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Abstract
In this paper the feasibility of equipping a mobile
robot with the ability to learn a path, in real time,
using principles based on insect-based navigation
skills and a biologically plausible neural network
model inspired by the "Conjunction of Local
Features Network" (CLF network) through both
real-world and controlled environment experiments
is  presented.  Results shown for experiments on a
prototype LEGO robot indicate that memory-based
navigation using the proposed navigation network
is suitable for simplified environments.

1 Introduction
Until recently most approaches to robot visual navigation
were based on symbolic representation of the world in terms
of known structural information. One of the most
fundamental problems with the symbolic paradigm is that a
high degree of prior knowledge of the robot's environment
must be known, thus reducing the structural complexity of
the environment for which the robot can be operated in.
The dependency on structural information makes this
approach unsuitable for exploratory navigation tasks,  which
directly affects its ability to operate in a real world scenario.

Today, some roboticists have turned their attention
towards a memory-based approach [Owen et al 95] and
[Rao & Fuentes].  The fundamental principle of memory-
based navigation is the process of sensory-motor
coordination. It can be described as a form of sequence
learning, where the robot navigates by remembering what it
sensed along a learned path.  Although experiments with
insects [von Frisch 71] & [Srinivasan et al 95] have shown
the biological plausibility of this approach,  little work has
yet been done using vision system.

The goal of this research is to demonstrate a
biological plausibility memory-based visual navigation
network based on biological principles derived from the
study of insect navigation (mainly bees). This visual
navigation system will be demonstrated on a real-time,
visually guided mobile robot performing the task of path
recognition in a controlled environment. The robot does not
navigate its way within its environment using known
landmarks or pre-defined structural information of its
environment but rather learns a sequence of visual
impressions of its journey that it is later able to recall.

The results presented in this paper are obtained
from preliminary experiments conducted.  The goal of this
research is to create a robot with a foraging behaviour,
which will set off in search of a pre-defined type of object
(food) from its home location (hive), using its vision and
sonar sensors for obstacle avoidance. Once a source of
objects is located, the robot collects the object deposit and
returns it to its home location. Navigation for the robot's
homing is guided solely by visual and orientation
information. The robot will continue to return to the located
source using learned vision and compass information until
the food supply is exhausted. Having exhausted the located
source, the robot will return to its exploration mode and set
off in search of another potential supply.

The robot will be completely autonomous, with its
camera, encoder on each of its wheels for path integration,
electronics and battery on board a wheel based chassis.  A
network (which will be presented in this paper) based on the
Conjunctions of localized features (CLF) network [Edelman
& Poggio] will be used as its control architecture due to its
ability to perform unsupervised learning, allowing the robot
to learn visual landmarks as it travels from its hive to the
food source.

The experiments presented in this paper were
conducted using the prototype robot shown in Figure 1. The
chassis of the robot is constructed using Lego, motion
control is achieved using Lego Interface card, visual input is
provided using a Video Blaster SE100 card and a grayscale
CCD camera.  There are no obstacle avoidance sensors
onboard.

Figure 1.    Prototype Lego Robot

2 Insect Navigation Principles
Many hypotheses have been proposed and experiments
performed on insect navigation ([von Frish 71], [Srinivasan
95] & [Collett 96]). They each illustrated the amazing
abilities of foraging bees during flight, but they failed to



explain insects robust navigation ability as a whole.
However, if the underlying principle of these navigation
strategies demonstrated by honeybees can be learned, one
would see  immediate implications in the implementation of
mobile robots.  Following this line of thought, the following
list provides a guide of the better known theories.

• Path integration or Dead-reckoning:  Path integration
or dead-reckoning [Dyer 96] & [Collett 96], this
process uses a directional reference (either an external
compass reference or an inertial reference) provided by
vestibular or somatosensory feedback to maintain a
continuously updated egocentric representation of the
animal's position relative to its home.

• Snapshot Model:  The snapshot model [Cartwright &
Collett 83], where the direction of flight is calculated
from a process which involves the comparison of the
snapshot image of the goal and the current retina image.
Cartwright & Collett from their experiments indicated
that bees memorize a nearly unprocessed retinal image
of the goal location, this image is believed to contain no
explicit information about the distance of the objects on
the retina.  The comparison of the snapshot and retina
image is only performed when the orientation of the
insect at the time of the snapshot,  matches that of the
present orientation.

• Image Matching:  Image matching [Collett 96], one
method which is believed to help bees to pinpoint their
final approach to its goal is called image matching,
where a previously stored snapshot of the goal is
compared with the current retina image to align the
insect before touch down.  During this image matching
process, bees are reported to circulate in a figure of
eight aligned in a preferred orientation.

Path integration, the snapshot model and image
matching hypotheses individually provide explanations to
different aspects of honey bee's navigation abilities,
however, they fail to answer in regard to insect navigation
as a whole, such as their robustness in path recognition as
demonstrated by [Collett 96].  The combination of these
hypotheses however, seems to provide the best yet
explanation to insect's robust navigation skill. In both
models, insects appear to guide themselves by following the
paths that produce the best match between current and
remembered landmarks, visual impression or some homing
vectors.

Following this line of thought, the following model
is proposed.  On the robot's first outward journey, it records
a sequence of images throughout its journey and the
orientation in which each image is taken.  Subsequent
homing is performed through a process similar to that of
dead-reckoning,  except that only orientation information is
stored, with no distance information.  Matching of current
image to stored sequence is done when the robot has
orientated itself to that of the recorded orientation,
(preferred viewing orientation [Collett 96]).  Once the
robot's current location is matched,  the orientation at which
the match occurred becomes the new heading direction for

the robot.  For the return path, the heading direction is in the
opposite direction of the matching orientation.  This process
repeats until the robot reaches the vicinity of its goal (food
source or hive).  Once the robot has arrived in the vicinity of
its goal,  the robot uses the short range beacon signal of the
food source to zero in for food collection.

3 Proposed Navigation Network

3.1 System Overview
The input to the visual navigation system shown in figure 2
is a 64x64 gray-scale image from the robot's onboard
camera.  The input image is analyzed by two processes
operating in series.  The first one, the highlighting
mechanism (section 3.2.1) defines the spatial extent of
regions containing the most "different" information of the
image, followed by the second process, the resolution
reduction mechanism (section 3.2.2) which reduces the
resolution of the 64x64 image into a 10x10 representation
map.  Although details are lost after this process, the
resultant image is able to resist error caused by minor image
displacement

The processed image is then passed into the visual
navigation neural network (section 3.3), together with the
robot's orientation or action input.  The purpose of the
VNNN is to form a spatial representation of the relation
between each unique visual impression of a location of the
robot's journey and the orientation or action taken by the
robot at the time of the image acquisition.

Figure 2.  Navigation System Overview

3.2 Image Preprocessing

3.2.1 Highlighting Operation
The first level of pre-processing uses a similarity detection
algorithm (similar to edge detection except it is more
resistant to error under different lighting conditions). The
Similarity detection highlights areas from the CCD camera
image that are interesting, different or unexpected.  The
value of each pixel e is calculated by comparing its value to
the average of its surround pixels.  This operation is defined
as:
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where T is a predefined threshold, and p(x, y) is the pixel
value at (x, y).



3.2.2 Resolution Reduction Operation
The resulting image is then passed to the second level pre-
processing which maps the 64x64 image into a 10x10
representation map.  This mapping is done by applying 100
7x7 frames over the 64x64 image overlapping each other as
demonstrated in figure 3. The region that each frame
enclosed is then averaged and compared with a preset
threshold,  if the average of a region is greater than that

threshold then the corresponding cell in the 10x10 map is
selected forming the 10x10 R-layer.
Figure 3.  Resolution Reduction Mechanism

3.3 Navigation Neural Network
At the heart of the visual navigation system is the image
sequence learning mechanism, a biologically plausible
model based on the Conjunction of Localized Features
(CLF) [Edelman & Poggio 89]. The structure of the network
consists of two layers shown in figure 4. The first layer is
the Representation layer (R-layer),  this layer is made up of
10x10 units representing the pre-processed 64x64 pixels
image from an onboard CCD camera.  Every unit in the R-
layer is mapped to all units in the second 12 units

Orientation layer (O-layer).

Figure 4.    Structure of the Extended CLF network

The R-layer consists of 100 units representing the
visual impression of any given location in the robot's
journey.  In the same way, the O-layer consists of 12 units
representing the orientation of the robot to a given reference

point.  This can either be a geographic, magnetic  or solar
reference point.   This layer will be driven by a compass
during learning.

3.3.1 L-connections
The R-units in the representation layer are connected among
themselves by  lateral (L) connections,  whose initial
strength is zero.  The L-connection forms the representation
of a single visual impression of an individual location along
a route.  When an image is applied to the network, a set of
R-units will become active.  The lateral connections among
any two activated R-units, b and d  is updated by:
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where Wmax is the predefined maximum connection weight.
To allow each R-unit to encode the spatial structure

of a specific view / visual impression,  responding
selectively to that view only,  a unit activation strength Aa is
assigned to each R-unit and is calculated using its lateral
connections by:
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where ia  is the activation of R-unit i and ia  = 1 if R-unit i
is activated else ia  = 0.

3.3.2 V-connections
Whereas the L-connection forms representation of the visual
impression of locations, the V-connections form the
associations between an individual location (activated R-
units) and the robot's orientation (activated O-unit) at the
time when the image was acquired.

The initial strength of the "vertical" (V) connection
between an R-unit and an O-unit is zero.  Hebbian
relaxation rule where weights are updated by the correlation
between input and output activities (Aa, Aij),  that is the
activities on both ends of the link, is used to update the V-
connections from the R-layer to the active O-unit.  The
change in connection strength Vab from R-unit a to O-unit
b=(i,j) is given by:
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where Aij is the activation of the R-unit (i,j) after WTA,
Vmax is an upper bound on a connection strength and α is a
parameter controlling the rate of convergence.

3.4 Learning
During learning (as illustrated in figure 2),  a sequence of
visual impressions of the robot's surrounding is captured and
used as inputs to the network. Winners on the R-layer are
then identified using pre-processing mechanisms mentioned
in section 3.2.  The weight vector and thresholds of V-
connection of the winning unit is then updated according to
the rule above, followed by the adjustment of the L-
connection among the R-layer's units.  At the same time the

10

10

R-layer

O-layer

12 orientation units

t=0
t=5t=7



winning R-units are identified,  a unit on the O-layer will be
firing according to the compass input.  The connection
weight of the two active units on the R and O layers are then
associated as described above, forming an association of the
captured visual impression and the orientation of the robot
at the time of acquisition of the snapshot.

3.5 Recalling
During testing (as illustrated in figure 2),  the learning of the
network ceases.  At any given time,  the visual stimulus of
the robot's current location will trigger some R-units to fire
more strongly than others, and through the V-connection, an
O-unit will be triggered.  If the robot's current orientation
matches that of the activated O-unit,  these R-units are
selected as the representation of the current location.  The
robot will continue to move in its current direction until the
acquisition of the next snapshot where this process is
repeated.

On the other hand,  if the robot's current orientation
does not match that of the activated O-unit from the winner
of the current visual stimulus,  then the current activated R-
unit is dismissed and the same comparison process repeats
on a different R-unit with the next highest activation value.
If a match is made then the robot precedes as before.
However if no match is made, the robot will classify the
current visual input as unknown,  and it will rotate at that
point obtaining new visual input of that location from
different point of view,  this behavior imitates the "Turn
Back and Look" behavior described in [Lehrer 93].  The
robot will continue to wander around until a  match is
found.

4 Experiment Setup
Lego robot shown in Figure 1 was constructed for this
experiment.  An onboard miniature gray-scale CCD camera
connected to a Video Blaster SE100 capturing card,
provides visual input to the host computer where all images
and networks processing is performed. The movement
control signals are generated in the host computer and sent
to the robot via a Lego controller unit shown in figure 5.

Figure 5.  Lego controller Unit

5 Results

5.1 Experiment 1: Manual Path Recognition
In this experiment the robot is manually moved through the
arena shown in figure 6 during training,  it uses the top of
the arena as its fix reference point (North),  during training,
the robot's orientation is updated manually in relation to this
reference point.  Figure 7 shows the robot and its network's
output as it travels through the arena after the initial
training.  The motion of the robot as shown is by
incremental position of equal spacing to its learned path.
The result of this experiment demonstrated the network's
ability to recognize a learned path where each location along
the path can be identified by its distinctive visual
impression.

Further experiments have been carried out using
similar visual impressions along the journey in an attempt
to confuse the robot. The result of these experiments shows
the navigation network's ability to overcome this problem
using the method described in section 3.5.

Figure 6.  Experiment 1 Setup

5.2 Experiment 2:  Automated Path Recognition
The goal of this experiment is to evaluate the network's
ability to guide the robot autonomously on a learned path by
observing the robot's behavior during testing. Due to the
nature of the testing environment and setup,  no suitable
orientation sensor can be used, therefore, in this experiment
actions of the robot are used as inputs instead of its
orientation to a global reference point.  Hence instead of
forming a map in the sensor space, the navigation network
will form a mapping in the action space.  The path taken by
the robot during training is shown in figure 8 where the
robot is to move forward for about 50 centimeter then turn
at about 85° to its left and precede forward until destination.
Figure 8 shows the results of the testing run.  Notice the
point at which a change of action occurred (Point X in
figure 8) where the robot started to turn to its left, this point
was correctly mapped into the network and executed during
testing, however,  the robot started to move forward again
before the turn was completed

Path
Taken

North



Figure 7.  Navigation Network's output as it travels through the
learned path.  Notice that the reference point used in this
experiment is the top-mid point of the arena.

.

Figure 8.  Results obtained from allowing the network to drive the
robot after being trained along the training path one time manually.
(a) Robot's trajectory after initial training.  (b) Robot's trajectory
after retraining at point X.

6 Discussion
Up to this point, all testing on the robot was done manually
hence removing any error that can be caused by perception -
reaction delay that is bound to exist in any control system
involving vision.  This perception-reaction delay could well
contribute to the error in the test run.  Another factor that
could affect the mapping of the network is the issue of over-
learning.  Since the robot spends most of its time moving
forward and only relatively short period of time in turning,
V-connections between R-Units and O-unit[0] (representing
forward motion) would naturally be much stronger than that
of O-unit[9] (representing left turning motion).  Hence there
exists a bias towards forward motion.  To correct this
problem,  the robot was placed at point X again and the
turning action is retrained manually at that point.  At the
completion of the retraining,  the robot was placed back to
the starting point and the test was repeated.  This time the
network successfully guided the robot to its destination.

Another interesting finding from this experiment is
the robustness of the proposed network against
displacement.  Several test runs were conducted with the
robot placed in offset in all directions to its original starting
located,  even despite of the displacement of the robot from
its learned path, it was found that the network was still
capable in guiding the robot to its destination successfully.

In future work, it is aimed to resolve the error
caused by over-learning and bias for one orientation over
another as illustrated in experiment 2. This error arose when
two or more locations existed, such that the visual
impressions of those locations are too similar for the
network to distinguish. The error may be resolved by
introducing the notion of uncertainty into the visual
impression evaluation process. Whenever an input image is
presented to the network,  if its uncertainty value is greater
than a predefined threshold,  then that image is simply
discarded and a new image is acquired in a different point.

In response to the success in the preliminary
experiments, a fully self-contained, autonomous robot will
be built, moving all processing on board and removing the
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need of the host computer.  Equipped with improved
navigation network,  the robot will be trained and tested on
real world environment.

[Veneri, et al 97] presented a visual-based
autonomous system capable of memorizing and recalling
sensory-motor association. Their robot's behaviours are
based on learned associations between its sensory inputs and
its motor actions. Perception is divided into two stages. The
first one is functional: algorithmic procedures extract in real
time visual features such as disparity and local orientation
from the input images. The second stage is mnemonic: the
features produced by the different functional areas are
integrated with motor information and memorized or
recalled.

Computationally,  our method is attractive over
[Veneri et al 97] for a number of reasons.  The visual pre-
processing implemented requires very little overhead (as
compared to the stereopsis used in Veneri's system),
allowing for very fast recognition with ability to resist error
caused by minor displacement.  The working of Veneri's
navigation system relay heavily on the extraction of features
from its environment,  this means that it must have a small
degree of pre-knowledge of its environment,  in comparison
to our approach where the system does not rely on structural
information of its environment but solely on the visual
impression of its world. Despite Veneri's success,  their
system is required to run on six TI-C40 DSP (50MHz)
processors,  knowing the computational power of a typical
insect,  surely a simpler solution to memory-based
navigation must exist.

7 Conclusions
This paper has presented a low cost (in terms of
development cost and development time) real-time
navigation network based on insect's navigation principles
using a trainable vision system.  The results obtained from
the above experiments illustrated the feasibility of the
proposed paradigm as path learning mechanism.  Further
more,  the proposed navigation network was shown to be
robust against displacement error and have a fast learning
ability (necessary in real-time operation). Despite the
success in the testing of the proposed navigation network,
issues such as over-learning are still to be resolved.
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