
EXPERIMENTS IN MULTISENSOR MOBILE ROBOT

LOCALIZATION AND MAP BUILDING 1

Jos�e A. Castellanos, Jos�e M. Mart��nez, Jos�e Neira,

Juan D. Tard�os

Dep. de Inform�atica e Ingenier��a de Sistemas, Universidad de

Zaragoza, c/Mar��a de Luna 3, E-50015 Zaragoza, Spain

email: fjacaste, josemari, jneira, tardosg@posta.unizar.es

Abstract:

This article describes an experiment using a mobile robot equipped with a laser

range �nder and a trinocular vision system, designed to be specially well suited to

test multisensor robot localization and map building strategies. A pair of theodolites

were used to obtain a ground-true solution to be compared with the results obtained

by processing sensor information. Experimental result are reported focusing on the

mobile robot localization and map building problems.
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1. INTRODUCTION

Research in indoor mobile robotics includes a

large set of problems related to answering the

where am I? question (Leonard et al., 1992): en-

vironment models, algorithms for feature extrac-

tion from sensor information, uncertainty repre-

sentation and integration problems, and feature

matching algorithms.

Although using experimental setups to verify the

correctness, performance and robustness of sys-

tems intended to solve these problems is necessary,

using them throughout the whole system develop-

ment process has several drawbacks:

(1) Exploratory experiments are time consuming.

Testing a certain feature matching strategy

for debugging and tuning may be very costly.

These experimental setups are quite sophis-

ticated and complex, and such experiments

may require costly hardware, software and

human resources.
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(2) Non-repeatability

It is not possible to compare di�erent strate-

gies or alternatives for a speci�c problem

under the same conditions. Each experiment

will render di�erent data and thus di�erent

results.

(3) Impossibility to verify against true values.

It is not possible to determine how good your

estimated robot location is, or how precise

your built map is because the true location

and a precise map are usually not available.

Simulation is an alternative to solve these prob-

lems only during very early stages of the sys-

tem development process. It is very di�cult to

simulate all factors that may in
uence the robot

motion and the obtained sensor observations.

Many researchers use datasets that provide real

data and possibilitate repeatability. This article

describes an experiment in robot localization and

map building designed to be specially well suited

to test multisensor robot localization and map

building strategies.



Fig. 1. Calibration pattern for the trinocular vi-

sion system.

2. THE CPS EXPERIMENT

The CPS experiment was carried out using the

following equipment: a Labmate mobile robot, a

laser range �nder and a trinocular vision system,

both mounted on the mobile robot, and a pair of

theodolites, used as a precise location measure-

ment equipment, independent from the sensors

and the mobile robot.

The experiment was divided into four stages:

sensor calibration, environment modelling, robot

location, and environment sensing.

2.1 Sensor Calibration

Each of the cameras is calibrated using a pattern

(�g. 1) located in three di�erent positions with

respect to the camera. These three positions are

precisely measured, and allow the calibration to

determine both the camera internal parameters,

as well as the location of the camera with respect

to the patterns (Tsai, 1987). This allows to deter-

mine the relative locations between the cameras,

and between the cameras and the robot.

The laser range �nder and the trinocular vision

system are further calibrated using a pattern ,

that has a vertical edge detectable both by each

of the cameras and the laser sensor (�g. 2). This

allows to calculate the relative location between

the laser sensor and each of the cameras.

2.2 Environment Modelling

The environment model obtained is a set of ver-

tical edges, corresponding to wall corners and

door frames, whose location was measured with

the theodolites. The location of vertical walls was

calculated using this information. The resulting

2D environment map is shown in �g. 3.

            

Fig. 2. Calibration pattern for laser and vision as

seen by the central camera (top) and the laser

range �nder (bottom).

2.3 Robot Location

The robot was programmed to follow a trajectory

in our laboratory. At each step of the path, the

following data related to the robot was obtained:

(1) Nominal robot location, corresponding to the

motion command given to the robot.

(2) Odometric robot location, obtained from the

Labmate's odometric system.

(3) Robot location measured with the theodolites.

Being this the most precise measurement

independent from sensor observations, this is

considered the "true" robot location.

In �g. 3, both the odometric and the theodolite

robot location are shown, highlighting the cumu-

lative nature of odometric errors that make the

measurement useless.

2.4 Environment Sensing

At each step of the robot trajectory, the envi-

ronment was sensed using both laser range �nder

and trinocular vision, as shown in �gs. 4 and 5.

The laser scan can be segmented to extract walls,
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Fig. 3. Environment map and robot location ac-

cording to odometry (top) and the theodo-

lites (bottom).

Fig. 4. Laser scan at step denoted Point of View

of the robot trajectory.

corners, door frames, etc(Castellanos et al., 1996).

The trinocular vision system can be used as a

stereo or monocular system, to extract scene in-

formation of di�erent types(Mart��nez et al., 1995).

The information obtained in this way allows for

a variety of localization and map building prob-

lems to work with. Both the laser scans and the

trinocular system can be used to extract scene in-

formation to be contrasted with the environment

model to assess the robot's position, or to be used

to build an environment model that can be con-

trasted with the available model. Experimenta-

tion has been carried out with laser features such

as points on walls and wall segments(Castellanos

et al., 1997), and with vertical edges obtained

from monocular images(Neira et al., 1997). Exper-

iments can also be carried out using the vertical

edges of the trinocular systems, and with a combi-

nation of information of both sensors(Castellanos

et al., 1996). In the next sections two of these

experiments are presented.

3. ROBOT LOCALIZATION FROM

MONOCULAR VISION USING AN A PRIORI

MAP

Information obtained by real sensors is uncer-

tain in nature. To represent uncertain geometric

information, the 2D version of the Symmetries

and Perturbations Model (Tard�os, 1992; Neira

et al., 1996) is used. It is a probabilistic model

which considers both the problem of partiality

and imprecision of geometric information. In this

model, a reference E is attached to every geomet-

ric element. For example, an edge is represented

with a reference with the X-axis aligned with the

edge, whose estimated location with respect to the

robot R is given by LRE = (x̂RE ; p̂E ; CE ; BE)

where x̂RE is the estimated location vector of

the segment. The real location of the segment is

obtained as:

xRE = x̂RE � dE = x̂RE �B
T
EpE (1)

where � represents the composition of location

vectors (the inverse is represented by 	); pE �
N(p̂E ; CE) is the perturbation vector of the seg-

ment, which takes into account sensor imprecision;

and BE is the self-binding matrix of the entity,

which takes into account its symmetries. In the

case of an edge there is symmetry of translation

along the edge, therefore uncertainty along the X-

axis is not considered, thus:

dE =

2
4 0

dy
d�

3
5 ; BE =

�
0 1 0

0 0 1

�
; pE =

�
dy
d�

�

The problem of estimating the robot location

by establishing correspondences between verti-

cal edges extracted from an image and features

(fundamentally corners and door frames) of an a

priori map can be stated as follows: let LWR =

(x̂WR; d̂R; CR; I3) be the estimated location of the

mobile robot; let xWM represent the location of

a vertical edge (a 2D point) according to the a

priori map. Let LRE = (x̂RE ; p̂E ; CE ; BE) be the

estimated location of the edge according to the



                                    

Fig. 5. Trinocular Image Set at step denoted Point of View of the robot trajectory.

monocular camera. Using only the central image

of the trinocular system, our 2D observation of

the vertical edge is a projection line between the

2D point and the camera.

Assuming that edge E corresponds to model point

M , we can use the observation to improve the

estimation of the robot location. For this purpose

we use an Extended Information Filter (EIF),

stated as follows: the state x to be estimated is the

perturbation vector of the robot location dR; the

partial observation yk of the state is the perturba-

tion vector of the edge E, pE ; each observation yk
is related to the state x by an implicit nonlinear

function of the form fk(x;yk) = 0. The implicit

function states that if observation E corresponds

to model feature M , their location must coincide

up to symmetries. Since fk is nonlinear, we use a

�rst order approximation of fk:

fk(x;yk) ' fk(x̂; ŷk) +Hk(x� x̂) +Gk(yk � ŷk)

Hk =
@fk

@x

����
(x̂;ŷk)

; Gk =
@fk

@y

����
(x̂;ŷk)

In a �rst step, all observations having only one

candidate feature whose location can be consid-

ered compatible are fused in the estimation of the

robot location (we perform a hypothesis test on

their relative location). This process limits the

possibilities of accepting an incorrect match, and

it is repeated until none of the remaining ob-

servations has a suitable candidate. All accepted

pairings are fused using the EIF, and in this way

the estimated robot location is corrected.

Figure 6 shows the projection of the observed

vertical edges at a robot location, and their pre-

dicted location after re-estimating the robot loca-

tion. Figure 7 shows the resulting estimation of

the robot location when this process is repeated

along the whole trajectory. It can be seen that the

resulting estimation of the robot location is highly

coherent with the a priori map.

            

Fig. 6. Vertical edges obtained by the central

camera (top) and estimated robot location

before (middle) and after (bottom) fusion.



Fig. 7. Estimated robot location and a priori map

using monocular vision (uncertainty magni-

�ed � 3).

4. ROBOT LOCALIZATION AND MAP

BUILDING USING LASER

One of the most complex problems in map build-

ing stems out of the fact that the robot needs

to build an environment map and simultaneously

locate itself within the map. In our work, the

construction of a global map of the navigation

area is considered simultaneously to the relocation

of the robot during navigation (Castellanos et

al., 1997). The problem is formulated from an

Extended Kalman Filter (EKF) point of view,

thus, prediction and estimation phases are con-

sidered. The plant model is obtained from the

displacement of the robot whilst the measurement

model derives from the pairing between observed

features (i.e. laser segments) in the local map at

time k with those of the global map at time k�1.

Laser segments are obtained by application of a

segmentation technique (Castellanos and Tard�os,

1996) to the set of data gathered by the laser

range�nder. A laser segment is represented by

an uncertain location LRE = (x̂RE ; p̂E ; CE ; BE)

with respect to the robot R. A length, calculated

from its endpoints, is also associated to each

segment.

The set of geometric entities involved in the prob-

lem of simultaneous map building and localiza-

tion of the robot is composed of a mobile robot,

with an attached reference R and a set of N

laser segments, each of them represented by an

attached reference Ei; i 2 f1 : : :Ng with respect

to a global referenceW . The system state vector is

composed of the perturbation vectors of the robot

and of each of the features in the map. De�ning

the subvector:

xM = [pE1
pE2

: : : pEN ]
T

we have:

x =

�
dR
xM

�
; C(x) =

�
CR CRM
CTRM CM

�

where elements in the diagonal represent the co-

variance of the subvectors and the o�-diagonal

elements represent the cross-covariance matrices

between them.

From odometry measurements we obtain the rela-

tive displacement of the mobile robot between two

intermediate points of the prede�ned trajectory.

Let Rk�1 and Rk be the references attached to

these points respectively, we might calculate the

location of the robot at time k from the composi-

tion:

xWRk = xWRk�1 � xRk�1Rk

with:

xRk�1Rk = x̂Rk�1Rk � dRk�1Rk

where x̂Rk�1Rk represents the displacement of

the robot as estimated by dead-reckoning and

dRk�1Rk � N(d̂Rk�1Rk ; CRk�1Rk) represents dead-

reckoning errors.

The local map obtained at time k is composed of

a set of features which partially might be paired

with the features of the global map at time k� 1.

Compatibility between paired features is decided

by calculating the Mahalanobis distance D (Bar-

Shalom and Fortmann, 1988). Under the Gaus-

sianity hypothesis, D2 follows a �2 distribution.

Thus, the local feature L is compatible with the

global featureG only ifD2 � �2m;� where �
2
m;� is a

threshold value, obtained from the �2 distribution

with m degrees of freedom, such that the proba-

bility of rejecting a good matching is �. At each

point of the robot's trajectory it is desirable to

obtain as much pairings as possible because they

represent the links between new observations and

old stored knowledge of the navigation area.

Finally, the EKF estimates both the state vector

x and its covariance C(x) using the classical equa-

tions. Integration of new information produces a

reduction in the location uncertainty correspond-

ing not only to the paired map features, but also to

the whole set of map features, because they are all

included in the same state vector. The system co-

variance matrix is also updated to reestablish the

relationships between map features. Non-paired

local observations represent knowledge about the

environment of the robot which has not yet been

learned. Usually, whenever the robot changes from

one well-de�ned navigation area to another, there

are many non-paired observations which are di-

rectly added to the map. Figure 8 shows the

results of this process. It can be seen that the es-

timated robot location resulting from the process

described above is highly precise when compared

to the real robot location (�g. 9).



Fig. 8. Estimated robot location and built map

using laser.
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Fig. 9. Errors obtained in robot location estima-

tion.

5. CONCLUSIONS

This paper presents an experiment in multisen-

sor robot localization and map building that al-

lows to use di�erent sensors and sensor combi-

nations to test and evaluate robot localization

and map building processes. The fundamental

advantage of this experiment is that it is pos-

sible to compare the obtained results with very

precise measurements both of the environment

and of the robot location. The use of this ex-

periment has been exempli�ed by estimating the

robot trajectory using vision and an a priori

map, and by testing an EKF-based procedure to

simultaneously estimate the robot location and

build the map. We can also take advantage of

a multisensor system approach (Castellanos et

al., 1996), which provides redundancy and assures

reliability and precision of the observed features.

The datasets obtained in this experiment will

be made available to the scienti�c community at

http://www.cps.unizar.es/deps/DIIS/robot/.
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