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Abstract

Previous work in simultaneous localisation and map-
building (SLAM) for mobile robots has focused on the sim-
plified case in which a robot is considered to move in two di-
mensions on a ground plane. While this is sometimes a good
approximation, a large number of real-world applications
require robots to move around terrain which has significant
slopes and undulations. In this paper we describe an EKF-
based SLAM system permitting unconstrained 3D localisa-
tion, and in particular develop models for the motion of a
wheeled robot in the presence of unknown slope variations.
In a fully automatic implementation, our robot observes vi-
sual point features using fixating stereo vision and builds a
sparse map on-the-fly. Combining this visual measurement
with information from odometry and a roll/pitch accelerom-
eter sensor, the robot performs accurate, repeatable locali-
sation while traversing an undulating course.

1. Introduction

The vast majority of research into simultaneous robot local-
isation and map-building (SLAM) has considered the case
where the robot under consideration moves on a flat ground-
plane. While this is a reasonable assumption to make in
many situations, such as for robots moving in certain man-
made areas, it is severly limiting when we consider other
areas where mobile robots could potentially be employed,
in outdoor or more challenging indoor environments. These
applications clearly call for robots which can estimate their
locations and build maps in three dimensions.

While the number of parameters needed to represent
cartesian position in 3D simply increases by one in the move
from 2D, representing orientation in 3D requires minimally
3 parameters, compared with the 1 needed for 2D orienta-
tion. The tangled nature of these orientation parameters is
what makes 3D estimation mathematically involved.

In this paper, we present a detailed framework for es-
timating the 3D motion of a robot in the case that it is
a wheeled vehicle moving over a non-flat surface whose
changes in slope are unknown. This will be the case is most
applications involving uneven ground because generally a
robot will not have a map of the terrain in advance. We
will refer specifically to the Nomad 200 robot we have used
in experiments where necessary, though most of the discus-
sion applies to any wheeled robot. In combination with data
from the robot’s wheel odometry, we present models for in-
corporation of information from from sensors able to make
measurements of arbitrary features in the surroundings, fo-
cusing our discussion on active vision.

Structure from motion in computer vision and simulta-
neous map building and localisation for mobile robots are
two views of the same problem: estimation of the motion
of a body which moves through a static environment about
which it has little or no prior knowledge, using measure-
ments from its sensors to provide information about its mo-
tion and the structure of the world. This body could be a
single camera, a robot with various sensors, or any other
moving object able to sense its surroundings. Nevertheless,
in recent years research has taken many paths to solving this
problem with a lack of acknowledgement of its general na-
ture, a particular divide arising between robotic and “pure
vision” approaches.

Crucially, in this paper we are interested in the sequen-
tial case, where map-building and localisation are able to
proceed in a step-by-step fashion as movement occurs. This
contrasts with situations where the batch methods currently
prevalent in computer vision [10] can be applied, in which
measurements from different time steps are used in paral-
lel after the event. Despite renewed interest in sequential
map-building from the robotics community, in computer
vision recent successful work on reconstruction from im-
age sequences has conspicuously not been accompanied by
advances in real-time methods. In the mobile robotics lit-
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Figure 1: (a) Robot carrying active stereo head (b), featur-
ing 4 degrees of rotational freedom and foveated lenses [8].

erature, sequential localisation and map-building for mo-
bile robots is now increasingly well understood, although
current successful implementations are almost exclusively
based not on vision but sonar or laser range-finder sen-
sors [13, 3, 6, 9], and build maps in 2D. In particular, the
critical role of maintaining information about the coupling
between estimates has been proven, highlighting the defi-
ciencies in early approaches, amongst which vision played
a significant part [7, 1], which were unable to build persis-
tent maps of long-term use due to “motion drift”. Easing
the computational burden of SLAM while maintaining this
cross-correlation information as maps get bigger is the cur-
rent focus of SLAM research.

With this paper, we hope to place another stepping stone
between the areas of computer vision and robotics, and
draw attention to the fact that sequential localisation and
map-building in 3D is exactly the problem which when
solved will lead to new wealth of real-time vision appli-
cations, such as real-time camera position tracking for vir-
tual studios. After introducing and reviewing active-vision
based localisation and map-building in Section 2, closely
following the approach of [5, 4], we look at represent-
ing 3D robot positions in Section 3, and construct mod-
els for motion on unknown, uneven terrain in Section 4.
In Sections 5 and 6 we explain how measurements from
a roll/pitch sensor and active vision respectively can be in-
corporated into a 3D estimation framework. Experimental
results demonstrating repeatable localisation over undulat-
ing terrain are presented in simulation in Section 7 and in
robot implementation in Section 8.

Figure 2: Fixated views of typical feature matches by cor-
relation of 15 � 15 pixel image patches.

2 SLAM Using Active Vision

2.1 Active Vision

In active approaches to sensing, sensor or information pro-
cessing resources are directed purposively to regions of cur-
rent interest in a scene, rather than being used to acquire
and process data uniformly. In vision, active operation is
achieved either by selective processing of the images ac-
quired by fixed cameras, or in our case by physically di-
recting the cameras as required using a motorised camera
platform or “active head”: see Figure 1.

While active vision is easily applied to short range “tac-
tical” navigation, there only been few attempts to apply it to
more long-term navigation tasks such as map-building and
using [4]. This is surprising since it is the main tool used
in human navigation: as we move around our environment,
our eyes constantly change their fixation point to look for of
landmarks, check for obstacles or pick out headings.

2.2 Visual Features

The basis for localisation using vision is a map of static
features whose positions relative to the robot are repeatably
measurable. Within a general mapping framework, there
is the potential for these features to have many different
forms: points, lines or planes for instance. In our current
implementation, point features in 3D space are recognised
using image correlation matching, which proves to be sur-
prisingly robust to changes in viewpoint. The active head
moves to fixate features for measurement with both of its
cameras, acting as an accurate “pointing stick” which can
measure the direction and depth of features over a very wide
field of view. Figure 2 shows some typical features used.
These features are detected automatically by the robot as it
navigates using an image interest operator [11]. Active vi-
sion lends itself to building a sparse map of high-quality,
widely-spaced features. This kind of feature map, used
with a strategy of selective measurement, provides a robot
with the focused information which most aids localisation.
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2.3 Storing and Updating Map Data

The current state of the robot and the scene features which
are known about are stored in the system state vector x̂ and
covariance matrix P. These are partitioned as follows:

x̂ =

0
BBB@

x̂v

ŷ1

ŷ2

...

1
CCCA ; P =

2
6664

Pxx Pxy1 Pxy2 : : :

Py1x Py1y1 Py1y2 : : :

Py2x Py2y1 Py2y2 : : :

...
...

...

3
7775 :

(1)
x̂v is the robot state estimate, and ŷi the estimated state of
the ith feature (x̂; ŷ; ẑ for the case of a 3D point). The state
vector represents the robot’s map of its environment and its
place within it, and the covariance matrix how uncertain this
information is.

A full SLAM approach [12] is used, propagating the co-
variances between the robot state and all feature estimates,
and between the feature states themselves. This is particu-
larly critical in our system, since the small number of fea-
tures generally used must have estimates which are of very
high quality to provide accurate localisation information.
The ability of active cameras to view features over a huge
field of view is key to the quality of this map: the robot can
really see the same features continuously as it goes through
very large motions and rotations; thus fewer features need to
be added to the map, and the uncertainties related to those
present can be reduced succesively as the robot is able to
measure them repeatably over long periods. Within this
framework, there is also the possibility to specify the lo-
cations of some features as prior information.

The data is updated sequentially as the robot moves
around its environment and makes measurements of the fea-
tures in its map following the rules of the Extended Kalman
Filter: a prediction step when the robot moves, and an up-
date step when a measurement is made of a feature.

2.4 Active Measurement

In an active scenario, it is necessary to decide at each instant
which feature in the map to attempt to measure. This deci-
sion is made based on two criteria: expected visibility and
the information content of the measurement. Expected visi-
bility (more precisely measurability) depends on the details
of sensor and feature type; with point features matched by
correlation, we do not expect to be successful with match-
ing if the viewpoint is too different from that from which the
features were initially seen. Since we have an estimate of
the current robot position, the predicted viewing direction
can be evaluated in this respect.

Once a measurable subset of features in the map has been
identified, the information to be gained by measuring each
one is evaluated: essentially we choose the measurement
which has a high innovation covariance [5], the principle

x

z
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1

Figure 3: 2D navigation results from [5] in which a robot
builds a map of point features of to aid position-based lo-
calisation while steering a twisting course.

being that there is little use in making a measurement of
which the result is highly predictable. The selected feature
is then measured by driving the active head to the angles
predicted for fixation on that feature, and searching the im-
ages obtained for a match. Precise search regions are calcu-
lated from the uncertainty in the map, which maximise com-
putational efficiency and reduce the chance of mismatches.

2.5 2D Navigation Results

Active-vision based localisation, when implemented with
planar robot motion but building a 3D map of features in [5]
resulted in a system able to perform repeatable, autonomous
navigation using naturally-occurring features: see Figure 3.

3. 3D Position and Orientation
Position and orientation in 3D can be minimally represented
with 6 parameters: 3 for position and 3 for orientation.
However, we take here the approach of using an extra pa-
rameter, and use a quaternion to represent 3D orientation
with 4 parameters. Quaternions have many advantages as
a representation for 3D orientation, such as mathematical
convenience and a lack of singularities. Position and orien-
tation is represented by the 7-parameter vector:

xp =

�
r
W

q
WR

�
(2)

We refer to xp as the position state of a robot or body:
a standard way to define 3D position and orientation which
is common for any type of robot. We differentiate between
xp and xv , the actual state of a robot, which may include
parameters additional to those representing pure position
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World Frame W

Robot Frame R
r

yW
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x  (left)R

z  (forward)R

y  (up)R

Figure 4: Coordinate frames: fixed world frame W and
robot frame R carried by the robot.

— these extra parameters may represent parts of the robot
which move redundantly with respect to overall position, or
other aspects of interest.

In the case of the robot specifically considered in this pa-
per, there is one extra parameter which we choose to insert
into the state xv : the relative steering angle S, which is the
angle between the robot’s rotating turret and the direction
of its three mechanically coupled wheels. The robot’s state
vector becomes:

xv =

0
@ r

W

q
WR

S

1
A

: (3)

We define two coordinate frames: W , the static world
coordinate frame, and R, the robot frame, fixed with respect
to the robot’s turret. If rW is zero and RWR = R(qWR) is
identity, frames W and R coincide (the robot is at the origin
of coordinates of the world frame). The situation is clarified
in Figure 4.

4. Motion on Undulating Terrain
In 2D navigation, given a robot’s current position and ve-
locity and steering control inputs it is possible to calculate
an estimate of its motion during a small time interval whose
uncertainty depends only on the uncertainty in its odometry
readings. However, when moving in 3D on undulating ter-
rain this is not the case: the orientation of the terrain could
change by an unknown amount in the interim. Clearly, if
a robot is equipped only with such odometry and no other
sensors, we will not get far with 3D position estimation be-
cause wheel odometry does not give any information about
slope. However, before information from other sensors can
be incorporated it is crucial to have a sensible model of what
odometry alone tells us about the robot’s position.

Some assumption must be made about the properties of
the surface on which the robot is driving; we propose the
following relatively simple model:

� At every point on the surface, the terrain has a curva-
ture about a single axis whose unknown direction is

∆v t β

Figure 5: The “piecewise planar” approximation to an un-
dulating surface, shown here with exaggerated step size and
a simplified side-on cut-through of the real 3D situation.

evenly distributed and whose unknown magnitude is
normally distributed.

We also implicitly assume that the robot is in full con-
tact with the surface at all times (that it does not tip up or
“jump”), and therefore that knowing the robot’s orientation
at any point is equivalent to knowing the orientation of the
section of surface beneath.

This surface model requires the specification of only
one parameter: the standard deviation of the curvature �C ,
which is assumed to be of zero mean and of Gaussian dis-
tribution. This parameter reflects how flat (low value) or
undulating (high value) the surface on which the robot will
run is expected to be.

In previous work on 2D localisation [4], we have been
able to use motion models which are valid for any size of
time increment �t and did not rely on time steps being
short: in the case of modelling a non-holonomic “car-type”
robot, it is possible to calculate the circular trajectory in
which the robot moves rather than resorting to a mathemat-
ically simple small angle approximation. However, in this
3D work, mathematical complication causes us currently to
sacrifice the possibility of building a smooth 3D model of
this type, where for instance the robot was assumed to fol-
low sections of surface of constant curvature.

We therefore make a “piecewise planar” approximation
to the undulating surface on which the robot drives: as
shown in Figure 5, we assume that each v�t displacement
of the robot occurs along a locally planar surface, and is
followed by an instantaneous change in orientation through
angle � when a “fold” in the surface is encountered. While
Figure 5 shows a simplified side-on view, in full 3D the
orientation of the axis about which this orientation change
occurs is assumed to be evenly distributed within the plane
on which the robot is currently moving: that is to say that as
well slope changes which will cause it to rock forward and
back, theret will also be those that cause it to rock from side
to side or about any axis in between.
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The motion of the robot can therefore be broken down
into two steps:

1. A planar motion, of size derived by velocity and steer-
ing control parameters, within the plane defined by the
robot’s current position and orientation.

2. An unknown pure rotation as the robot crosses to a new
planar patch.

In a sequential estimation framework, we must calculate
a new state estimate fv(xv ;u) and the increase in state un-
certainty (process noise covariance) Qv for the robot after
this motion.

In step 1, the planar motion, the robot moves in the xz

plane of its local frame R (this is the local “ground plane”).
The details of this motion will depend on the robot’s control
system. For our holonomic robot, we assume that the planar
motion itself is made is two parts: a pure rotation, during
which both the turret and steering wheels rotate, and a pure
translation along the direction defined by the new direction
of the steering wheels (we would need to combine these
two motions into one for a car-like, non-holonomic robot).
This model describes the case that the robot is driven in a
stop-start fashion, only steering when stationary, but a good
approximation in continuous motion provided that the rota-
tions happen quickly compared to the speed of the robot.

After the “turn” step, the new state of the robot becomes:

fv =

0
@ r

W

new

q
WR

new

Snew

1
A =

0
@ r

q
WR

� q(�T )

S +�S ��T

1
A

; (4)

and after the translation step,

fv =

0
BBBB@

r+ R(qWR
� q(S +�S))

0
@ 0

0

v�t

1
A

q
WR

� q(�T )

S +�S ��T

1
CCCCA : (5)

Here �T is the increment in turret angle, and �S the steer-
ing increment. q(�T ) and q(S +�S) are the quaternions
which represent the rotations in the robot frame associated
with �T and S+�S; since these rotations are purely about
the y axis of the robot frame they are trivially formed:

q(�T ) =

0
BB@

cos �T
2

0

sin �T
2

0

1
CCA ; q(S+�S) =

0
BB@

cos S+�S
2

0

sin S+�S
2

0

1
CCA :

(6)
The notation R(q) represents the rotation matrix uniquely
defined by quaternion q.

Turning now to the unknown slope change part of our
motion model, the size of the random slope change � can

be derived from our assumption about the undulations of the
surface. If the standard deviation of the surface curvature is
�C , then the standard deviation of � is:

�� = v�t�C : (7)

(Since curvature is defined as change of angle per unit dis-
tance along a curve, we multiply �C by v�t to obtain an
absolute angle change.)

The effect of the random slope change is to induce an ad-
ditional pure rotation of the robot. The quaternion defining
this rotation we call qs. We now have a complete expres-
sion for the change of state of the robot in time Æt:

fv =

0
BBBB@

r+ R(qWR
� q(S +�S))

0
@ 0

0

v�t

1
A

q
WR

� q(�T )� qs

S +�S ��T

1
CCCCA : (8)

Note that here qs, representing the unknown slope ro-
tation, is a random variable with zero mean effect. This
means that we can ignore it when calculating the value of
the new state, and simply use the expression in Equation 5
above. However, its role becomes clear when we calculate
Qv, the process noise of the movement, or increase in state
uncertainty it induces.

We break the calculation of Qv into two steps. First, for
the planar part of the motion, we assume that uncertainty
in the state update will be due to uncertainty in the value of
the control parameters. The control vector u, containing pa-
rameters v, �S and �T , has a diagonal covariance matrix
since we assume the parameters to be uncorrelated:

u =

0
@ v

�S

�T

1
A

; Pu =

2
4 �

2
v

0 0

0 �
2
�S 0

0 0 �
2
�T

3
5

; (9)

and thus the process noise for the planar part of the motion
can be calculated as:

Qv(1) =
@fv

@u
Pu

@fv

@u

>

; (10)

We do not go into detail here about calculating the Jaco-
bian @fv

@u
except to say that it is involved but tractable: al-

ternatively, there is of course the possibility in implemen-
tation to use a numerical approximation to Jacobians, or to
form them using the symbolic differentiation capabilities of
mathematical software packages.

To now modify Qv(1) to include the effect of slope-
induced rotation, we must form the covariance matrix of q s,
the random quaternion. We first parameterise qs in terms of
two angles: �, the Gaussian magnitude of the rotation to
which we have already referred, and �, the orientation of

5



the axis, lying in the robot frame’s xz plane, about which
the rotation occurs: � is evenly distributed in 0! 2�.

qs =

0
BB@

cos �
2

cos� sin �

2

0

sin� sin �

2

1
CCA (11)

An analysis of this vector reveals its covariance matrix:

Pqs =

2
6664

0 0 0 0

0
�
2

�

8
0 0

0 0 0 0

0 0 0
�
2

�

8

3
7775 (12)

(where �� = v�t�C as shown above).
The final value of Qv is calculated with the equation:

Qv = Qv(1) +

2
64

0 0 0

0
@qWR(2)

@qs
Pqs

@qWR(2)

@qs

>

0

0 0 0

3
75 ; (13)

where qWR(2) is defined as qWR(2) = q
WR(1)�qs, with

q
WR(1) the value of qWR after the planar part of the mo-

tion update.
Note that for implementation in a Kalman Filter Equa-

tion 5 must also be differentiated to provide @fv
@xv

.
It is interesting to consider the way in which we will use

this model (which incidentally we acknowledge potentially
to be topologically naive): only local use will be made of it
— that is to say that as the robot moves over each part of the
terrain, the model will be used to calculate how the uncer-
tainty in robot position and orientation should be increased
due to lack of knowledge about the surface orientation. Pre-
sumably, other sensors will then be used to give more infor-
mation about these unknown quantities. However, in this
work we will not attempt to save this information and map
the surface undulations to feed back into the model later. If
we pass over the same region again, the model will be used
to increase the uncertainty by the same amount. We will
rely on measurements from other sensors of stable features
to provide repeatable robot position estimates.

5. Incorporating Feature Measure-
ments from Active Vision

We now consider incorporating information from measure-
ment of features external to the robot. In the current discus-
sion we will consider only the case of point features: that
is to say features which have well defined point positions in
3D space with no significant volume.

Considering the vector sum of Figure 6, the position of a
point feature relative to the robot is given by:

r

W

R

H h

y
i

Li

Figure 6: Vectors involved in measurement of a feature:
robot position r, sensor offset H, cartesian measurement
hLi and feature position yi satisfy yi = r+H+ hLi.

h
R

Li
= R

RW (yW
i
� (rW +H

W ) : (14)

Here hLi is the cartesian vector from the sensor centre to
the feature, H is the offset from the robot’s centre of coor-
dinates to the centre of the sensor.

A given sensor will not directly measure the cartesian
vector to a feature, but some vector h i of parameters which
is a function of this vector:

hi = hi(hLi) (15)

In the particular case of making measurements with an
active head, from image measurements we calculate ide-
alised pan, elevation and vergence angles � i, ei and 
i

which have the following functional relationship to hLi:

hi =

0
@ �i

ei


i

1
A =

0
B@

tan�1 hLix

hLiz

tan�1
hLiy

hLi�

tan�1 I

2hLi

1
CA : (16)

The noise covariance Ri of this measurement can be
taken to be diagonal with magnitude determined by image
resolution.

6. Incorporating Measurements from
a Roll/Pitch Sensor

A roll/pitch sensor mounted on a robot measures its de-
viation from horizontal via an accelerometer mechanism:
assuming that the robot is moving at a uniform velocity
(or stationary), the sensor detects the direction of the force
of gravity and therefore knows which way is “down”. Of
course a measurement from this sensor is not sufficient to
deduce the overall 3D orientation of the robot: it provides
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no information about its orientation about the axis perpen-
dicular to the down direction (in the aviation-style termi-
nology from which the terms roll and pitch come, this third
angle is referred to as “yaw”). Nevertheless, regular mea-
surements from a roll/pitch sensor can aid the localisation
of a robot moving on undulating terrain to a large degree,
reducing visual search regions.

The angles measured by our roll/pitch sensor, which is
fixed rigidly to the robot, are:

hv =

�
�R

�P

�
=

0
@ tan�1(

y
R

Wx

y
R

Wy

)

tan�1(�
y
R

Wz

y
R

Wy

)

1
A

; (17)

where y
R

Wx
, yR

Wy
and y

R

Wz
are components of the vector

y
R

W
, which is the unit vector with the orientation of the

world coordinate frame W ’s y axis as seen from the robot
frame R, defined as:

y
R

W
= R(�qWR)

0
@ 0

1

0

1
A

: (18)

The measurement noise covariance Rv of this measurement
is characteristically diagonal and small (a standard devia-
tion of somewhat less than 1Æ can be expected).

Since there is little implementational difficulty with tak-
ing high-frequency measurements from a roll/pitch sensor,
it is feasible to make a measurement after every motion step
of the robot — this can of course be without stopping the
robot’s continuous motion. In this way, we are able imme-
diately to correct the large uncertainty in robot orientation
introduced by unknown slope changes.

7. Simulation Experiments
To test the validity of the approach described, simulation ex-
periments were carried out in which stochastic trajectories
were generated for the robot by driving its motion model
with Gaussian noise: effectively this simulates a undulating
surface and the robot’s noisy motion over it. The robot was
driven in a loop around an approximately square trajectory
of side-length 2m in the vicinity of a regular distribution of
feature points of which it was able to make simulated, noisy
visual measurements.

Results are given in Figure 7, showing the true and esti-
mated positions of the robot and any features measured af-
ter laps of this course from the start position using different
combinations of sensors. Using no sensors but forming esti-
mates solely from the integration of odometry, after just one
circuit the accumulation of odometry errors and the effect
of unknown slope changes meant that the robot’s estimated
position had diverged significantly from ground truth. Us-
ing the roll/pitch sensor dramatically reduced the estimation

Start Position Odometry Only, 1 Lap

Roll/Pitch Only, 1 Lap Vision Only, 1 Lap

Vision Only, 2 Laps Vision + Roll/Pitch, 1 Lap

Figure 7: Simulation experiments: grey estimated robot and
feature positions are superimposed on black ground truth.
3� covariance ellipses represent feature uncertainty.

error due to the information provided on slope changes, but
some drift was still evident.

Using vision to build a sparse map of features to which
repeated reference could be made provided the means to re-
cover from this drift. However, when vision only was used
the map generated after just one circuit included a large de-
gree of uncertainty, as can be seen by the large feature el-
lipses; the lack of absolute orientation information means
that large robot uncertainty becomes coupled with large fea-
ture uncertainty. One more lap of the course and further
measurements improved the map significantly.

As expected, the best results were achieved when vision
and the roll/pitch sensor were used in tandem: in this case
an extremely accurate map was generated after just one lap.

8. Robot Experiments
Our ability to conduct challenging experiments was ham-
pered by the fact that current our robot is not well suited
to navigating on undulating terrain, being tall, narrow and
top-heavy. Nevertheless, ramps with elevation of 10cm and
angle 10Æ of were installed on the floor of the experimen-
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Figure 8: VRML model of the experimental area, showing
the slopes installed, and the real robot ascending a ramp.

Traversing the First Ramp (Side View)

L-shaped journey Map State

Figure 9: Estimated robot position sequences obtained
while traversing the course of ramps.

tal environment (a mockup of an industrial plant) depicted
graphically in Figure 8.

The robot was commanded to perform position-based
navigation along a route of waypoints taking it over the
ramps on an L-shaped journey (moving from left-to-right
in Figure 8), passing at one point through a narrow gap be-
tween pipes. The robot then returned along the same route
to its starting position before retracing its steps. Automatic
detection and measurement of scene features was carried
out continuously in combination with roll/pitch measure-
ments. Vision and map processing was carried out by the
robot’s onboard Linux PC. Sequences of estimated robot
positions shown against the map of features generated are
shown in Figure 9, together with the state of the map seen
from overhead when the robot had returned to close to its
starting position. At this point, after its undulating jour-

ney, the robot’s position estimate was within 15cm longi-
tudinally of the hand-measured ground-truth location, and
within 1.5cm vertically. Most features in the map have been
measured many times and have small positional uncertainty.

9. Conclusions
We have given a through theoretical exposition and pre-
sented experimental implementation of simultaneous local-
isation and map-building in 3D using active vision. Local-
isation of this type could extend the operating domain of
robots from the flat surfaces of man-made areas to areas of
application outdoors or in interplanetary exploration.

We also consider work of this type on sequential visual
map-building to be relevant to anyone with an interest in
real-time vision, particularly in applications requiring real-
time structure from motion systems, the first examples of
which have started to appear [2].
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