r + ( (double)(mindist) * 10.0) ;

printf("s = %d\n", s);
printf(" sm = %d\n",sm);

if (mindist != 255)
{

if (SonarRange[15]==255)
{

   i = 0;
   while(SonarRange[i]==255 )

{
    s = s + 16;
    i++;

}
 }

}
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printf ("s = %d\n", s);
printf("sm = %d\n",sm);

if (sm == 0)
   opposite = 0;

else
opposite = s / sm;

if (opposite == 0) opposite = 16;

while ( ((SonarRange[(opposite+1)%16] != 255) ||
(SonarRange[(opposite-1)%16] != 255) || (SonarRange[opposite % 16]
!= 255)) && (CutOff < 33) )
{

    CutOff++;
     printf("CutOff = %d\n",CutOff);
     opposite++;
     GetSensorData();
     }

while (SonarRange[opposite % 16] != 255)
{

     opposite++;
     GetSensorData();

     printf("Second Chance");
     }

opposite = opposite % 16;

printf("opposite = %d\n",opposite) ;
printf("r = %f\n",r);

xrgoal = r * cos((double)(opposite) * 0.392699);
yrgoal = r * sin((double)(opposite) * 0.392699);
alpha  = (double)(robot_config[2]) * PI/(10.0*180.0);

goal_config[0] = (cos(alpha) * xrgoal) - (sin(alpha) * yrgoal) +
robot_config[0];

goal_config[1] = (sin(alpha) * xrgoal) + (cos(alpha) * yrgoal) +
robot_config[1];

printf("goal_config[0] = %d\n",goal_config[0]);
printf("goal_config[1] = %d\n",goal_config[1]);

  /* Main loop. */
  while (!BumperHit)
    {
     GetSensorData();
     Movement1();

     if ( abs(tvel) < 11 )
SumStop++;

     
printf("SwichToCircle->GoCircle SumStop = %d\n",SumStop);
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      if(SumStop > 5)
{

        st();
printf("SwichToCircle->GoCircle SleepTime =
%d\n",(SleepTime + 100));
sleep(SleepTime + 100);

     GoCircle();
        }
     }

  /* Disconnect. */
 vm(0,0,0) ;
 disconnect_robot(Robot_ID);

}

/* Movement1(). This function is responsible for using the sensor data
to direct the robot's motion appropriately. */
void Movement1 (void)
{
  int i;
    double phi;
  double D_att[2];

  /* attractive force Direction in the world coordinates */
  D_att[0] = (double)(goal_config[0]-robot_config[0]);
  D_att[1] = (double)(goal_config[1]-robot_config[1]);

/* convert the attractive force Direction into robot coordinates
*/

  phi = ((double)robot_config[2])*PI/(10.0*180.0);
    xgoal =  cos(phi)*D_att[0] + sin(phi)*D_att[1];
  ygoal = -sin(phi)*D_att[0] + cos(phi)*D_att[1];

  potential();

  vm(tvel,svel,svel);
}

 void GoCircle(void)
 {
     int i;
  double x1, x2, x3, y1, y2, y3;
  double xM, yM ;
  double teta;
  double dist;

  while (!BumperHit) {
  GetSensorData();

x1 = ((double)(mindist)+8.81)*cos((double)(minreturn)*0.39);

y1 = ((double)(mindist)+8.81)*sin((double)(minreturn)*0.39);



84

x2 = ((double)(maxdist)+8.81)*cos((double)(maxreturn)*0.39);
  

y2 = ((double)(maxdist)+8.81)*sin((double)(maxreturn)*0.39);

x3 = ( (double)(secondmindist) + 8.81) *
cos((double)(secondminreturn) * 0.39);

y3 = ( (double)(secondmindist) + 8.81) *
sin((double)(secondminreturn) * 0.39);

  xM = (x1+x2+x3)/3.0;
  yM = (y1+y2+y3)/3.0;

  dist = hypot(xM,yM);

  teta = atan2(yM, xM);

  printf("dist = %f\n",dist);
  printf("R = %f\n",(R/10.0));

     xgoal = (dist - ((R+100.0)/10.0)) * cos(teta) ;
 ygoal = (dist - ((R+100.0)/10.0)) * sin(teta) ;

 if ( (int)(R/10.0) > 81){
   xgoal = 0.0;

   ygoal = 0.0;
   }

 if (abs(secondmindist - mindist) > 8) {
   xgoal = x3;
   ygoal = y3;

  }

 potential();
  vm(tvel,svel,svel);

}
}

/* This function merges all robots to a cluster and works as the same as
merge algorithm */
void Converge(void)
{
 /* Variables are defined here. */

int i;
  int panic;
  int SumStop = 0;
  double x1, x2, y1, y2 ;

 while (!BumperHit) {
   GetSensorData();

/* Compute the goal points in robot coordinate system */
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x1 = ( (double)(mindist) + (8.81)) * cos (
(double)(minreturn) * 0.39);

  
y1 = ( (double)(mindist) + (8.81)) * sin (
(double)(minreturn) * 0.39);

x2 = ( (double)(maxdist) + (8.81)) * cos (
(double)(maxreturn) * 0.39);

  
y2 = ( (double)(maxdist) + (8.81)) * sin (
(double)(maxreturn) * 0.39);

  xgoal = (x2 + x1)/2;
  ygoal = (y2 + y1)/2;

if ( (abs(minreturn-maxreturn)==1)||(abs(minreturn-
maxreturn)==15)||(minreturn==maxreturn) )
{

if ( abs(mindist-maxdist)<=4 )
{

xgoal = ((double)(mindist)+8.81) * cos(
((double)(minreturn)*0.39)-(60.0 *(PI/180.0)));

ygoal = ((double)(mindist)+8.81) * sin(
((double)(minreturn)*0.39)-(60.0 *(PI/180.0)));

}
       }

  potential();

   if (mindist==255)
{

      svel = 50;
      tvel = 100;
    }

  vm(tvel,svel,svel);
   

if ( (abs(tvel)<11) && (mindist != 255) )
SumStop++;

printf("Converge->SwitchToCircle SumStop = %d\n",SumStop);

if (SumStop > 10)
{

        st() ;
printf("Converge->SwitchToCircle SleepTime =
%d\n",(SleepTime+100));

        GetSensorData();
sleep(SleepTime + 100) ;

        SwichToCircle();
      }

}
}
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/* The potential field method is used for motion control and collision
avoidance */
void potential() {

/* Various constants for computing attractive and repulsive forces
should be defined here, e.g., */

  
double rho_0 = 50.0; /* cut-off distance of the repulsive force */

double scale = 10.0 ; /* scaling factor for attractive force */
  

double eta = 12000.0;/*repulsive force scaling factor*/

  double d  = 100.0 ; /*saturation in attractive force */

double gain_tvel = 0.1; /* translational velocity gain, can be
adjusted */

  
double gain_svel = 200.0;/*rotational velocity gain */

  
int i;

/* attractive and repulsive forces are defined */
  double F_att[2], F_rep[2], F_tol[2] ;
 double rho_float;
  double distance ;

   printf ("xgoal = %f\n", xgoal);
   printf ("ygoal = %f\n", ygoal);

/* the distance between present location and destination is
calculated */

   distance = hypot(xgoal,ygoal);
   printf("distance : %f\n ", distance);

/* parabolic-well definition of the attractive force */
   if (distance <= d)

{
    F_att[0] = scale*xgoal ;

     F_att[1] = scale*ygoal ;
  }

/* conic-well definition of attractive force */
else
{

  F_att[0] = scale*d*(xgoal/distance) ;
 F_att[1] = scale*d*(ygoal/distance) ;

  }

/*compute the repulsive force in the robot coordinate*/
F_rep[0] = 0.0;

  F_rep[1] = 0.0;
  for (i = 0; i <= 15; i++)
    {
    rho_float = (double) (SonarRange[i]);
    if (rho_float < rho_0)
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{
F_rep[0] += -eta * (1.0/rho_float - 1.0/rho_0) * cos
((double)(i) * 0.392699)/(rho_float);

F_rep[1] += -eta * (1.0/rho_float - 1.0/rho_0) * sin
((double)(i) * 0.392699)/(rho_float);

} /* end of if  statement */

    } /* end of for loop */

  /* compute the total force in the robot coordinates */
  F_tol[0] = F_att[0] + F_rep[0];
  F_tol[1] = F_att[1] + F_rep[1];

 /* set the translational velocity */
      tvel = (int) (gain_tvel * F_tol[0]);

 /* set the rotational velocity */
  if (F_tol[0] == 0.0) svel = 0;

else
{

svel = (int) (gain_svel * sin(atan2(F_tol[1],F_tol[0])));
        

svel = svel * sign( (int) (F_tol[0]) );
       

}
  

/*limit the translational  and rotational velocities */
  if (abs(tvel) > 230)
     tvel = 230 * sign(tvel);
  if (abs(svel) > 450)
    svel = 450 * sign(svel) ;

} /* end of potential() function */
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