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Abstract
This paper describes a mobile robot equipped with a sonar sensor array in a guided
feature based map building task in an indoor environment. The landmarks common to
indoor environments are planes, corners and edges, and these are located and classified
with the sonar sensor array. The map building process makes use of accurate odometry
information that is derived from a pair of knife edged unloaded encoder wheels. Discrete
sonar observations are incrementally merged into partial planes to produce a realistic
representation of environment that is amenable to sonar localisation. Collinearity
constraints among features are exploited to enhance both the map feature estimation and
robot localisation.  The map update employs an Iterated Extended Kalman Filter (IEKF)
in the first implementation and subsequently a comparison is made with the Julier-
Uhlmann Kalman Filter (JUKF) which improves the accuracy of covariance propagation
when non-linear equations are involved. The map accounts for correlation among features
and robot positions. Partial planes are also used to eliminate phantom targets caused by
specular reflection of the sonar. Unclassifiable sonar targets are integrated into the map
for the purpose of obstacle avoidance. The paper presents simulated and experimental
data.

1 Introduction

The objective of this work is to implement an autonomous mobile robot capable of
navigating in an a priori unknown indoor environment using a sonar sensor. To this end,
the robot requires the capability to build a map of the environment, which is a cyclic
process of moving to a new position, sensing the environment, updating the map and
planning subsequent motion.  Map building and navigation is a complex problem because
map integrity cannot be sustained by odometry alone due to errors introduced by wheel
slippage and distortion. Exteroceptive sensing, such as sonar sensing as employed in this
paper, is necessary, but any sensing is also subject to random errors. Hence, neither
odometry nor matching sensory data to the map gives flawless estimation of the robot’s
position, yet this position estimate becomes a reference for the integration of new features
in the map. Consequently, with time errors in robot position influence errors in the map
and map errors influence the position estimation.

This paper employs sonar sensing in the map building process for many reasons.
Sonar has the property that the data is sparse and naturally selects useful landmarks, such
as walls, wall moldings and corners.  This alleviates the data processing compared to
dense ranging devices such as laser range finders and stereo vision systems.  Sonar also
offers a high degree of ranging and bearing accuracy in an array configuration as deployed
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in this paper.  Since most robots today employ some form of sonar due to the cost and
power consumption advantages, there is considerable interest in its application.

Sonar sensing has some important properties that need to be carefully understood in
order to properly exploit the sensing data.  Firstly, sonar transducers have a significant
angular spread of energy known as the beamwidth.  In many systems, the beamwidth gives
rise to large angular uncertainty in measurement.  Some researchers have attempted to
deal with this uncertainty by employing grid based maps and repetitive measurements, as
in the work by [16]. Grid map update schemes range from Bayesian [13], evidential [20]
to fuzzy [19] and rely on viewing targets from many locations.  Localisation with a grid
map can be complex.  A grid map based localisation scheme has been developed in [6],
but it is suitable for laser rangefinder systems only.  Other researchers do not consider
localisation necessary in their applications [4, 18].  Features based mapping schemes have
become more commonplace [5, 21] after Kuc and Siegel [11] presented a method for
discriminating planes, corners and edges using sonar data gathered at two positions.  Later
Kleeman and Kuc [10] developed a sonar sensor which allows target discrimination at one
position and target localisation with high precision..  Hong and Kleeman [7] have
successfully demonstrated the localisation capability of a mobile robot with a sonar array
in a known environment using 3D features.  Data fusion methods associated with feature
based mapping include the Kalman Filter [1, 15, 22], maximum likelihood estimation [14]
and heuristic rules [4].

The second important property of sonar systems is the appearance of phantom
targets that are due to multiple specular reflections. For example, a sonar sensor will see a
virtual image of a corner due to the reflection from the wall in the outwards and return
paths in Figure 1.  A credibility count [5] has been used to identify these phantom targets,
however this approach fails when the phantom target appears consistently from different
positions as is the case in the example of Figure 1.  A physically based solution is
presented in this paper.  The third important property of  sonar systems is that, when
sensing a planar wall, the sensor can only see the part of the wall which is orthogonal to
the line of sight - like phantom targets, this property results from specular reflection.
Therefore, if the robot navigates along a wall, the robot sees the wall not as an entity but
as a set of discrete, approximately collinear planar elements. Postulates need to be made
about the relationships between various sonar features during map matching. Furthermore,
to reduce the risk of wrongly associating two features, the robot has to be refrained from
moving a long distance between successive scanning points during map building.

Sonar Sensor

Phantom

Corner

Actual Corner

Figure 1 : Phantom Target Example
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In the authors’ opinion, prolonged navigation can best be achieved when map
feature errors are systematically generated from the sensor and odometry errors.  It is
convenient, and usually justifiable, to assume that errors are approximately Gaussian in
their distribution, and to represent the errors with covariance matrices, since robust noise
filtering tools use this form of representation.  The authors favour the Kalman Filter
because the basis of the Kalman Filter is the Bayesian formula and the principle of
minimum mean square error [2] that are well understood and physically acceptable.  The
Kalman Filter reduces the uncertainties of the parameters of interest by weighting the
initial estimation of errors with the errors associated with the new information (known as
observations) about the parameters. In the context of sonar map building, the parameters
to be estimated are the robot’s position and the features in the map.  The observations are
the postulates about the relational constraints among the new features and the existing
features.  The Kalman Filter makes available knowledge about the uncertainties of map
features that is important for path planning that avoids obstacles and localisation within
the map.

The Kalman Filter is based on a linear system model.  To overcome this limitation,
the Extended Kalman Filter (EKF) can be employed and is founded on the assumption
that for small noise, first order linearisation of the system model is sufficient for
propagating the noise covariance. The problem with discarding higher order terms is that
bias can accumulate after repeated estimation.  Two approaches have been proposed to
deal with this bias:  The first approach, called the Iterated Extended Kalman Filter (IEKF),
iteratively estimates the parameters of interest by repetitively linearising the system
equations about the new estimates under little change results.  The second approach,
which will be referred to as the Julier-Uhlmann method (JUKF) [9], is based on
generating a set of data points using the error covariance of the input parameters,
propagating the data points and computing the resulting error covariance, thus obviating
the need to manually evaluate various Jacobian matrices.  This paper compares the
accuracy of the two methods.

The mapping strategy presented here is feature based and has the following
attributes:

1. All three types of primitive features recognisable by our advanced sonar sensor are
processed to become part of a map:  Discrete planar and corner elements gathered by
the sonar sensor at various stages are merged incrementally to form partial planes.
Planar elements are only merged to the adjacent partial planes to avoid falsely closing a
gap, such as a doorway.  Discrete edge elements do not partake in the process of
forming partial planes, but they are still used to enhance localisation accuracy and map
integrity.

2. Not only does ‘plane to plane’, ‘corner to corner’ and ‘edge to edge’ matching occur as
in other approaches [5,11], but the relational constraint between a corner and two
intersecting planes is exploited to further improve the fidelity of map.  Relational
constraints are described in [1] and are used by [17] for a known environment.

3. The partial planes are used to distinguish and subsequently eliminate phantom corner
targets and edge targets caused by specular reflection.
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4. Two implementations based on the two filters, JUKF and IEKF, are used to evaluate
state transition equations, generate state-measurement cross covariance and propagate
error covariance matrices.  The two approaches are compared.

This paper is organised as follows.  The robot processing, locomotion, odometry and
sonar sensor are described in Section 2.  Section 3 presents a summary of the IEKF and
JUKF filters.  In section 4 the map environmental model is presented and formulated as a
statistical optimisation problem that is solvable with a Kalman Filter.   Two sets of
equations, one for the IEKF and one for the JUKF, are derived.  These equations are
evaluated in Section 5 for different map growth scenarios.  Simulation results for the
IEKF and JUKF methods are presented in Section 6, while the results of four experiments
are shown in Section 7.   Finally the conclusion summarises the mapping technique and
the findings of the comparison between the IEKF and JUKF filters and also presents
future directions for the research.

2. Robot Architecture

486DX2
66MHz Board

8MB RAM

Sonar
Sensor
Card

Motion
Control (PID)

Card

ISA   AT   Bus

Drive Wheel
Servomotor Encoder

Panning Servomotor
and Encoder Drive

Wheel
Encoder
WheelX2

Figure 2 : The robot system architecture

As shown in Figure 2, the communication backbone of the robot is an ISA AT Bus with a
486DX2-66MHz processor board controlling a custom sonar sensor card and a custom
servo motion control card.  The sensor control card sends transmit pulses and captures
entire echoes from three receiving transducers.  The transmit pulse is generated from a
10 µs 300 V - 0 V - 300 V voltage pulse and the echo waveform is sampled with a 12 bit
ADC at 1 Mhz.  The motion control card contains a MC1401 chip which provides PID
control to the four DC motors, two in the pan tilt mechanism and two for the drive wheels.
For every motor, an encoder is mounted on the actuation shaft (ie after a gear box) to
generate feedback information that is not corrupted by backlash in the gearbox.

2.1 The Sonar Array

The sonar array illustrated in Figure 3 has a multiple transducer configuration which
makes it possible to classify common indoor features into planes, 90° concave corners and
edges.  The sonar array accurately estimates specular target ranges to within 0.2 mm and
elevation and azimuth angles to within 0.02° for  ranges to 5  m within the sensor
beamwidth [10].  At every scanning point, the sensor first simultaneously fires TR1 while
scouting anticlockwise at 90°/sec to locate the directions of potential targets from the
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echoes on the three receivers. Then, it pans clockwise at the same speed, only slowing
down at the directions of the potential targets found earlier and fires T0 followed by T2.
If classification is unsuccessful, the target is tagged as unknown but range and bearing are
still recorded to unknown objects.

T2

R2

TR1 T0R0

40mm 85mm

40mm

125mm

T : Transmitter

R : Receiver

Figure 3: The sonar array configuration

2.2 The Locomotion and Odometry System

castor

drive wheel

encoder wheel

B

castor

x

y

+

motor

optical
shaft

encoder

Figure 4 : The odometry system

The locomation and odometry system shown in Figure 4 consists of drive wheels and
separate encoder wheels that generate odometry measurements from optical shaft
encoders. The encoder wheels are made with O-rings contacting the floor so as to be as
sharp-edged as practically possible to reduce wheelbase uncertainty, and are
independently mounted on linear bearings to allow vertical motion, and hence minimise
problems of wheel distortion and slippage.  This design greatly improves the reliability of
odometry measurements. The odometry error model used to propagate error covariance
and odometry benchmarking can be found in [3].

3 Summary of the Iterated Extended Kalman Filter (IEKF) and the Julier-
Uhlmann Kalman Filter (JUKF)

The section begins by introducing Kalman Filter in a general context. Before proceeding,

the  notation used will be explained.  A circumflex above a random variable, 
�

( )S k + 1 , is
used to indicate the estimator of the random variable, whereas a bar over a random
variable, S( )k + 1 , is used to indicate the mean of the random variable.  The partial
derivative operator is denoted by ∇  and is defined by (1).
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




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∂
∂

∂
∂

∂
∂

∂
∂x x xn1 2

�     where    [ ]x = x x xn1 2
� (1)

Suppose the state vector S(k) contains all the randomly distributed parameters of interest
which evolve with discrete time according to the state transition equation

( )S F S U( ) ( ), ( )k k k+ = +1 1 (2)

where U(k) is the input vector.  At stage k+1, these random parameters can be observed
with a set of measurements M(k) via the observation model

( )G S M 0( ), ( )k k+ + =1 1 (3)

The estimation of S(k+1) with equation (2) and (3) is inherently imperfect because
of the noise in S(k), U(k+1) and M(k+1).  The goal of optimisation is to generate a new

state estimate 
�

( )S k + 1  that minimises the mean square error of the parameters S(k+1)
conditioned on all the past observations which is equal to the mean of the parameters
conditioned on all the past observations [2].   Let Zj be all the observations gathered up to

stage j, and 
�

( | )S i j  be the minimum mean square error estimate of S(i) conditioned on Zj,
then

( )( ){ } { }
�

( | ) arg
min

� ( )
�

( )
�

| ( )|S
S

S S S S Z S Zi j E i i E i
T

j j= − − =  (4)

where E{.}  is the expectation of a random variable.  Associated with this estimator is the
error covariance matrix

( )( ){ }P S S S S Zss

T
ji j E i i j i i j( | ) ( )

�

( | ) ( )
�

( | ) |= − −  (5)

Suppose 
�

( | )S k k exists at stage k. Upon transition to stage k+1 and prior to making
an observation, the parameters at stage k+1 conditioned on the observations up to k only,
can be predicted via

{ }
�

( | ) ( ( ), ( )|S F S U Zk k E k k k+ = +1 1  (6)

A set of measurements M( )k + 1  about S(k+1) can also be gathered at stage k+1.
Due to the noise in both S( )k + 1  and M( )k + 1 , equation (3) does not hold exactly. A
residual vector can be defined as

{ }z G S M Z( ) ( ( ), ( ))|k E k k k+ = − + +1 1 1  (7)

With the residual vector, the Kalman Filter can be invoked to generate a better

estimate of S(k+1), namely 
�

( | )S k k+ +1 1  based on [2],
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�

( | )
�

( | ) ( | ) ( | ) ( )S S P P zk k k k k k k k ksz zz+ + = + + + + +−1 1 1 1 1 11 (8)

and the error covariance is also reduced to

P P P P Pss ss sz zz xz
Tk k k k k k k k k k( | ) ( | ) ( | ) ( | ) ( | )+ + = + − + + +−1 1 1 1 1 11 (9)

Where Psz(k+1|k) is the cross-covariance between 
�

( | )S k k+ 1  and z(k+1), and
Pzz(k+1|k) is the covariance of z(k+1), defined in a similar fashion.

In practice, the state transition equation and the observation equation are non-linear.
Some methods are required to estimate the covariance and cross-covariance matrices
required by Kalman Filter.  The IEKF filter and the JUKF are introduced for this purpose.

3.1 The IEKF Method

The IEKF method is an extension of the Extended Kalman Filter (EKF) which is
discussed first.  With the EKF method,

�

( | ) (
�

( | ),
�

( ))S F S UIEKF k k k k k+ ≈ +1 1 (10)

( )
{ } { }

z G S M

G S S G M MS M

IEKF k k k k

k k k k k k

( )
�

( | ),
�

( )

( | )
�

( | ) ( )
�

( )

+ ≈ − + +

≈ ∇ + + − + + ∇ + − +

1 1 1

1 1 1 1 1
 (11)

The noise associated with all random vectors is assumed small, so that applying a
first order Taylor’s expansion about the estimator is reasonable for propagating the error

covariance through non-linear equations.  Suppose the error of 
�

( | )S k k+ 1  is not correlated
with U(k), then

P FP F FCov U FS S U Uss
IEKF

ss
T Tk k k k k( | ) ( | ) ( ( ))+ ≈ ∇ ∇ + ∇ + ∇1 1 (12)

where ∇F  is the Jacobian matrix of F() evaluated around S(k|k) or U(k+1), as indicated
by the subscript. ∇F  is also known as the state transition matrix.  Cov(U(k+1)) is the
error covariance of the input vector U(k+1).  In a similar manner,

P GP G GCov M GS S M Mzz
IEKF

ss
T Tk k k k k( | ) ( | ) ( ( ))+ ≈ ∇ + ∇ + ∇ + ∇1 1 1  (13)

P P GSsz
IEKF

ss
IEKF Tk k k k( | ) ( | )+ ≈ + ∇1 1 (14

The IEKF method improves the performance of the Extended Kalman Filter by

linearising the measurement equation about the new estimate 
�

( | )S k k+ +1 1 , and attempts

to iteratively draw 
�

( | )S k k+ +1 1  closer to the true mean, in a way similar to solving a non-

linear algebraic equation using Newton Raphson algorithm. Let η i
IEKF i k k= + +

�

( | ),S 1 1 ,

with η0 1= +
�

( | )S IEKF k k , the pseudo code is as follows,
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set i←0
repeat {

( )[ ]
η η η

η η η

i sz i zz i

i i i

k k k k k k

k k k k k

+
−= + + + + + +

+ − ∇ + + + −

1
11 1 1 1 1

1 1 1 1

�

( | ) ( | ; ) ( | ; )

( ; ) ( | ; )
�

( | )

S P P

z G SS

i←i+1
} while ( η η ε ηi i− >−1 )

P P P P Pss
IEKF

ss sz i zz i sz
T

ik k k k k k k k k k( | ) ( | ) ( | ; ) ( | ; ) ( | ; )+ + = + − + + +−1 1 1 1 1 11η η η

where the notation ‘;ηi’ means ‘evaluated at the new estimator ηi’, and εη is a threshold
vector.  Further details on the IEKF can be found in [2, 8].

3.2 The JUKF Method

Julier and Uhlmann [9] have developed a method for accurately propagating a covariance
matrix through non-linear equations while reducing the bias associated with the result.
This section summarises and generalises the JU method in the context of this paper.
Examples of how this method can be used with the Kalman Filter (hence the JUKF) are
given at the end of this section.

Supposed that 
�

( | )S k k  of size ns×1 is an estimate of a particular random vector S(k),

and associated with the estimate is an error covariance matrix Pss(k|k) of size ns×ns, then a
set of sigma points σj are generated from the 2ns columns of

[ ]
[ ] [ ]

± = ±

= ±

−

− −

n k k

v v v diag v v v

s ss n

n j n

T

s

s s

P ( | )

( )

σ σ σ

λ

0 1 1

0 1 1 0 1 1

�

� �

 (15)

where vj’s and λj’s are all the normalised eigenvectors and eigenvalues of nsPss(k|k),
respectively, and diag(.) is the diagonal matrix formed from the arguments on the
diagonal. The inner product between any two sigma points, <vm,vn>, is δmn the Kronecker
delta function because any two eigenvectors of a symmetrical matrix, such as a covariance
matrix, are orthogonal.  A set of 2ns data points can be formed,

{ }S S Si i i
i

n

k k k k k k
s

( | )
�

( | ) ,
�

( | )∈ + −
=

−

σ σ
0

1

U (16)

Let X and Y be non-linear nx×1 and ny×1 functions of S,

X X S Y Y S( ) ( ( )) ( ) ( ( ))k k k k+ = + =1 1 (17)

The following quantities can be calculated with Si(k|k)

�

( | ) ( ( | ))X X Sk k k kn i
i

n

s

s

+ =
=

−

∑1 1
2

0

2 1

(18)
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�

( | ) ( ( | ))Y Y Sk k k kn i
i

n

s

s

+ =
=

−

∑1 1
2

0

2 1

(19)

[ ][ ]P X S X X S XXX n i i

T

i

n

k k k k k k k k k k
s

s

( | ) ( ( | ))
�

( | ) ( ( | ))
�

( | )+ = − + − +
=

−

∑1 1 11
2

0

2 1

(20)

[ ][ ]P Y S Y Y S YYY n i i

T

i

n

k k k k k k k k k k
s

s

( | ) ( ( | ))
�

( | ) ( ( | ))
�

( | )+ = − + − +
=

−

∑1 1 11
2

0

2 1

(21)

[ ][ ]P X S X Y S YXY n i i

T

i

n

k k k k k k k k k k
s

s

( | ) ( ( | ))
�

( | ) ( ( | ))
�

( | )+ = − + − +
=

−

∑1 1 11
2

0

2 1

(22)

The equations (20) to (22) for obtaining the covariance and cross-covariance are
considered suboptimal [9] at the expense of ensuring positive (semi)definiteness. To
simplify subsequent discussion, the computational details are encapsulated into the
following functions:

1. Ω( , ( ), )k SSX S P  takes the transformation equations, X(S) and the covariance matrix Pss

of the random vector S and generates the means of X(S).
2. Λ( , ( ), ( ), )k SSX S Y S P takes the transformation equations, X(S) and Y(S) and the

covariance matrix Pss of the random vector S and generates the cross-covariance
between X(S) and Y(S). Λ( , ( ), )k SSX S P  returns the covariance of X(S).

In both functions, k is the stage specifier for all the independent parameters.

The computation of the square root of a matrix involves solving for eigenvalues and
eigenvectors is computationally expensive and simplication is desirable. For example, if
Pss has a diagonal structure, that is, Pss= diag(Pi), then

( )± = ± = ±n n n diags SS s SS s iP P P (23)

The JU method can now be applied to a Kalman Filtering problem:

( )( )�

( | ) | , (
�

,
�

), , ( )S F S U P Cov UJU
ssk k k k diag+ ≈1 Ω (24)

( )( )z G S U P Cov MJU
ssk k k diag( ) | , (

�

,
�

), , ( )+ ≈ − +1 1Ω (25)

( )( )P F S U P Cov Uss
JU

ssk k diag≈ Λ | , (
�

,
�

), , ( ) (26)

( )( )P G S M P Cov Mzz
JU

ssk k diag≈ +Λ 1| , (
�

,
�

), , ( ) (27)

( )( )P S G S M P Cov Msz
JU

ssk k diag≈ +Λ 1| , , (
�

,
�

), , ( ) (28)

where diag(.)  here is the matrix formed by the argument matrices on the diagonal.

4 Map Building Formalism

The problem of map building can be treated as an optimisation problem and solved with
Kalman Filter if
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1. The parameters to be optimised are identified and error characteristics properly
represented.

2. The relationships between the parameters and the information for optimising these
parameters are available and the quality of the information is known.

This section is further subdivided into nine parts. Section 4.1 contains a discussion
of the environment model and pinpoints the parameters to be optimised. Section 4.2
details all mapping scenarios that must be considered in order to grow the map primitives.
Section 4.3 presents map building as a statistical optimisation problem and formulates
solutions in the context of Kalman Filter. Two formulations are presented: The classical
Global approach and the Relocation-Fusion approach taken by [15]. The author’s
formulations bear resemblance to their work, but are more general in the sense that they
extend beyond feature-to-feature matching in order to tackle the more complex scenarios
faced by sonar mapping. Section 4.4 explains why a corner should be merged to two
intersecting partial planes, not one. Section 4.5 describes how a collinearity constraint
should be validated. Section 4.6 to section 4.9 focus on the discussion and formulae
development for other important map management details, namely, discrimination of
phantom targets, incorporation of new measurement, as well as mergence and removal of
existing primitives.

4.1 Map Primitives

The environmental model comprises two types of primitives:

Partial Plane is characterised by its state parameters [ ]x k a k b ki i i

T
( ) ( ) ( )=  from the line

equation ax by a b+ = +2 2 , the Cartesian coordinates of its approximate endpoints,
and a status associated with each endpoint, indicating whether it is terminated with
another partial plane to form a corner. When a wall is first detected, it is registered as a
partial plane with only one endpoint. It is then grown to have two endpoints and
extended as the robot moves along the wall.

ax+by=a +b 2 2

a

b

y

x

Figure 5 : Parameterisation of partial plane

Corner is characterised by its Cartesian coordinates [ ]x k x k y ki i i

T
( ) ( ) ( )=  only. The sonar

sensor provides no indication of its orientation.
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Edge is similarly characterised by its Cartesian coordinates [ ]x k x k y ki i i

T
( ) ( ) ( )=  only.

The sonar sensor provides no indication of its orientation.

In addition, the covariance and cross-covariance among these features are also kept
[15]. Each time a new primitive is added, it will expand the number of system state
parameters by two. The current strategy also records the unclassifiable features as
unknown. In the future, clusters would be formed to assist in obstacle avoidance path
planning.

4.2. Growing Map Primitives

Since the robot is operating indoor, discrete feature elements are assumed to come from a
few planes, so that they can be merged using some collinearity constraint to give a more
realistic representation of the environment.

the partial plane have ?
How many endpoints does

1 2

Is the new plane
collinear with the partial plane

yes

no

Is the new plane
far from the endpoint ?

no

Form the second
endpoint {end}

Where is this new plane
on the partial plane ?

outside

inside

Is it far from the nearest
endpoint ?

no

Is that nearest 
endpoint terminated ?

no

Fusion
Extend the partial plane

Fusion {end}

Invalid mergence
register as new plane

yes

yes

{end}

{end}

Fusion

Figure 6 : Conditions for growing map primitives with a plane measurement

no

Are both the endpoints 

no

closer to the corner unterminated ?

Are they terminated
with each other ?

Fusion {end}

Fusion

Set status, both planes
planes now terminated 
with each other
Endpoint extended

Invalid mergence
Register as new
corner

yes

yes

no

Are the partial planes involved
collinear ?

no
Is an endpoint of both partial planes

close enough to the corner ?

Figure 7 : Conditions for growing map primitives with a corner measurement
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A planar measurement would be fused to a partial plane if it satisfies the conditions
depicted in Figure 6. A corner measurement would be fused to an existing corner feature
if it is close enough to it, otherwise it would be fused to two existing intersecting planes if
it satisfies the conditions depicted in Figure 7. In a typical real environment, edges are
produced by the artifacts on the walls such as moldings.  While being excellent stationary
landmarks for map building and localisation, they cannot be considered as collinear with
the nearby walls.  Therefore an edge is only fused to an existing edge if they are in the
proximity of each other.  For all greyed condition boxes in the figures, χ2 tests (to be
described later) are applied. Every time a re-observation of a feature/relation occurs, the
state of every map feature would be updated because of their correlation. The
unterminated endpoints of partial planes are projected to the new gradient determined by
the new state parameters, whereas the terminated endpoint are re-calculated from the
intersections of all pairs of partial planes marked as terminated with each other.

4.3 The Kalman Filter Formulation of Map Building Problem

new plane

new plane

corner

new plane

existing plane

existing plane

= connectivity yet to be established

robot

Figure 8 : Status of map and data fusion process at stage k+1

Under this section, the map building problem is first formulated according to the classical
Global approach, a step considered fundamentally critical if a complete picture is to be
gained and modifications in this paper to be fully comprehended. A few equations are then
highlighted and modified according to the concept of the Relocation-Fusion approach
introduced by [5]. All these are done in the specific context of the sonar mapping. After
embedding IEKF or JUKF, the result is more general than the original formulation.

To begin, a snapshot of the map building scenario at stage k+1 is depicted in Figure
8. The robot has just moved to a new position and sensed a few new features. It is now
ready to use some features for localisation, and add the remaining features to the map.

The two dimensional coordinates and orientation (collectively known as the state) of
the robot, as well as the speed of sound, at stage k is denoted by the random vector
x0( ) [ ( ) ( ) ( ) ( )]k x k y k k c ks

T= θ  with respect to a global reference frame. Further

assume that a partial map already exists, and the random parameter vectors of the existing
features xi(k) are concatenated with x0(k) to form the global state vector S(k). S(k)
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contains all the parameters to be optimised, and is the set of all state vectors to be
optimised.

S x x x x( ) [ ( ) ( ) ( ) .. . ( )]k k k k kn
T= 0 1 2 (29)

{ }=
=

xi
i

n

0
U (30)

At stage k+1, the robot travels to a new destination. The intermediate state of the

robot 
�

( | )S k k+ 1  can be predicted as a function of its preceding state 
�

( | )S k k  and the input
vector U(k+1) using the state transition equation (10) or (24). In this case U(k+1) is
specified by the distance travelled by the left wheel and right wheel. Strictly speaking, the
time history of wheel rotations is required to compute the intermediate state (i.e. L and R
are both a function of time). In this experiment, the motion types are confined to linear
translation and on the spot rotation only. If the motion is a translation, L and R should
have equal sign; Likewise, if the motion is a rotation, L and R should have opposite sign.

U U= + =
+
+







( )
( )

( )
k

L k

R k
1

1

1
(31)

Cov U( ( ))

�

( )
�

( )
k

k L k

k R k

L

R

+ =
+

+













1
1 0

0 1

2

2
(32)

Since a new model has been developed in [3] for propagating random odometry
errors, equation  (12) and (26) are replaced by

P FP F Odom U Cov US Sss
IEKF

ss
Tk k k k( | ) ( | ) (

�

, ( ))+ = ∇ ∇ +1 (33)

P F S U P Odom U Cov Uss
JU

ssk k k k( | ) ( | , (
�

,
�

), ) (
�

, ( ))+ = +1 Ω (34)

where Odom() represents the new odometry error model developed in [3] that takes in the

robot’s wheel covariance matrix Cov(U(k+1)) and wheel turns 
�

U  and outputs the
propagated covariance matrix.

Since the motion will only affect x0(k|k), equation (10),  (24), (33) and (34) can be
simplified further. For the IEKF method,

�

( | ) (
�

( | ),
�

( ))x F x U0 01 1IEKF k k k k k+ = + (35)

P FP F Odom U Cov Ux x00 001
0 0

IEKF Tk k k k( | ) ( | ) (
�

, ( ))+ = ∇ ∇ + (36)

P FPxj
IEKF k k k k j0 001 0

0
( | ) ( | )+ = ∇ ∀ > (37)

and for the JUKF method,

( )( )�

( | ) | , (
�

,
�

), , ( )x F x U P Cov U0 0 001JU k k k k diag+ = Ω (38)

( )P F x U P Odom U Cov U00 0 001JU k k k k( | ) | , (
�

,
�

), (
�

, ( ))+ = +Λ (39)
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P F x U x
P P

P P0 0

00 0

0

1 0j
JU

j

j

j jj

k k k k j( | ) | , (
�

,
�

),
�

,+ =


















 ∀ >Λ (40)

A measurement vector consists of a time of flight ri and a direction Ψi to a target,
and is denoted by

[ ]M M= + = + +i i i

T
k r k k( ) ( ) ( )1 1 1ψ (41)

Every new measurement is tested against all the possible collinearity constraints set
out in section 4.2, in order to grow the map primitives. A typical constraint would take the
form

( )G S M 0( ), ( )k ki+ + =1 1 (42)

Based on this, the residual vector (also known is innovation in some literature) can
be computed for each measurement,

( )z G S Mi
IEKF

r ik k k k( ; )
�

( | ),
�

( )+ = − + +1 1 1η (43)

( )( )z G S M P Cov Mi
JU

i ss ik k k diag( ) | , (
�

,
�

), , ( )+ = − +1 1Ω (44)

with error covariance,

P GP G GCov M GS S M Mzz
IEKF

r ss
T

i
Tk k k k k

i i
( | ; ) ( | ) ( ( ))+ = ∇ + ∇ + ∇ + ∇1 1 1η (45)

( )( )P G S M P Cov Mzz
JU

i ss ik k k k diag( | ) | , (
�

,
�

), , ( )+ = +1 1Λ (46)

Where ηr is the rth 
�

( | )S k k+ +1 1  generated by IEKF, triggered with η0 1= +
�

( | )S k k .

Since the noise incurred on these residuals are not correlated, block processing is not
necessary [2] (that is, they can be processed one at a time). Each residual vector zi k( )+ 1

is just a function of 
�

( | )x0 k k , the measurement 
�

( )Mi k + 1  and the corresponding

‘matched’ map features, therefore there are significant zero submatrices in the Jacobian
matrix on which simplification can be made. The following formulation involves only one
feature,

�

( | )x i k k . Formulation involving two states (for example, fusing a new corner

measurement to two existing intersecting partial planes) is similar so will not be detailed.

z G x x Mi
IEKF

r i ik k k k k k( ; ) (
�

( | ),
�

( | ),
�

( ))+ = − + + +1 1 1 10η (47)

z G x x M
P P

P P
Cov Mi

JU
i i

i

i ii
ik k k diag( ) | , (

�

,
�

,
�

), , ( )+ = − + 





















1 1 0

00 0

0

Ω (48)

and its error covariance,
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[ ]P G G
P P

P P

G

G

GCov M G

x x
x

x

M M

zz
IEKF

r

i

i ii

T

T

i
T

k k
k k k k

k k k k

k

i

i

i i

( | ; )
( | ) ( | )

( | ) ( | )

( ( ))

+ = ∇ ∇ 





∇
∇











+∇ + ∇

1

1

0

000 0

0

η
(49)

P G x x M
P P

P P
Cov Mzz

JU
i i

i

i ii
ik k k k diag( | ) | , (

�

,
�

,
�

), , ( )+ = + 





















1 1 0

00 0

0

Λ (50)

The covariance of the measurement should account for the imperfect polygonal
world assumption. For example, not all walls are strictly flat. It has a form depicted by
equation (51) but more about the matrix values is presented later.

Cov M( ( ))i
r r

r

k i i i

i i i

+ =








1

2

2

σ σ
σ σ

ψ

ψ ψ

(51

Kalman Filter equations require that the cross-covariance between the observation
matrix and the state matrix be evaluated with equation (14) and (28). After that, the state
and the error covariance matrix of the map features together with the robot’s position can
be updated with equation (8) and (9). Once again, efficiency can be improved by
processing the covariance matrix in disparate blocks. To update the state of x j ∈ ,

P P G P Gx xjz
IEKF

r j
T

ji
Tk k k k k k

i
( | ; ) ( | ) ( | )+ = + ∇ + + ∇1 1 10 0

η (52)

P x G x x M

P P P

P P P

P P P

Cov Mjz
JU

j i i

i j

i ii ij

j ji jj

ik k k k diag( | ) | ,
�

, (
�

,
�

,
�

), , ( )+ = +
















































1 1 0

00 0 0

0

0

Λ (53)

For IEKF, let η j r,  be the iterator for xj only, 
�

( | )x j k k+ +1 1 , after the rth iteration,

starting with the initial value η j j k k,

�

( | )0 1= +x

( )[ ]η η η η η η ηj r j jz r zz r i r rk k k k k G, , ( | ; ) ( | ; ) ( ; )+
−= + + + + − ∇ −1 0

1
01 1 1P P z S (54)

For JUKF, 
�

( | )x j k k+ +1 1  is simply found with the following classical equation,

�

( | )
�

( | ) ( | ) ( | ) ( )x x P P zj j jz zz ik k k k k k k k k+ + = + + + + +−1 1 1 1 1 11 (55)

Both cases share the same covariance update formula. For all combinations of state
m and n,

P P P P Pmn mn mz r zz r zn rk k k k k k k k k k( | ) ( | ) ( | ; ) ( | ; ) ( | ; )+ + = + − + + +−1 1 1 1 1 11η η η (56)

Extra care has been taken when forming the covariance matrices required by JUKF.
For example, in equation (52), if j=0 or j=i, then the composite covariance matrix passed
into the JUKF function should only include P00, P0i, Pi0 and Pii only. Otherwise, a
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redundant (hence singular with zero determinant) covariance would be formed which
triggers a fatal computer run-time error.

The process is then repeated until all observations have been processed. Since IEKF
is also an extremely computationally demanding implementation, simplification becomes
essential. The original algorithm is modified such that it terminates after exactly three
iterations. Under this simplification, the iterator should only contain the states which
affect all the matrix terms appearing in the IEKF algorithm, namely x0 and xi.  The pseudo
code is summarised as follows.

set  r←0
set η0 0 1, ( | )r k k= +x , η i r i k k, ( | )= +x 1

repeat {
evaluate zi, ∇x G

0
,∇x G

i
, Pzz, P0z, Piz at η0,r and ηi,r

( ) ( )( )η η η η η η0 1 0 0
1

0 0 0 00, , , , , ,r oz zz i r i i ri+
−= + − ∇ − − ∇ −P P z G Gx x

( ) ( )( )η η η η η ηi r i iz zz i r i i ri, , , , , ,+
−= + − ∇ − − ∇ −1 0

1
0 0 0 00

P P z G Gx x

r←r+1
} while (r<3)

{ }∀ ∈x x xj i\ ,0 , evaluate Pjz and update xj

{ }∀ ⊂x xm n, , update Pmn

After the fusion of all measurements associated with the reobserved features, the
remaining features are considered new and are simply incorporated into the global state.
More information about fusing new observations is contained in section 4.4.

The Relocation-Fusion approach formulated by [15] makes a minor variation on the
Global approach. The measurement error is first used to update the robot’s state x0 ONLY.
The improved x0 is then used to re-calculate the residual vector and all the related
Jacobian matrices, which are then used to update the remaining map features. Stepwise,
after zi is computed, x0 and P00 and the cross-covariance between x0 and all other map
feature xn can be found,

x x P P z0 0 0
11 1 1 1 1 1( | ) ( | ) ( | ) ( | ) ( )k k k k k k k k kz zz i+ + = + + + + +− (57)

P P P P P x0 0 0
11 1 1 1 1 1n n z zz zn nk k k k k k k k k k( | ) ( | ) ( | ) ( | ) ( | )+ + = + − + + + ∀ ∈− (58)

Now with the improved x0, zi, ( ∇x G
0

 and ∇x G
i

 in case of IEKF), Pzz, and Pjz can

be re-generated, in this particular order, by applying equation (47) to (50). This is
followed by the update of the states of all other map features, all covariance and cross-
covariance, excluding x0 and P00, using equation (55) to (56). To embed the IEKF
algorithm, iteration is first performed on x0. The matched feature xi is included in the
iteration after three runs. After this, the remaining states follow.

set  r←0
set η0 0 1, ( | )r k k= +x , η i r i k k, ( | )= +x 1

repeat { /* Relocation with IEKF */
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evaluate zi, ∇x G
0

,∇x G
i

, Pzz, P0z at η0,r and ηi,0

( )( )η η η η0 1 0 0
1

0 0 00, , , ,r oz zz i r+
−= + − ∇ −P P z Gx

r←r+1
} while (r<3)

{ }∀ ∈x xj \ 0 , evaluate Pjz

∀ ∈x j , update P0j and Pj0

set  r←0
repeat { /* Fusion with IEKF */

evaluate zi, ∇x G
0

,∇x G
i

, Pzz, Piz ,P0z at η0,2 and ηi,r

( )( )η η η ηi r i iz zz i i i ri, , , ,+
−= + − ∇ −1 0

1
0P P z Gx

r←r+1
} while (r<3)

{ }∀ ∈x xj i\ , evaluate Pjz

{ }∀ ∈x x xj i\ ,0 , update xj

{ }∀ ⊂x xm n, , update Pmn (exclude P00)

The Relocation-Fusion [15] approach has been shown to be less sensitive to position
bias introduced by non-linearities and non-ideal odometry model, at the expense of
optimality caused by the explicit removal of position information from map features
update. In the implementation here, this approach is applied hand in hand with the IEKF
and JUKF to achieve the maximal effect.

4.4 Why Should a New Corner be Fused to Two Intersecting Partial Planes ?

If a corner measurement fails to be fused to one of the standalone corners, an attempt will
be made to fuse it to two intersecting planes.  The reason behind fusing a corner to two
intersecting planes is that, a corner measurement vector [ai(x0,Mi) bi(x0,Mi)]T has a size
2×1. If it sets up a collinearity constraint with one partial plane [a b]T only, then the
residual vector formed would have a size 1×1, that is, zi=[aia+bib-a2-b2]. After fusion,
three options for dealing with the corner are available:

• Discard the corner measurement. This wastes some information.
• Reparameterise the partial plane to create some kind of ‘plane-corner’ entity, which

should have size(partial plane vector) + size(corner vector) - size(residual vector) = 3
state parameters. This leads to a series of avalanche effects. For example, it would later
lead to some ‘plane-corner-plane’ entity and so forth. This complicates the map
management process many folds.

• Register the corner as a new map feature too. However, since it has been used to fuse a
partial plane before, any composite covariance matrix involving both of these features,
like the state covariance matrix, would carry redundancy (not full rank), hence suffer
the risk of singularity (zero determinant). Once again, this choice calls for complex
map management scheme, as instances like this increase.

On the contrary, if it is not used at all, then there wouldn’t be redundancy to
consider. If two intersecting partial planes could be found, the constraint would be ‘the
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corner should be collinear with two partial planes’, so the residual vector would have a
size of 2×1. This means the corner measurement can be discarded after fusion without
wasting any information. On top of that, the two partial planes would be marked as
terminated with each other, so the corner position could always be generated if required
by subsequent path planning. The test to ensure that the two partial planes are not
collinear is vital because if not, later if the two partial planes are merged into one, the
resultant partial plane would have a ‘hanging’ terminated endpoint.

4.5 Validity of Collinearity Constraint

To access the validity of a constraint relationship, Mahalabonis distance test (or also
known as χ2 test) is applied to the residual vector :

z z P z
Pi i

T
zz i

zz
k k k k

2 11 1 1= + + +−( ) ( | ) ( ) (59)

where z
Pi

zz

2
is the normalised sum of square of all the vector components. If the residual

vector is assumed to be jointly Gaussian, then the expression will have a χ2 distribution
with degree of freedom determined by the rank of Pzz. A one-sided acceptance interval is
chosen to establish a 90% probability concentration ellipsoid in the distribution. A new

measurement whose z
Pi

zz

2
falls in this acceptance interval is assumed to have satisfied the

collinearity constraint set up with  the existing feature(s). In this work, all residual vectors
have a size of 2×1, so the degree of freedom is 2, and the acceptance interval is < 5.991.

To improve computational efficiency, zi which is considerably different from 0 is
rejected without going through the test, to avoid the series of matrix operations. At this
stage, the issue of features falling into more than one validation gates has been
temporarily put aside. This problem can arise either when the position covariance is too
large, or when two existing map features are very close together but are not yet merged.
This difficult issue will be investigated in the future.

4.6 Distinguishing Phantom Targets

sure phantom
corner  phantom

plane

ambiguous

robot

partial plane

Figure 9 : Example of treatment of phantom targets

Local maps are preserved. Each feature in the local map has a parameter indicating which
state it has been fused to. Therefore, the knowledge of where a particular map primitive
was observed, is available. When the map is sufficiently complete, many phantom targets
caused by specular reflection can be eliminated by checking whether the line of sights
from the positions they were observed are blocked by some partial planes. If the phantom
targets are too close to some partial planes they are considered ambiguous and would not
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be eliminated. Experimentally it has been validated that, due to specularity, corners and
edges are more likely to cause phantom targets than planes.

4.7 Fusion of the Remaining New Features

After localisation, the fusion of the remaining features will make use of the estimated
robot position. Each new feature xi is a function H() of the robot’s position x0 and a
measurement vector Mi. For each new feature, the error covariance can be calculated :

( )�

( | )
�

( | ),
�

( )x H x Mi
IEKF

ik k k k k+ + = + + +1 1 1 1 10 (60)

P HP H HCov M Hx x M Mii
IEKF T

i
Tk k k k k

i i
( | ) ( | ) ( ( ))+ + = ∇ + + ∇ + ∇ + ∇1 1 1 1 1

0 000 (61)

( )( )�

( | ) | , (
�

,
�

), , ( )x H x M P Cov Mi
JU

i ik k k k diag+ + = + +1 1 1 1 0 00Ω (62)

( )( )P H x M P Cov Mii
JU

i ik k k k diag( | ) | , (
�

,
�

), , ( )+ + = + +1 1 1 1 0 00Λ (63)

and all the cross-covariance among the new features and the existing features are also
generated. Let j denote the objects already in the map,

P HPxij
IEKF

jk k k k j i( | ) ( | )+ + = ∇ + + ∀ ≠1 1 1 1
0 0 (64)

P H x M x
P P

P P
Cov Mij

JU
i j

j

j jj
ik k k k diag( | ) | , (

�

,
�

),
�

, , ( )+ + = + +




























1 1 1 1 0

00 0

0

Λ (65)

As a reminder, if j=0, the composite matrix passed to the JUKF function should comprise
P00 and Cov(Mi) only. By symmetry,

P Pji ij
Tk k k k( | ) ( | )+ + = + +1 1 1 1 (66)

all of which are then inserted into 
�

( | )S k k+ +1 1 and Pss(k+1|k+1).

4.8 Simultaneous Encounter of Collinear Features

There would be occasions when two or more collinear features are encountered at the
same stage. For instance, this situation would occur if the robot reaches a corner and
observes the corner and the walls that form the corner for the first time. When this
situation arises, the planar feature is first incorporated into the global state vector as a new
feature. The corner feature is then regarded as the observation for that new feature.

4.9 Removal of Redundant Primitives

Removal of redundant primitives would occur when

1. Two existing partial planes are actually collinear and adjacent to each other.
2. Two existing corners are the same.
3. Two existing edges are the same.
4. An existing corner appears to be located at the intersection of two existing partial

planes.
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In such cases, internal fusion is performed by forming residual vectors in a manner
similar to section 5. For the last three cases, the map primitve growth assessment/produre
is similar to that depicted in Figure 7, except that when invalidity occurs, integration of
the new feature need not be carried out.  However, to merge two partial planes, the
procedure depicted in Figure 10 is followed.

Are the partial planes
collinear ?

yes

Project all valid endpoints
to the new line parameter
estimate. Order them.
How many endpoints ?

2 3 4

p0:single ended plane
p1:single ended plane

Are p0 and p1 far from
each other ?

p0:single ended plane
p1:double ended plane

terminated ?

p0:double ended plane
p1:double ended plane

Are any of the two middle
endpoints terminated ?

Is the middle endpoint

yes

Invalid

yes no
Is it close enough to
the nearer of the 
extreme of the
ordered endpoints ?

yes

Is p0 too far 
from p1 ?

yes

no

Invalid

no

yes

ordered endpoints ?
extreme of the
the nearer of the 
Is it close enough to

no

Is the combined distance
the two extremes of 
the ordered endpoints
greater than the combined
length of p0 and p1 ?

yes

Invalid

no

yesno

Fusion.
Form a new partial plane
by taking as endpoints the
extremes of the ordered
endpoints, and their
termination status.

no

Figure 10 : Conditions for merging two existing partial planes in map

As an illustration, an example involving two states is given here: When two existing
features, with states xi(k) and xj(k) respectively, are to form a collinearity constraint,
redundancy can be removed by enhancing the estimation of xi(k) with xj(k), and discarding
xj(k) afterwards. Suppose 

�

( | )x i k k  is to be enhanced by 
�

( | )x j k k

Let

G x x 0'( ( | ), ( | ))i jk k k k = (67)

z G x xIEKF
i jk k k k k k( | ) '(

�

( | ),
�

( | ))= − (68)

z G x x
P P

P P
JU

i j

ii ij

ji jj

k k k k( | ) | , '(
�

,
�

),= −


















Ω (69)

then the new estimate of state m is

{ }�

' ( | )
�

( | ) ( | ) ( | ) ( | ) \x x P P z x xm m mz zz m jk k k k k k k k k k= + ∀ ∈−1 (70)
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and the new cross covariance between any two states m and n can then be re-estimated

{ } { }P P P P P x x x' ( | ) ( | ) ( | ) ( | ) ( | ) , \mn mn mz zz zn m n jk k k k k k k k k k= − ∀ ⊂−1 (71)

where
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and the measurement error covariance is
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and by symmetry,

P P' ( | ) ' ( | )mn nm
Tk k k k= (76)

After these operations, all xj related terms in S and Pss can be removed. The three-
run IEKF algorithm is applied in a similar fashion so it will not be elaborated further. Also
if the constraint involves three states, as in the case of fusing a corner to two intersecting
partial planes, the formulation is similar.

It is also possible to exploit the orthogonality constraint among partial planes.
However, not all intersecting walls in today’s indoor environments are strictly
perpendicular, so the idea has not been implemented even though it can be
accommodated. If implemented, a χ2 test would also be applied to assess orthogonality.

5 Implementation Details

This section evaluates the equations given in the last few subsections for all scenarios the
current implementation accounts for. Let B denotes the effective wheelbase, after moving,
the robot’s new position can be computed from the following state update equations:
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where
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The Jacobian matrices with respect to 
�

( | )x0 k k  and 
�

( )U k + 1  can be found in [3]

hence will not be reproduced here. From this point onwards, all circumflexes and suffices
are dropped to alleviate viewing.

To match a planar measurement to a partial plane, let α ψ θi i= +
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∇ = − ×x G I

i 2 2 (82)

To match a corner feature to an existing corner, or an edge feature to an existing
edge feature,

z = −
+
+







+ 





x r c

y r c

a

b
i s i

i s i

i

i

cos

sin

α
α

(83)

∇ =
−





M G
i

c rc

c rc
s i i s i

s i i s i

cos sin

sin cos

α α
α α

(84)

∇ =
−





x G
0

1 0

0 1

rc r

rc r
i s i i i

i s i i i

sin cos

cos sin

α α
α α

(85)

∇ = − ×x G I
i 2 2 (86)

To match a corner feature to two partial planes xi and xj,
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For fusion of a new planar measurement,
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and for a new corner measurement,
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Finally for removal of redundancy, if the feature type of xi and xj are the same, such
as fusing a partial plane to a partial plane, fusing a corner to a corner, or fusing an edge to
an edge,
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If xi is a corner and xj , xk are two partial planes,

z = −
+ − −
+ − −











a a b b a b

a a b b a b
i j i j j j

i k i k k k

2 2

2 2
(101)

∇ = 





x G
i

a b

a b
j j

k k

' (102)

∇ =
− −





x G
j

a a b bi j i j'
2 2

0 0
(103)

∇ =
− −







x G
j a a b bi k i k

'
0 0

2 2
(104)



Mobile Robot Map Building from an Advanced Sonar
Array and Accurate Odometry , MECSE-1996-10

24

6 Simulation Results

Figure 11 : Map building simulation experiment using IEKF and JUKF

IEKF and JUKF have first been tested with simulation. Starting at (2.0m, -8.0m, 0 rad ), a
virtual robot was driven around a virtual square corridor four times. The walls in the
artificial environment are denoted by the equations x=1, x=3, x=7, x=9, y=-1, y=-3, y=-7
and y=-9 respectively. Other data include wheelbase, B=0.4m, kR=1.2×10-3m1/2, kL=10-

3m1/2, σ σψri i

2 2 610= = − m2 and σ ψri i
= 0 m. In each round, the robot stops a total of 12

times to rescan the environment. The total distance travelled is 4×8×4=128 metres, and
the total number of scanning points is 4×12=48. The comparison of the pre-filtering
position errors and post-filtering position errors at all stops is show in Figure 12.

Both methods yield approximately the same performance, with JUKF showing more
‘jitters’ at some scanning points. At the end of the second round, both IEKF simulation
and JUKF simulation register a total of 9 partial planes, but at the end of the fourth round,
the IEKF simulation registers a total of 13 partial planes whereas the JUKF simulation
registers a total of 18 partial planes. By single stepping the program, it has been confirmed
that the only reason for the appearance of redundant partial planes is the failure in passing
the χ2 test. The algorithms for growing map primitives have also been verified as working
correctly and satisfactorily.

Running on a SGI INDY and code compiled with GNU GCC 2.7.0, the speed
required by JUKF to complete the simulation is approximately 5 times that required by
IEKF.

7 Experimental Results

Experiments have been carried out in four artificial environment erected with cardboard
boxes and they are shown from Figure 13(a) to Figure 16(a). The odometry of the robot
has been calibrated to reduce systematic errors, and the parameters required by the non-
systematic error model have been obtained in [3] prior to experiment.
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Since the cardboard boxes were being lined up manually taking the gridlines on the
parquetry floor as reference,  the variance associated with the time of flight measurement
and angular measurement were set larger than that achievable by the sonar sensor [8] in
order for the collinearity constraints to hold. The initial value of speed of sound was set to
342.5 m/s, which is the mean value at the time. In fact, for all four experiments, the
following tentative values were used:

standard deviation of time of flight = 1.6×10-5 s
standard deviation of direction = 2.4°
initial standard deviation of cs = 0.18 m/s

The resultant maps are shown in Figure 13(c)(d) to Figure 16(c)(d). The (b)
subfigures show the raw sonar measurements detected at various positions (before
position correction) being superimposed onto the same diagrams, and the ‘scan lines’
from one of the position indicate the typical number of features the sonar sensor can
capture at any one time. The grid spacing is 1 metre. It has been noticed that the sensor
detects the gaps between the cardboard boxes as edges. They should not be regarded as
some artificial aids to the mapping process as in a real environment, wall moldings are
often found to give rise to the same phenomenon.

In the first environment, the robot navigated around the enclosure once, first
clockwise (Figure 13) then counterclockwise (Figure 14). The maps generated with JUKF
and IEKF are very similar except that for the clockwise experiment, IEKF does not merge
the two partial planes on the right which are supposed to belong to the same ‘wall’. Also,
IEKF does not fuse several corners to the intersecting planes in both runs. Their fusion to
the planes are found to be hindered by the χ2 tests. A comparison of the covariance
generated by IEKF and JUKF for a few features indicates that JUKF in general tends to
generate larger covariance. As a result, the error ellipses for ‘related’ features are more
likely to overlap and more mergence can be observed. Despite the minor imperfection, all
post-filtering maps show that only one partial plane is generated for each wall, and most
of the corners have been successfully fused to two intersecting partial planes, hence well
defined intersections can be observed. Also, repetitive observations of the same edge are
all successfully merged into one edge map feature. All unterminated endpoints of partial
planes have also been properly projected to the line parameters. In the counterclockwise
run, a phantom target can be observed (refer to (b)) but it has been eliminated by its
neareast partial plane. Overall, the maps produced by IEKF and JUKF are very similar.

The third experiment (second environment) is more challenging. The robot was
programmed to repetitively enter, make a 180° turn, exit an enclosure four times to
investigate the long term performance of both filters. Once again, both filters have
remained consistent throughout the navigation. JUKF produces a map with all features
correctly merged. IEKF’s performance closely matches that of JUKF, with only one
corner not fused to two partial planes and two edge features not identified as belonged to
the same physical edge. Three phantom corners are retained in the raw data map, but are
subsequently eliminated in the post-filtering maps by the partial planes blocking their
lines of sight. Once again, the maps produced by IEKF and JUKF are very similar, but the
speed of JUKF is significantly slower.
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In the fourth experiment (third environment), the robot was programmed to follow a
rectangular path four times. One side of the ‘wall’ was indented by about 0.5 metre. The
observations made about this experiment are virtually the same as those made in the third
experiment, so no repetition is necessary. At first glance, it might seem wasteful not to
extend the partial planes with the edge features by exploiting another collinearity
constraint. This idea is found to be impractical in real world for two important reasons:

• Most edge reflections are generated by artifacts which are not necessarily collinear with
the wall, such as wall moldings.

• Even if the edges are really collinear with the partial planes, once they have been
merged into the partial planes, they have to be eliminated, much like merging a corner
to two partial planes. Unlike the corner, the fused edge cannot be regenerated when
required. This in fact reduces the number of useful landmarks for localisation!

X-error (IEKF)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 5 9 13 17 21 25 29 33 37 41 45

Position

D
if

f 
in

 x
 (

m
)

Series1

Series2

X-error (JUKF)

-0.06
-0.04

-0.02
0

0.02
0.04
0.06
0.08

0.1
0.12

0.14
0.16

1 5 9 13 17 21 25 29 33 37 41 45

Position

D
if

f 
in

 x
 (

m
)

Series1

Series2

(a) (b)

Y-error (IEKF)

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 5 9 13 17 21 25 29 33 37 41 45

Position

D
if

f 
in

 y
 (

m
)

Series1

Series2

Y-error (JUKF)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 5 9 13 17 21 25 29 33 37 41 45

Position

D
if

f 
in

 y
 (

m
)

Series1

Series2

(c) (d)

Theta-error (IEKF)

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

1 5 9 13 17 21 25 29 33 37 41 45

Position

D
if

f 
in

 t
h

et
a 

(r
ad

)

Series1

Series2

Theta-error (JUKF)

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

1 5 9 13 17 21 25 29 33 37 41 45

Position

D
if

f 
in

 t
h

et
a 

(r
ad

)

Series1

Series2

(e) (f)

Figure 12 : Comparison of position and orientation errors, before and after IEKF and JUKF. The
solid lines represent post-filtering errors, whereas the dotted lines represent pre-filtering errors
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(a) Actual environment

(b) Raw Sensor Data

(c) IEKF (d) JUKF

Figure 13 : The first environment, with the robot navigating clockwise once
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(a) Actual environment

(b) Pre-filtering Perception

(e) IEKF (d) JUKF

Figure 14 : The first environment, with the robot navigating counterclockwise once
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(a) Actual environment

(b) Pre-filtering Perception

(e) IEKF (d) JUKF

Figure 15 : The second environment, with the robot navigating into and out of the enclosure four
times
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(a) Actual environment

(b) Pre-filtering Perception

(c) IEKF (d) JUKF

Figure 16 : The third environment, with the robot repeating a retangular path four times
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8 Conclusion

The capability of autonomous navigation by mapping of our mobile robot system in some
simple environments has been demonstrated. IEKF and JUKF have been employed to deal
with the problem of covariance propagation through nonlinear transformation, and their
strengths and weaknesses with regards to accuracy and speed have been compared with
simulated and real data. It has been shown that the accuracy demonstrated by IEKF is
comparable to that by JUKF and is in fact sufficient in practice. While eliminating the
tedium of deriving Jacobian matrices, JUKF is less efficient compared to IEKF. The
algorithm is now being intensively upgraded to enhance its robustness and efficiency.
Current research focal points include the elimination of the storage and update of the
covariance between two features if it is found to be small, in order to improve the speed
and memory requirement of the algorithm. Also under investigation is a map matching
strategy to re-establish robot’s position when its uncertainty is too large or when the
accumulation of position bias becomes significant.
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