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M. İhsan Ecemiş and Paolo Gaudiano
�

Boston University Neurobotics Laboratory
Dept. of Cognitive and Neural Systems, 677 Beacon St., Boston MA 02215 USA�
ecemis,gaudiano � @cns.bu.edu http://neurobotics.bu.edu

Abstract

We have recently introduced a novel approach to sonar-
based object recognition for robotics. The sonar recogni-
tion system—consisting of a Polaroid sonar coupled with
an A/D data acquisition board in a LINUX-based PC—
uses a fuzzy ARTMAP neural network classification system
to recognize objects at varying distances. In this article
we report additional results in which we test systematically
recognition performance using different kinds of informa-
tion from the sonar echo, and different object configura-
tions. The results strengthen our claims that sonar can be
used as a viable system for real-time object recognition in
robotics and other application domains.

1 Introduction

At last year’s CIRA Symposium our group introduced a
novel system for recognizing objects using the spectral in-
formation contained in sonar echoes (Streilein, Gaudiano,
& Carpenter, 1998). The system we presented uses the
readily available 6500-series Polaroid sonar and an inex-
pensive data acquisition board that can operate under the
LINUX operating system (DAS16-M1, Computer Boards,
Inc., with a LINUX driver written by Warren Jasper of
North Carolina State University).

Our work was based on the observation that animals such
as bats and dolphins can perform remarkable sensory feats
using ultrasound signals (Dror, Zagaeski, Rios, & Moss,
1993; Moore, Roitblat, Penner, & Nachtigall, 1991). In
contrast, typical robotics applications only use sonar as a
range finder, measuring the time-of-flight of the leading
edge of the ultrasonic echo to determine the distance of
the object that generated the echo (Borenstein, Everett, &
Feng, 1996; Leonard & Durrant-Whyte, 1992).
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In our first study we used a Fuzzy ARTMAP neural
network (Carpenter, Grossberg, Markuzon, Reynolds, &
Rosen, 1992) to classify echoes from five objects placed
at various distances from the sonar. We chose ARTMAP
because of its speed, its ability to learn incrementally and
its proven performance on a variety of real-world pat-
tern recognition problems. For a description of Fuzzy
ARTMAP please refer to the original publication (Carpen-
ter et al., 1992) or our earlier article (Streilein et al., 1998).

The results we presented last year were very encourag-
ing: the recognition system was able to perform with an
accuracy as high as 96% (Streilein et al., 1998). In that
work, we used Matlab (Wolfram Research) to calculate the
power spectral density (PSD) of each echo. The frequency
information was then used as input to the Fuzzy ARTMAP
neural network.

In this article we describe some extensions we have
made to this work. First, we have written all the code in
C to increase processing speed and flexibility in the data
pre-processing scheme. Second, we have tested an alterna-
tive way of extracting information from each echo, using
the envelope of the echo in the time domain rather than fre-
quency content. Finally, we have tested the system’s abil-
ity to learn to recognize objects at different distances and
angles relative to the sonar. As we will show, the results
confirm our previous findings about the value of sonar as a
sensor for object recognition.

The remainder of this article is organized as follows:
Section 2 describes the system, including the hardware and
software components. Section 3 describes the results. The
article closes with a short discussion of the results.

2 Data Collection and Preprocessing

The hardware system consists of an inexpensive Polaroid
sonar and ranging module, (series #6500) and a data ac-
quisition board that can operate under the LINUX oper-
ating system (DAS16-M1, Computer Boards, Inc., with a
LINUX driver written by Warren Jasper of North Carolina
State University).
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For all results reported here, the sonar module was
placed on a movable cart, at approximately the same height
as the stand upon which each object was placed. The
frontal surface of the stand was covered with foam rub-
ber to minimize spurious echoes, though we have found
from our previous experiments that recognition is quite ro-
bust even if other objects are ensonified by the sonar. The
distance to each object was measured manually and later
confirmed directly from the sonar echoes.

Each echo was sampled at a frequency of 500KHz. The
raw echo is processed with a digital bandpass filter with
cutoff frequencies at 15KHz and 93KHz. The filter is im-
plemented by calculating the inverse Fast Fourier Trans-
form (FFT) of an ideal frequency response (with an am-
plitude of 1.0 in the desired range and 0.0 elsewhere). A
Hamming window is applied to the inverse FFT to smooth
the filter in the time domain. Finally, the filter is normal-
ized, truncated to 255 points, and convolved with the echo.

There are several reasons for using this digital filter:

� The filter suppresses aliasing errors

� Certain artifacts, including occasional cropping of the
largest part of the echo, are removed.

� The filter significantly reduces noise present in the sig-
nal before the echo arrives. This makes the detection
of the echo highly reproducible, with an accuracy of 1
data point (0.002msec).

� By removing the low-frequency components of the
echo, the resulting signal is insensitive to 60Hz line
noise and to overall fluctuations that occur for exam-
ple when the battery that triggers the sonar is running
low.

Figure 1 shows the filtered sonar echo returned by a 1-
gal plastic bottle located 100cm in front of the sonar. The
vertical lines demarcate the data extracted for calculation
of the PSD function, as described below. For the envelope
extraction, the data are truncated closer to the echo onset,
as described later.

2.1 Extracting frequency information

In our original report each (unfiltered) echo was trans-
formed into the frequency domain using Matlab’s PSD
function. The PSD is well suited as it averages frequency
information across time windows, thereby obtaining more
reliable measures of frequency content. We have tried us-
ing a simple FFT and found it to be much less reliable.

For the results presented here we calculated the PSD us-
ing the method of Welch, an approach that combines av-
eraging and windowing. Specifically, we used 18 Ham-
ming windows of 256 points each, with an overlap of 90%
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Figure 1: Typical sonar echo after application of the digi-
tal bandpass filter. The vertical dashed lines demarcate the
portion of the echo used for calculating the PSD function,
as described in the text.

between adjacent windows, covering a total of 698 points
(which corresponds to 1.4msec of data). The PSD is calcu-
lated by summing the FFT of all 18 windows and dividing
the total by 18.

The 256-point Hamming windows yield a resolution
of 500KHz/256=1,953Hz. Each PSD vector is truncated
to the 40 elements in the frequency range [15,625Hz–
91,797Hz], reflecting the characteristics of the band-pass
filter. The 40-D vector is used as the input vector for the
ARTMAP neural network.

The solid line in Figure 2 illustrates the average PSD ob-
tained from the echo of the 1-gal plastic bottle located at
a distance of 100cm from the sonar. Each point along the
solid line is the average of 50 measurements. The dashed
line near the bottom of the figure is the variance in the 50
measurements. This averaging was done to test the repeata-
bility of the PSD function for a given object at a given dis-
tance. Our results (not shown here) demonstrate that PSD
functions are highly repeatable for the same object at the
same distance, though they can change significantly as the
object is moved or rotated relative to the sonar.

2.2 Using time-domain information for
recognition

The results obtained in our original experiments showed
that the frequency content of each echo contains a signif-
icant amount of information about the object. However,
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Figure 2: Average PSD (solid line) and variance (dashed
line) calculated from 50 echos generated by the 1-gal plas-
tic bottle at a distance of 100cm from the sonar.

we decided to try object recognition based on time-domain
information for two reasons.

First, Sillitoe, Visioli, Zanichelli, and Caselli (1996) had
shown excellent performance using a decision tree classi-
fier to recognize 22 small objects based on their sonar echo.
Only two points were extracted from each echo: the time of
arrival and the amplitude of the echo’s envelope at a fixed
time interval after the echo onset. Surprisingly, even with
this minimal information (collected from up to five differ-
ent viewpoints at a fixed distance) an overall accuracy of
over 98% was achieved. This suggested to us that the shape
of the echo’s envelope contains a significant amount of in-
formation.

Second, given the practical limitations of typical data ac-
quisition hardware, frequency information may not be an
ideal source of information. With a sampling frequency of
500KHz, the Nyquist sampling theorem suggests that we
can measure frequencies up to 250KHz. In practice a more
reasonable range might be 100KHz. The natural frequency
of the Polaroid sonar is 55KHz. What is the useful range of
frequencies we might want to measure? Any variations in
the echo waveform should arise from two sources: (1) reso-
nances set up by the sonar waveform, which depend on the
material reflecting the waveform and its frequency response
characteristics; (2) interference patterns resulting from dif-
ferent surfaces of the object being ensonified at slightly dif-
ferent times, which depend on the shape of the object.

In the first case, unless a material happens to have a nat-
ural frequency near 55KHz, the changes near the peak fre-
quency are likely to be small. In fact, our informal obser-
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Figure 3: Average envelope function (solid line) and vari-
ance (dashed line) calculated from 50 echos generated by
the 1-gal plastic bottle at a distance of 100cm from the
sonar.

vations confirm this.
In the second case, consider an object with two surfaces

separated by a distance of about 3.5cm. The speed of sound
in air is approximately 350m/sec, so the echo from the
second surface will be delayed by 0.2msec relative to the
echo from the first surface (notice that the time is doubled
to account for the round-trip distance). This corresponds
roughly to a “feature” at a frequency of about 5,000Hz,
which, given our Hamming windows of 256 points (i.e., a
resolution of 1,953Hz), is close to the theoretical sampling
limit. This suggests that unless we increase the Hamming
window size and the amount of data collected, which can
become costly in terms of processing speed and introduces
other problems, we can only identify “shape” features in
the order of a few cm.

Based on these observations we decided to use the shape
of the echo waveform in the time domain as the input vector
to the neural network classifier. The high precision with
which we can locate the onset of the echo suggested that
shifting in the time domain would not be a problem.

Figure 3 shows the average and variance of 50 echoes
from the 1-gal plastic bottle located at a distance of 100cm
from the sonar. Each envelope is calculated as follows:
Starting 30 data points (0.06msec) prior to the echo on-
set, the code finds the maximum value in each of 60 non-
overlapping and contiguous windows of 12 data points
each. Therefore the entire envelope function consists of
60 points spanning 720/500KHz=1.44msec, which corre-
sponds to a spatial range of about 25cm from the front edge
of the object. This procedure effectively performs down-
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sampling and half-wave rectification of the original wave-
form.

The entire envelope function is passed as a 60-D input
vector to the ARTMAP neural network for classification.
Please note that distance information is not passed to the
neural network implicitly or explicitly: all inputs from a
given object are classified to the same output node. As de-
scribed in the next section, classification is always better
with the envelope than with the PSD.

3 Results

In our first report we presented results for recognition of
five objects at different distances. Tests were conducted
using up to 50% of all the collected data for training and
the remaining data for testing.

In this article we performed a similar experiment to de-
termine, using our PSD and envelope functions, what accu-
racy can be achieved in recognizing an object independent
of its distance from the sonar. In addition, we tested the
system’s ability to recognize objects at arbitrary distance
and orientation relative to the sonar.

3.1 Distance-independent object recognition

The first experiment is designed to test how well ARTMAP
can generalize to recognize objects at distances it has not
seen during training. To this end we collected echoes
for four different objects: a one-liter plastic water bottle,
a metal trash can, a styrofoam sheet measuring approxi-
mately 34x63cm, and a lego wall measuring approximately
38x10cm. For each object we collected 50 echoes at 11 dis-
tances ranging from 50cm to 150cm in 10cm increments.
In addition we collected 50 “distractor” echoes from two
other objects at 100cm only.

The Fuzzy ARTMAP neural network was trained using
a randomly selected subset of five processed echoes from
each of the four objects at distances of 50, 70, 90, 110, 130
and 150cm, plus five randomly selected echoes from the
two “distractor” objects at 100cm. For each training input
vector the desired output class was set to one of six nodes
indicating the object whose echo was being presented.

Learning was set to a single epoch (fast learning mode)
with a vigilance level of 0.95. Because ARTMAP is some-
times sensitive to the order of input presentation in fast
learning mode, we repeated each experiment 10 times (each
time drawing a different random set of 5 processed echoes
for each object) and report the average results. However,
we found that there was little variance across individual ex-
periments.

Testing was performed only for the four main objects,
using the remaining 45 echoes from the distances of 50,
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Figure 4: Average recognition accuracy as a function of
distance using the envelope (solid line with circles) or PSD
(dashed line with squares) as input vectors.

70, 90, 110, 130 and 150cm, and all 50 echoes from the
distances of 60, 80, 100, 120 and 140cm. Hence, leaving
aside the distractors, the neural network was trained with
only approximately 5% of the data (none of the training
data was used for testing).

Figure 4 shows the results of this experiment in terms
of percent accuracy (across all four objects) as a function
of distance. The solid line with circles shows the average
results using the 60-D envelope function as input, while the
dashed line with squares shows the average results using
the 40-D PSD function as input. The error bars represent
the variances in the 10 experiments. Several points merit
discussion.

First of all, the envelope function yields better results
than the PSD, as we had suspected. The envelope func-
tion yields 100% recognition at all the distances on which
it was trained, and also on two of the distances on which
it was not trained (100cm and 120cm). Performance al-
ways remains above 90% at all measured distances. The
PSD function also yields 100% accuracy at those distances
on which it was trained, but performance is considerably
worse at intermediate distances.

Another interesting observation is that both the envelope
and PSD yield better results around 120cm than around
larger and smaller distances. We have verified informally
that this peculiar behavior is the result of an automatic gain
mechanism of the Polaroid sonar, which increases the gain
of the receiver in several steps over time to overcome the
dissipation of the ultrasonic wave as it travels through the
air. The gain function is not uniform in the frequency do-
main and changes from step to step. This induces distance-
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dependent changes in the PSD and in the envelope (to a
lesser extent) that result in sudden changes in recognition
performance across gain steps. The data points around
110cm happen to be about in the middle of one of the gain
steps, so there is less change in the waveform and thus su-
perior recognition performance in this range.

These results confirm and actually extend the results in
our original report (Streilein et al., 1998). From a practical
point of view, the suggests that using the envelope function
it is sufficient to train the system to recognize an object
every 20cm or so with only a few points from each distance.
With a sonar firing every 100msec, this means that a robot
approaching an object head-on can quickly learn to classify
the object.

3.2 Recognition during unconstrained move-
ment

One important restriction of the results in the previous sec-
tion is that they are based on the object being “viewed”
from a single angle. Given the directional nature of acous-
tic waveforms, one can expect dramatic changes in the PSD
and envelope functions as objects are rotated by different
angles. Streilein (1998) reports encouraging preliminary
results using a variant of ARTMAP that accumulates infor-
mation from multiple views of an object. In that situation
the neural network was trained as the object was rotated
in regular increments, and then performance was tested by
presenting echoes from a few different angles.

In this article we tested object recognition under a fairly
unconstrained configuration meant to imitate what might
happen with a mobile robot. The sonar was mounted on a
rolling cart and could thus be moved relative to each object.
For this experiment we used five objects: a 1-gal plastic
bottle, a cardboard box measuring 15x25x20cm, a styro-
foam sheet measuring approximately 34x63cm, a lego wall
measuring approximately 38x10cm, and a bucket-like box
(the lego bucket) measuring approximately 18x18x25cm.

For each object, at the start of data collection the cart
was moved back-and-forth across angles of +/- 45-deg and
distances ranging between about 75cm and 130cm from the
object. Because of the weight of the cart and the wheel
configuration, the sonar was not always pointing directly
at the object. This experiment was meant to replicate a
scenario in which a robot is moving around an object.

Data collection for each object lasted about 20 seconds,
collecting one sonar echo every 100msec or so, for a total
of 200 echoes for each object. During this time the cart
was moved from one extreme to the other approximately 5
times.

Training was performed using anywhere between 5 and
100 randomly chosen echoes (out of a total of 200) for each
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Figure 5: Recognition accuracy as a function of training set
size for all five objects using the envelope (solid line with
circles) or PSD (dashed line with square) function as input.

object. Testing only used the echoes that were not seen
during training. ARTMAP vigilance was set to 0.9, training
lasted one epoch (fast learning), and each experiment was
repeated ten times with ten different random seeds. Again,
the results were very stable across experiments.

Figure 5 shows recognition accuracy as a function of
training set size (out of 200). As before, the envelope func-
tion results are shown as a solid line, and PSD results with
a dashed line, while the variances are shown by the error
bars. Two points are important. First, the envelope function
clearly outperforms the PSD, in most cases nearly doubling
the accuracy of recognition. Second, even in this relatively
unconstrained case, ARTMAP performs remarkably well,
achieving an overall recognition accuracy of over 55% with
only 5 training vectors per object (2.5% of the data set), and
nearly 90% accuracy with 100 training vectors per object
(50% of the data set).

It is also interesting to consider the efficiency of the
Fuzzy ARTMAP neural network. When 40 envelope vec-
tors per object are used for training (20% of the data) and
vigilance is set to 0.9, ARTMAP creates a total of 110 cat-
egory nodes to classify all five objects at all distances and
angles, achieving an overall accuracy of 82%. We also
tried varying the vigilance parameter but found the results
to vary only slightly.

These results strengthen our claim that sonar can be used
as an effective sensor for object recognition.
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4 Conclusions

We have presented results showing that sonar can be an ef-
fective sensor for object recognition. Our system can eas-
ily work in real time, making it possible to digitize, process
and recognize each echo several times per second. Clearly,
there are many ways in which we could try to improve
our results, for instance by adjusting the pre-processing
scheme, using a different classification method, or collect-
ing larger data sets. We could also increase efficiency by
using dedicated hardware for some of the pre-processing.
However, we feel that the simplicity and robustness of this
system are part of its appeal.

This is not the first proposal for the use of sonar for ob-
ject recognition tasks. Kleeman and Kuc (1995) used a
novel sonar array for classification of multiple targets into
four reflector types (which are planes, corners, edges, and
unknown), by combining the ranging information from two
transmitters and two receivers. Sillitoe, Mulvaney, and Vi-
sioli (1995) have used a radial basis function neural net-
work to recognize corners, poles, and other shapes typically
found in indoor environment using a bistatic sonar array
(a bistatic sonar is one in which the transmitter is separate
from one or more receivers). Sobral, Johansson, Lindst-
edt, and Olsson (1996) perform recognition of simple ob-
jects by generating transfer functions or impulse responses
from the envelope of the sonar echo of each of four objects
at eight orientations, then using regression to find the best
matching object for a given novel input vector (i.e., an un-
known object). All of these approaches, however, utilize
specialized hardware and are thus not easy to replicate.

Our goal eventually is to migrate the entire system on-
board one of our robots. So far we have worked with a
stand-alone sonar because of our frequent need to modify
the setup, but all the components could easily be placed in-
side any robot with sonar sensors and an on-board PC, such
as ActivMedia’s Pioneers, Real World Interface’s (now a
division of IS Robotics) Bxx and ATR lines, or Nomadic
Technologies’ Nomad Robots.

One practical advantage of using the envelope function
instead of the PSD is that we can sample at much lower
frequencies and thus reduce the cost of the data acquisition
card. As shown by Sillitoe et al. (1996), it should be pos-
sible to reduce the sampling dramatically and still obtain
good results.
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